

Core python scientific libraries: numpy, pandas, scipy

Array package: numpy

The python standard library does not include higher dimensional data structures such as 2-D
arrays/matrices (although, as we have seen, a list of lists can be used as a form of 2D data
structure).

Numpy adds to python arbitrarily high dimension array data structures, which are an essential
component of scientific programming, to allow direct expression of linear algebra operations
(matrices and vectors) as well as processing of 2D data such as images, experimental results,
and higher dimensional arrays/tensors in deep neural networks etc.

Other scientific, engineering and statistical programming languages such as Matlab, R, IDL
have such array data structures built-in.

A key advantage is that numpy arrays allow elementwise operations, which allows
sophisticated vectorized expressions that perform complex operations without requiring
explicit loops.

Numpy arrays are also much faster and memory efficient compared to the built-in python list,
as they are homogeneous arrays with elements stored consecutively in memory, unlike builtin
lists which allow a heterogeneous mix of element types and stores references (pointers) to
objects- this flexibility leads to increased memory usage and decreased performance.
Numpy (and scipy) also calls lower-level C libraries that are faster than python and are
numerically sophisticated.

See code examples and the numpy tutorial at
https://numpy.org/doc/stable/user/absolute_beginners.html for an
overview.

Statistical packages: pandas
There are many statistical tools. Some programming languages, such as R, are even designed for use in
statistical analysis.

One of the most common statistical packages in Python is pandas, which builds on numpy arrays and
implements the data frame data structure based on the R syntax.
For further details see:
https://pandas.pydata.org/docs/user_guide/10min.html#min
https://pandas.pydata.org/Pandas_Cheat_Sheet.pdf

 To get started with pandas, you will need to get comfortable with its two data structures: Series and
DataFrame.

1.1 Import module

In [1]:from pandas import Series, DataFrame

1.2 Series
A Series is a one-dimensional vector capable of holding any data type (integers, strings, floating point
numbers, Python objects, etc.) and an associated array of data labels, called its index. If no index is passed,
one will be created automatically starting from 0.

In [1]:s =Series([4,7,-5,3])

In [2]:s

Out[2]:0 4
1 7
2 -5
3 3
dtype: int64

In [3]:s.values

Out[3]:array([4, 7, -5, 3])

In [4]:s = Series(range(5), index=list('abcde'))

In [5]:s

Out[5]:a 0
b 1
c 2
d 3
e 4
dtype: int64

In [6]:s.mean()

Out[6]:2.0

In [7]:s+s

Out[7]:a 0
b 2
c 4
d 6
e 8
dtype: int64

1.3 DataFrame
A DataFrame represents a tabular, spreadsheet-like data structure containing an ordered collection of
columns, each of which can be a different value type. Consider this example of analysis comparing 2 genes
in 3 different experiments:

In [8]:df = DataFrame([[20,20],[21,30],[19,40]],columns =

['gene_experimental','gene_control'])

In [9]:df

Out[9]: gene_experimental gene_control
0 20 20
1 21 30
2 19 40

Calculate the averages for each gene

In [10]:df.mean()

Out[10]:gene_experimental 20
gene_control 30

So what if we just want the mean of gene1?

In [11]:df['gene1'].mean()

Out[11]:20

What about the variance?

In [12]:df.var()

Out[12]:gene_experimental 1
Gene_control 100

There are higher-level stats functions in scipy:

 In [13]: from scipy import stats
 In [19]: stats.ttest_ind(df.gene1, df.gene2)

 Out[13]: Ttest_indResult(statistic=-1.7234549688642784,
pvalue=0.15990222143539265)

1.4 Missing data
Missing data is common in most data analysis applications. While doing it by hand is always an option,
dropna can be very helpful. On a Series, it returns the Series with only the non-null data and index values:

In [13]:s2 = s[1:]+s[:-1]

In [14]:s2

Out[14]:a NaN
b 2
c 4
d 6
e NaN
dtype: int64

In [15]:s2.dropna()

Out[15]:b 2
c 4
d 6

Rather than filtering out missing data, you may want to fill in the rholesr in any number of ways (known
as data imputation). For most purposes, the fillna method is the workhorse function to use.

In [16]:s2.fillna(s2.mean())

Out[16]:a 4
b 2
c 4
d 6
e 4

dtype: int64

