
COMP1730/COMP6730
Programming for Scientists

Code Quality & Debugging

Lecture outline

* What is “code quality”?
* Testing & debugging
* Defensive programming

Code quality

What is code quality and why
should we care?
* Writing code is easy – writing code so that you

(and others) can be confident that it is correct is
not.

* You will often spend more time finding and fixing
the errors that you made (“bugs”) than writing
code in the first place.

* Good code is not only correct, but helps people
(including yourself) understand what it does and
why it is correct.

(Extreme) example

* What does this function do? Is it correct?
def AbC(ABc):

ABC = len(ABc)
ABc = ABc[ABC−1:−ABC−1:−1]
if ABC == 0:

return 0
abC = AbC(ABc[−ABC:ABC−1:])
if ABc[−ABC] < 0:

abC += ABc[len(ABc)−ABC]
return abC

(Extreme) example – continued
* What does this function do? Is it correct?

def sum negative(input list):
"""Return sum of all negative numbers in input list.
Assumes: list of numerical values. (precondition) """

total = 0 # cumulative sum
i = 0 # current list index
while i < len(input list):

if input list[i] < 0:
total = total + input list[i]

total now has cumulative sum of negative values
for prefix input list[0,i+1]
(loop invariant)
i = i+1

return total # total has cumulative sum
of negatives for input list
(post−condition)

Aspects of code quality

1. Commenting and documentation.
2. Variable and function naming.
3. Code organisation (for large programs).
4. Code efficiency (somewhat).

What makes a good comment?
* Raises the level of abstraction: what the code

does and why, not how.
- Except when “how” is especially complex.

* Describe parameters and assumptions
– python is a dynamically typed language. –
(types are not statically specified explicitly)
def sum negative(input list):

"""Return sum of negative numbers in input list.
Assumes input list contains only numbers."""

* Up-to-date and in a relevant place.
* Good commenting is most important when

learning to program and when working with
other people.

How not to comment
* Don’t use comments to make up for poor quality

in other aspects (organisation, naming, etc.).
x = 0 # Set the total to 0.

* Wrong, or in the wrong place.
loop over list to compute sum
avg = sum(the list) / len(the list)

* Stating the obvious.
x = 5 # Sets x to 5.

* Assume the reader knows python.

Function docstring
* A (triple-quoted) string as the first statement

inside a function (module, class) definition.
* State the purpose and limitations of the function,

parameters and return value, and side-effects
and assumptions (preconditions) if relevant.

def solve(f, y, lower, upper):
"""Returns x such that f(x) = y (approximately).
Assumes f is monotone and that a solution lies in the interval
[lower, upper] (and may recurse infinitely if not)."""

* Can be read by python’s help function.

* Some format conventions for parameters and
return value:

def solve(f, y, lower, upper):
"""Find x such that f(x) = y (approximately).

:param f: a monotonic function with one numeric parameter and
return value.
:param y: integer or float, the value of f to solve for.

...

:returns: float, value of x such that f(x) within +/− 1e−6 of y.
"""

Good naming practice

* The name of a function or variable should tell
you what it does / is used for.

* Variable names should not shadow a names of
standard types, functions, or significant names
in an outer scope.
def a fun fun(int):

a fun fun = 2 ∗ int
max = max(a fun fun, int)
return max < int

* Names can be long (within reason).
- A good IDE will autocomplete them for you.

* Short names are not always bad:
- i (j, k) are often used for loop indices.
- n (m, k) are often used for counts.
- x, y and z are often used for coordinates.

* Don’t use names that are confusingly similar in
the same context.
- E.g., sum of negative numbers vs.
sum of all negative numbers – what’s the
difference?

Code organisation

* Good code organisation
- avoids repetition;
- fights complexity by isolating subproblems and

encapsulating their solutions;
- raises the level of abstraction; and
- helps you find what you’re looking for.

* python constructs that support good code
organisation are functions, classes (covered
later in this course) and modules.

Functions

* Functions promote abstraction, i.e. they
separate what from how.

* A good function (usually) does one thing.
* Functions reduce code repetition.
- Helps isolate errors (bugs).
- Makes code easier to maintain.

* A function should be as general as it can be
without making it more complex.
def solve(lower, upper):

"""Returns x such that x ∗∗ 2 ∗ pi ˜= 1. Assumes ..."""

vs.
def solve(f, y, lower, upper):

"""Returns x such that f(x) ˜= y. Assumes ..."""

Efficiency
Premature optimisation is the root of all evil in
programming.

C.A.R. Hoare

* This famous quote is often misunderstood.
* You should worry about higher level issues,

such as good algorithm design and data
structure choice, based on the computational
complexity of those algorithms, before
complicating your code with micro-optimizations.

* We will discuss computational complexity later
in the course.

Efficiency for large scientific and
engineering problems
* For scientific and engineering programming, the

numpy vector and array library can be an order
of magnitude faster than python loops over lists.

* Larger problems may require implementation of
core parts in a faster language such as C, or
running in parallel on a compute cluster (not
covered in this course).

* Profile your code to find time-critical functions
before optimising (See python profiler or %timeit
in ipython).

Testing & Debugging

Unit testing

* Testing for errors (bugs) in a component of the
program – typically a function – is called unit
testing.
- Specify the assumptions.
- Identify test cases (arguments), particularly

“edge cases”.
- Verify behaviour or return value in each case.

* The purpose of unit testing is to detect bugs.

Good test cases
* Satisfy the assumptions.
* Simple (enough that correctness of the value

can be determined “by hand”).
* Cover the space of inputs and outputs.
* Cover branches in the code.
* What are edge cases?
- Integers: 0, 1, -1, 2, 7, 8, 12, 30, ...
- float: very small (1e-308) or big (1e308)
- Sequences: empty ('', []), length one.
- Any value that requires special treatment in

the code.

System testing

* We need to test our scientific and engineering
pipelines at multiple levels, including system
level.

* System-level tests will typically involve using
small real datasets where the true result is
known, as well as synthetic test data where the
truth is known by construction.

* This stage may also involve measuring
performance e.g. for predictive models.

What is a “bug”?
We could, for instance, begin with cleaning up
our language by no longer calling a bug a bug
but by calling it an error. It is much more hon-
est because it squarely puts the blame where it
belongs, viz. with the programmer who made
the error. The animistic metaphor of the bug
that maliciously sneaked in while the program-
mer was not looking is intellectually dishonest
as it disguises that the error is the program-
mer’s own creation.

E. W. Dijkstra, 1988

The debugging process
1. Detection – realising that you have a bug, e.g.,

by extensive testing.
2. Isolation – narrowing down where and when it

manifests.
3. Comprehension – understanding what you did

wrong.
4. Correction; and
5. Prevention – making sure that by correcting the

error, you do not introduce another.
6. Go back to step 1.

Kinds of errors

* Syntax errors
- Easy to detect.

* Runtime errors
- Easy to detect (when they occur).
- May be hard to understand (the cause).

* Semantic (logic) errors
- May be difficult to detect and understand.

Syntax errors
* IDE/interpreter will tell you where they are.

File "test.py", line 2
if spam = 42:

ˆ
SyntaxError: invalid syntax

if spam == 42:
print("yes")

print("spam is:", spam)

File "../python/test.py", line 5
print("spam is:", spam)

ˆ
IndentationError: unindent does not match any outer indentation level

Runtime errors
* Code is syntactically valid, but you’re asking the

python interpreter to do something impossible.
- E.g., apply operation to values of wrong type,

call a function that is not defined, etc.
- Causes an exception, which interrupts the

program and prints an error message.
- Learn to read (and understand) python’s error

messages!
- A problem in dynamically typed languages like

python.

>>> pets = [’cat’, ’dog’, ’mouse’]
>>> ’I have ’ + len(pets) + ’ pets’

TypeError: can only concatenate str (not "int") to str

>>> print(pets[3])

IndexError: list index out of range

>> print(pests[0])

NameError: name ’pests’ is not defined

>>> print(pets(0))

TypeError: ’list’ object is not callable

Semantic errors (logic errors)

* - The code is syntactically valid and runs
without error, but it does the wrong thing
(perhaps only sometimes).

- To detect this type of bug, you must have a
good understanding of what the code is
supposed to do.

- Logic errors are usually the hardest to detect
and to correct, particularly if they only occur
under certain conditions.

Isolating and understanding a fault
* Work back from where it is detected

(e.g., the line number in an error message).
* Find the simplest input that triggers the error.
* Use print (or debugger) to see intermediate

values of variables and expressions.
* Test functions used by the failing program

separately to rule them out as the source of the
error.
- If the bug only occurs in certain cases, these

need to be covered by the test set.

Some common errors

* Statement in/not in block.
while i <= n:

s = s + i∗∗2
i = i + 1
return s

* Precision and range of floating point numbers.

* Loop condition not modified in loop.
def sum to n(n):

k = 0
total = 0
while k <= n:

total = total + k
return total

* Off-by-one.
def smallest power of 2(n):

"""Return the smallest power of 2 that is >= n"""
k = 1 # start at 0 or 1 ?
p = 2
while p <= n: # < or <= ?

p = p ∗ 2
k = k + 1

return k # k or k − 1 ?

Defensive programming
Everyone knows that debugging is twice as
hard as writing a program in the first place.
So if you’re as clever as you can be when you
write it, how will you ever debug it?

Brian Kernighan
* Write code that is easy to read and well

documented.
- If it’s hard to understand, it’s harder to debug.

* Make your assumptions explicit, and fail fast
when they are violated.

Assertions
assert test expression
assert test expression, "error message"

* The assert statement causes an runtime error if
test expression evaluates to False.

* Violated assumption/restriction results in an
immediate error, in the place where it occurred.

* This is essential in scientific programming.
* Don’t use assertions for conditions that will

result in a runtime error anyway (typically, type
errors). (Modern python allows optional typing-
not covered in this course).

Bad practice (delayed error)

def sum of squares(n):
if n < 0:

return "error: n is negative"
return (n ∗ (n + 1) ∗ (2 ∗ n + 1)) // 6

m = ...
k = ...
a = sum of squares(m)
b = sum of squares(m − k)
c = sum of squares(k)
if a − b != c:

print(a, b, c)

Good practice (immediate error)

def sum of squares(n):
assert n >= 0, str(n) + " is negative"
return (n ∗ (n + 1) ∗ (2 ∗ n + 1)) // 6

m = ...
k = ...
a = sum of squares(m)
b = sum of squares(m − k)
c = sum of squares(k)
if a − b != c:

print(a, b, c)

Explicit vs. implicit
Bad practice (implicit behaviour)

def find box(color):
pos = 0
while robot.sense color():

if robot.sense color() == color:
return pos

robot.lift up()
pos = pos + 1

* What is the loop condition?
* What does find box return if no box of that

colour is found?

* Write explicit code, even when python implicitly
does the same thing.

Good practice (make it explicit)

def find box(color):
pos = 0
while robot.sense color() != ’’:

if robot.sense color() == color:
return pos

robot.lift up()
pos = pos + 1

return None # colour not found

* python allows you to do many things that you
never should.

* Don’t use obscure “language tricks”.

Take-away
* Good code organisation and documentation is

important:
- For others to understand your code.
- For you to understand what you have done

wrong.
* Efficiency, generality and compactness are also

good qualities of code, but secondary to clarity.
* Always test, and think about good test cases

when you code.
* Debugging is a process of understanding, not

trial-and-error.

