
COMP1730/COMP6730
Programming for Scientists

More about lists

Lecture outline

* Lists
* Mutable objects & references

Sequence data types (recap)

* A sequence contains n ≥ 0 values (its length),
each at an index from 0 to n − 1.

* python’s built-in sequence types:
- strings (str) contain only characters;
- lists (list) can contain a mix of value types;
- tuples (tuple) are like lists, but immutable.

* Sequence types provided by other modules:
- e.g., NumPy arrays (numpy.ndarray).

Lists
* python’s list is a general sequence type:

elements in a list can be values of any type.
* List literals are written in square brackets with

comma-separated elements:
>>> a list of ints = [2, -4, 2, -8]
>>> a date = [12, "August", 2015]
>>> pairs = [[0.4, True],

["C", False]]
>>> type(pairs)
<class ’list’>

Creating lists

>>> monday = [18, "July"]
>>> friday = [22, "July"]
>>> [monday, friday]
[[18, "July"], [22, "July"]]
>>> list("abcd")
[’a’, ’b’, ’c’, ’d’]
>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehension

* Create a list by evaluating an expression for
each element in a sequence:
>>> [1/x for x in [1,2,3,4,5]]
[1.0, 0.5, 0.3333333, 0.25, 0.2]
>>> [ord(c) for c in "abcd"]
[97, 98, 99, 100]

* Conditional list comprehension selects only
elements that satisfy a condition:
>>> [i for i in range(2,12) if 12 % i == 0]
[2, 3, 4, 6]

Lists of lists
>>> A = [[1, 2], [3, 4, 5],

[6, 7, 8, 9]]
>>> A[0]
[1, 2]
>>> A[1][2]
5
>>> [1, 2, 3][2]
3

* Indexing and slicing are operators
* Indexing and slicing associate to the left.
a list[i][j] == (a list[i])[j].

Lists of lists

>>> A[0]
[1, 2]
>>> A[0:1]
[[1, 2]]
>>> A[0:1][1:]
[]
>>> A[0:1][1]
IndexError: list index out of range

* Indexing a list returns an element, but slicing a
list returns a list.

Operations on lists
* list + list concatenates lists:

>>> [1, 2] + [3, 4]
[1, 2, 3, 4]

* int * list repeats the list:

>>> 2 * [1, 2]
[1, 2, 1, 2]

* Equality, list == list, and ordering
comparisons, list < list, list >= list,
etc, work the same way as for other (standard)
sequence types, such as strings.

Lecture outline

* Lists
* Mutable objects & references

Values are objects
* In python, every value is an object.
* Every object has a unique(?) identifier.
>>> id(1)
136608064

(Essentially, its location in memory.)
* Immutable objects never change.
- For example, numbers (int and float),

strings and tuples.
* Mutable objects can change.
- For example, lists.

Immutable objects
* Operations on immutable objects create new

objects, leaving the original unchanged.
>>> a string = "spam"
>>> id(a string)
3023147264
>>> b string = a string.replace(’p’, ’l’)
>>> b string
’slam’
>>> id(b string)
3022616448
>>> a string
’spam’

n
o
t

t
h
e

s
a
m
e
!

Mutable objects

* A mutable object can be modified yet its identity
remains the same.

* Lists can be modified through:
- element and slice assignment; and
- modifying methods/functions.

* list is the only mutable type we have seen so
far but there are many other (sets, dictionaries,
user-defined classes).

Element & slice assignment
>>> a list = [1, 2, 3]
>>> id(a list)
3022622348
>>> b list = a list
>>> a list[2] = 0
>>> b list
[1, 2, 0]
>>> b list[0:2] = [’A’, ’B’]
>>> a list
[’A’, ’B’, 0]
>>> id(b list)
3022622348

t
h
e

s
a
m
e

o
b
j
e
c
t
!

Modifying list methods

* a list.append(new element)

* a list.insert(index, new element)

* a list.pop(index)

- index defaults to -1 (last element).
* a list.remove(a value)

* a list.extend(an iterable)

* a list.sort()

* a list.reverse()

* Note: Most do not return a value.

Passing a mutable data type to a
function
* We need to be aware that function argument

passing follows the same rules as assignment.
* The form of argument-passing and object

assignment described above is called
“pass-by-object-reference” in the python
community.

* Thus mutable data types such as list use pass
by reference semantics in function calling, and
so we need to be careful that a function does
not inadvertently modify an argument.

Passing a mutable data type to a
function
return list with 0 at end
def f(input list):

input list.append(0)
return input list

ll = [1,2,3]
b = f(ll)
print(b)
print(ll) # ll unexpectedly modified

Copying a mutable data structure

* A copy can be made of a mutable data structure
such as list by its copy method, or the copy
function in module copy.

* a list = [1,2,3]

* b list = a list.copy()

* import copy

* b list = copy.copy(a list)

Passing an immutable data type to
a function
* The form of argument-passing and object

assignment described above is called
“pass-by-object-reference” in the python
community.

* Note that, strictly, the same
“pass-by-object-reference” mechanism is used
for all types including immutable data types
such as floating point numbers.

* However, as such types are immutable the
effect is essentially the same as pass-by-value
in practice.

Lists contain references

* Assignment associates a (variable) name with a
reference to a value (object).
- The variable still references the same object

(unless reassigned) even if the object is
modified.

* A list contains references to its elements.

* Slicing a list creates a new list, but containing
references to the same objects (“shallow copy”).

* Slice assignment does not copy.

>>> a list = [1,2,3]
>>> b list = a list
>>> a list.append(4)
>>> print(b list)

Image from pythontutor.com

>>> a list = [1,2,3]
>>> b list = a list[:]
>>> a list.append(4)
>>> print(b list)

Image from pythontutor.com

pythontutor.com
pythontutor.com

Image from pythontutor.com

>>> a list = [[1,2], [3,4]]
>>> b list = a list[:]
>>> a list[0].reverse()
>>> b list.reverse()
>>> print(b list)

pythontutor.com

Image from pythontutor.com

>>> a list = [[1,2], [3,4]]
>>> b list = a list[:]
>>> a list[0] = a list[0][::-1]
>>> b list.reverse()
>>> print(b list)

pythontutor.com

Image from pythontutor.com

>>> a list = [1,2,3]
>>> b list = [4,5,6]
>>> a list.append(b list)
>>> c list = a list[:]
>>> b list[0] = ’A’

pythontutor.com

Shallow vs. deep copy
>>> import copy
>>> a list = [[1,2], [3,4]]
>>> id(a list)
3054870700
>>> id(a list[0]), id(a list[1])
(3054874028,3073291596)
>>> b list = a list[:]
>>> id(b list)
3072077420
>>> id(b list[0]), id(b list[1])
(3054874028,3073291596)
>>> c list = copy.deepcopy(a list)
>>> id(c list[0]), id(c list[1])
(3057394764,3057585932)

n
o
t

e
q
u
a
l
!

e
q
u
a
l
!

Use deepcopy judiciously

* Creating 10,000 copies of a list of 1,000 lists of
10 integers.

Time Memory

Shallow copy 0.4s 39.3 MB

Deep copy 305 s 1071 MB

Common mistakes

>>> a list = [3,1,2]
>>> a list = a list.sort()

>>> a list = [1,2,3]
>>> b list = a list
>>> a list.append(b list)

>>> a list = [[]] * 3
>>> a list[0].append(1)

