
COMP1730/COMP6730
Programming for Scientists

Functional abstraction
with Karel the robot

Some announcements

* Two new labs open on Thursday 8-10am

* Doing lab exercises is very important in this course, even more
than lectures! You are strongly encouraged to participate in
labs from next week

* Using AI tools such as ChatGPT and Copilot is OK for
everything except assignments and exam.

* Recommended text books:
- Think Python. Allan Downey, O’Reilly, 2015
- A Primer on Scientific Programming with Python, Hans Petter

Langtangen, Springer, 2017

Lecture outline

* Meet Karel the robot

* Libraries, modules, namespaces

* Functional abstraction and decomposition

* The python language: First steps

History behind Karel the robot

* Gentle introductory programming environment proposed by
Richard Pattis (graduate student at Stanford Uni) in the 1970s to
learn how to problem solve using computers

* Well-received by millions of students worldwide

* “Karel language” is much simpler than Python and other
programming languages

* You will “teach” (program) a robot to solve simple problems

* Robot is named after playwright Karel Capek, who introduced
the word “robot” to English in 1920 play Rossum’s Universal
Robots.

https://en.wikipedia.org/wiki/R.U.R.
https://en.wikipedia.org/wiki/R.U.R.

What is Karel?

* Very simple robot living in a very simple world

* Using commands (instructions), we can direct Karel to perform
certain tasks within its world

* Process of specifying those commands is called programming

* Initially, Karel understands a very reduced set of predefined
commands, but a key part of programming is defining new
commands that extend its initial capabilities

* Karel language is a much simplified version of Python.

Karel’s world (I)
* Karel lives in a rectangular grid of columns and rows

* Example of a world with 6 columns and 4 rows:

* The world may have different dimensions

* Each cell in the grid is called a corner

* Karel can be positioned on corners

Karel’s world (II)
* Karel can only be facing one of the four directions

North South East West

* As shown later, which direction Karel is facing is important
because it determines the direction in which Karel will move
when commanded to move

* Which direction is Karel is facing in the previous slide?

Karel’s world (III)

* A corner might have an object called beeper

* Karel can only interact with a beeper if it is on the same corner

* The black solid lines in the diagram are walls

* Walls are barriers that Karel cannot walk through walls

Karel’s commands (I)
Command Description

move()
Asks Karel to move forward one corner.

Karel cannot respond to a move() command
if there is a wall blocking its way

turn left()
Asks Karel to rotate 90 degrees

to the left (counterclockwise)

pick beeper()

Asks Karel to pick up one beeper from a corner
and stores the beeper in its beeper bag, which
can hold an infinite number of beepers. Karel

cannot respond to a pick beeper() command
unless there is a beeper on the current corner

put beeper()

Asks Karel to take a beeper from its beeper
bag and put it down on the current corner. Karel

cannot respond to a put beeper() command unless
there are beepers in its beeper bag

Karel’s commands (II)

* Empty pair of parentheses in each command is part of the
common syntax shared by Karel and Python and is used to
specify the invocation of the command (don’t forget them!)

* If Karel tries to do something illegal, such as moving through a
wall or picking up a nonexistent beeper, an error condition
occurs (more on this later)

* Karel’s commands are not executed on their own. We need to
incorporate them into a Karel program (more on this later)

Our first Karel program

Include all definitions from the
stanfordkarel library
from stanfordkarel import ∗

Define a "main" function with the
commands we want Karel to execute
def main():

move Karel forward by one corner
move()

pick up a beeper from current corner
pick beeper()

move Karel forward by one corner
move()

Before

After

Notes on the Karel program

* Karel programs MUST include the import statement at the
beginning and define a function called main()

* General Python programs, however, are more flexible and do
not have to follow this particular structure

* The main() function is the entry point of the program. When
the program is executed, Karel will start executing the
commands in the main() function

* The lines starting with # are comments, i.e., text designed to
explain the operation of the program to human readers

Programming problem

Move the beeper from its initial position on 2nd column and 1st row
to the center of a ledge (i.e., corner on 5th column and 2nd row)

before after

Question: how do we turn Karel right if we can only turn it left with
turn left()? (Hint: we can turn it left several times in a row)

Solution
Include all definitions from the
stanfordkarel library
from stanfordkarel import ∗

Define a "main" function with the
commands we want Karel to execute
def main():

move()
pick beeper()
move()
turn left()
move()
turn left()
turn left()
turn left()
move()
move()
put beeper()
move()

Lecture outline

* Meet Karel the robot

* Libraries, modules, namespaces

* Functional abstraction and decomposition

* The python language: First steps

Libraries, modules, namespaces

* Library is a generic term for a collection of (useful) functions,
data structures, etc.

* In python, libraries are called modules
* One way of importing a module is as follows:

import math # math is a built−in module
import standfordkarel
import my module # my module is our own self−written module

which makes the module contents available to use in the
program

* Imported names are prefixed with the module name
(e.g., math.pi provides irrational number π)
- These names are placed in a separate namespace

(more about namespaces later in the course)

* How does python find modules?
- Standard modules (e.g., math) are installed in a specific

location on the file system.
- Non-standard modules (e.g., my module) must be in the

current working directory (cwd)
* Alternatively, we can also import all definitions from a module

into the program’s namespace as we did in the Karel program

from math import ∗
from stanfordkarel import ∗

In this case, we can use the functions directly without prefixing
them with the module name

Lecture outline

* Meet Karel the robot

* Libraries, modules, namespaces

* Functional abstraction and decomposition

* The python language: First steps

Functional abstraction and decomposition

* In programming, a function (also known as “procedure” or
“subroutine”) is a piece of the program that is given a name

- The function is called by its name
- A function is defined once, but can be called any number of

times

* In the Karel programs so far, move, turn left, pick beeper,
and put beeper are examples of functions

* Why use functions?
- Abstraction: To use a function, we only need to know what it

does, not how
- Break a complex problem into smaller parts (known as

functional decomposition)

Input Output

“Engineering succeeds and fails because of the black box”
Kuprenas & Frederick, “101 Things I Learned in Engineering School”

Function definition in python

Turns Karel 90 degrees to the right
def turn right():

turn left()
turn left()
turn left()

* def is a python keyword (“reserved word”)

* function name is followed by a pair of parentheses and a colon
- Inside the parentheses are the function’s parameters (more on

this in coming lectures)

* The function suite is the sequence of statements that will be
executed when the function is called

* All statements in the suite must be indented by the same
number of spaces/tabs (standard is 4 spaces)

Lecture outline

* Meet Karel the robot

* Libraries, modules, namespaces

* Functional abstraction and decomposition

* The python language: First steps

Syntax

* The syntax of a (programming) language is the rules that define
what is a valid program

* A python program is a sequence of statements:

- defining a function:
def turn around():

turn left()
turn left()

- calling a function: put beeper()
turn around()

- importing a module: import math

- ...and a few more.

Whitespace

* Spaces, tabs and end-of-line are known as whitespace

* The whitespace before a statement is called indentation

* In python, whitespace has two special roles:
- end-of-line marks the end of a statement (some exceptions,

more later in the course)
- indentation defines the extent of a suite of statements

* Other than this, whitespace is ignored

Permitted names in python

* A function name in python may contain letters, numbers and
underscores (), but must begin with a letter or undescore

Allowed Not allowed
turn right turn right
turn right 2 2 turn right
is good is good?
imPort import

* Reserved words cannot be used as names

* Names are case sensitive: upper and lower case letters are
not the same

Comments

* A hash sign (#) marks the beginning of a comment; it continues
to end-of-line

* Comments are ignored by the interpreter
- Comments are for people
- Use comments to state what is not obvious

* If it was hard to write, it’s probably hard to read. Add a comment.

