
COMP1730/COMP6730
Programming for Scientists

Data: Values, types and expressions.

Announcements

* See my announcement “COMP1730/6730 week 2 information”
on Ed Discussion

* Lab 1, Quiz 1 and Homework 1 are open on Ed Lessons.

* Homework 1 is due by Sunday 4/8/2024! It’s about Karel the
robot.

* If your final mark is close to the next grade, we may push it if
you:
- attend your lab and engage with tutor(s) and
- correctly solve weekly quizzes on Ed Lessons and
- correctly solve lab exercises on Ed Lessons.

Lecture outline

* Data and data types.

* Expressions: computing values.

* Variables: remembering values.

What is “data”?

* Loan interest rates (lecture 1)

* The number of students enrolled in the course.

* The words typed into a web search engine.

* A time series of total rainfall in Canberra for
the month of June since 1971.

* An elevation map of Australia.

* Most (scientific) applications of computing involve summarising
or deriving information from data.

Example: Data analysis

* In 2020, enrolment in COMP1730/6730, at its peak, was 556
students. This year, the enrolment (so far) is 493 students. How
big an decrease, in percent, is this?

* The decrease is: 493 - 556

* The relative decrease is: (493 - 556) / 556

* in percent: ((493 - 556) / 556) * 100

Expressions

* ((493 - 556) / 556) * 100 is an expression;

* it evaluates to -11.33093525179856;

* 493, 556, 100 and -11.33093525179856 are all values.

* In interactive mode, the python interpreter will print the result of
evaluating an expression:

>>> ((506 − 556) / 556) ∗ 100
−11.33093525179856

python syntax (recap)

* A python program is a sequence of statements:
- import a module;
- function definition;
- function call expression.
- Every function call is an expression.

- ...and more we’ll see later.

* Comment: # to end-of-line.

* Whitespace:
- end-of-line ends statement (except for function definition,

which ends at the end of the suite);
- indentation defines extent of a (function) suite.

python expressions

* Expressions are built up of:
- constants (“literals”): 493, 556
- variables: P, r, n, ...
- operators: +, -, *, /, **, ...
- function calls.

* When an expression is executed, it evaluates to a value (a.k.a.
the return value).

* Expressions can act as statements (the return value is
ignored), but statements cannot act as expressions.

Continuation

* end-of-line marks the end of a statement.

* Except that,
- adding a “\” (back-slash) at the end makes the statement

continue onto the next line, e.g.,

(2 ∗∗ 0) + (2 ∗∗ 1) + (2 ∗∗ 2) \
+ (2 ∗∗ 3) + (2 ∗∗ 4)

- an expression enclosed in parentheses continues to the
closing parenthesis, e.g.,

math.sqrt((x2 − x1) ∗∗ 2 +
(y2 − y1) ∗∗ 2)

Values and Types

Every value has a type

* Value (data) types in python:
- Integers (type int): 0, 1, -3, ...
- Floating-point numbers (type float): 1.0, 0.2, ...
- Text (a.k.a. “string”, type str): “cool”, ’zero’, “1.03”, ...
- Truth values (type bool): False and True.
- ...and many more we’ll see later.

* Types determine what we can do with values (and sometimes
what the result is).

* The type function tells us the type of a value:

>>> type(2)
int

>>> print(type(2))
<class ’int’>

>>> type(2 / 3)
float

>>> print(type("zero"))
<class ’str’>

>>> type("1")
str

>>> type(1 < 0)
bool

Numeric types

* Integers (type int) represent positive and negative whole
numbers (0, 1, 2, −1, −17, 4096, . . .).

* Values of type int have no inherent size limit.
>>> 2 ** (2 ** 2)
16
>>> 2 ** (2 ** (2 ** 2))
65536
>>> 2 ** (2 ** (2 ** (2 ** 2)))
...

* Note: Can’t use commas to “format” integers (must write
1282736, not 1,282,736).

* Floating-point numbers (type float) represent decimal
numbers.

* Values of type float have limited range and limited precision.
- Min/max value: ±1.79 · 10308.
- Smallest non-zero value: 2.22 · 10−308.
- Smallest value > 1: 1 + 2.22 · 10−16.
(These are typical limits; actual limits depend on the python
implementation.)

* Type float also has special values ± inf (infinity) and nan
(not a number): math.inf, math.nan

* Every decimal number is a float:
>>> type(1.5 − 0.5)
float
>>> type(1.0)
float

* The result of division is always a float:
>>> type(4 / 2)
float

* Integer (floor) division is denoted by //:
>>> type(4 // 2)
int

* floats can be written (and are sometimes printed) in “scientific
notation”:
- 2.99e8 means 2.99 · 108

- 6.626e-34 means 6.626 · 10−34

- 1e308 means 1 · 10308

Strings

* Strings (type str) represent text.
* A string literal is enclosed in single or double quote marks:

>>> "Hello world"
’Hello world’
>>> ’4" long’
’4" long’

- A string can contain other types of quote mark, but not the one
used to delimit it.

* More about strings in week 4.

Type conversion

* Explicit conversions use the type name like a function call:

>>> int(2.0)
>>> float(" −1.05")
>>> str(0.75 ∗ 1.75)

* Conversion from str to number only works if the string contains
(only) a numeric literal.

* Conversion from int to float is automatic.
- E.g., int times float becomes a float.
- Can cause OverflowError

Expressions: Operators and Functions

Numeric operators in python

+, -, *, / standard arithmetic

** power (x ** n means xn)
// floor division
% remainder

* Some operators can be applied also to values of other
(non-numeric) types, but with a different meaning (this is called
“operator overloading”).

Precedence

* There is an order of precedence on operators, that determines
how an expression is read:
- 2 * 3 - 1 means (2 * 3) - 1, not 2 * (3 - 1).
- -1 ** 5 means -(1 ** 5), not (-1) ** 5.

* Operators with equal precedence associate left:
- d/2*pi means (d/2)*pi, not d/(2*pi)

* ...except exponentiation, which associates right.

* Whenever it is not obvious, use parentheses to make it clear.

Math functions

* The math module provides standard math functions, such as
square root, logarithm, etc.

>>> import math
>>> help(math) # read documentation
...
>>> math.sqrt(3 ∗∗ 2 + 4 ∗∗ 2)
5.0

* Almost all math functions take and return values of type float.

Comparison operators

<, >, <=, >= ordering (strict and non-strict)
== equality (note double ’=’ sign)
!= not equal

* Can compare two values of the same type (for almost any type).

* Comparisons return a truth value (type bool), which is either
True or False.

* Caution: Conversion from any type to type bool happens
automatically, but the result may not be what you expect.

Variables

Variables

* A variable is a name that is associated with a value in the
program.
- The python interpreter stores name–value associations in a

namespace.
(More about namespaces later in the course.)

* A variable can be an expression: evaluating it returns the
associated value.

* A name–value association is created by the first assignment to
the name.

Valid names in python (reminder)

* A (function or variable) name in python may contain letters,
numbers and underscores (), but must begin with a letter or
undescore.

* Reserved words cannot be used as names.

* Names are case sensitive: upper and lower case letters are not
the same.
- Length Of Rope and length of rope are different names.

Variable assignment

* A variable assignment is written
var name = expression

- Reminder: Equality is written == (two =’s).
- Assignment is a statement.

* When executing an assignment, the interpreter
1. evaluates the right-hand side expression;
2. associates the left-hand side name with the resulting value.

The print function

* print prints text to the console:

>>> print("The answer is:", 42)
The answer is: 42

- Non-text arguments are converted to type str before printing.
- print takes a number of arguments, and prints them all

followed by a newline.

* Print the result, and intermediate steps, when a program is run
in script mode.

Machine Learning: an example

(source: wikipedia)

* Each node represents a
neuron

* Arrows show signals going
from one neuron to another

* Arrow thickness represents the
strength of signals.

Programming problem

Write a code that describes the activity of a single neuron:

activation f (x) = 1
1+e−x

(sigmoid function)
(source: towardsdatascience.com)

