
COMP1730/COMP6730
Programming for Scientists

Functions

Announcements

Drop-in sessions (actual labs with low attendants):

* Tue 5-7pm, CSIT N115/116

* Wed 8-10am, CSIT N114

* Wed 5-7pm, CSIT N114

* Fri 8-10am, CSIT N114

* Fri 4-6pm, CSIT N112
Note that:

* Priority will be given to students allocated to these lab slots.

* Going to a drop-in session does NOT count as participation.

Lecture outline

* Function definition.

* Function calls & order of evaluation.

* Assignments in functions; local variables.

* Function testing & documentation.

Functions

* In programming, a function is a piece of the program that is
given a name, and can be called by that name.

* Functions definitions promote abstraction (“what, not how”) and
help break a complex problem into smaller parts.

* To encapsulate computations on data, functions have
parameters and a return value.



Function definition

def change in percent(old, new):
# function suite
diff = new − old
return (diff / old) ∗ 100

* A function definition consists of a name (change in percent)
and suite.

* The extent of the suite is defined by indentation, which must be
the same for all statements in the suite (standard is 4 spaces).

* Function parameters are (variable) names: old, new; they can
be used (only) in the function suite.

* Parameters’ values will be set only when the function is called.

* return is a statement: when executed, it causes the function
call to end, and return the value of the expression.

Function call

* To call a function, write its name followed by its arguments in
parentheses:

>>> change in percent(489, 556)
13.701431492842536

* The arguments are expressions.

* Their number should match the parameters.

* A function call is an expression: it’s value is the value returned
by the function.

Programming problem: Rewrite neuron activity using function

# Example to describe activity of a neuron
# in a neural network
import math

# input signals
x1 = 0.7
x2 = 0.43

# weights of arrows
w1 = 3.2
w2 = 1.5

# bias to modify output independent of inputs
bias = −10

summation = w1∗x1 + w2∗x2 + bias
output = 1/(1+math.exp(−summation))

print(summation, " ", output)

Function Call Execution



Order of evaluation

* The python interpreter always executes instructions one at a
time in sequence; this includes expression evaluation.

* To evaluate a function call, the interpreter:
- First, evalutes the argument expressions, one at a time, from

left to right.
- Then, executes the function suite with its parameters assigned

the values returned by the argument expressions.

* Same with operators: first arguments (left to right), then the
operation.

The call stack

* When evaluation of a function call begins, the current instruction
sequence is put “on hold” while the expression is evaluated.

* When execution of the function suite ends, the interpreter
returns to the next instruction after where the function was
called.

* The “to-do list” of where to come back to after each current
function call is called the stack.

Demonstrate the following code in https://pythontutor.com

import math

# weights of arrows
w1 = 3.2
w2 = 1.5

# bias to modify output independent of inputs
bias = −10

def summation(x1, x2):
return w1∗x1 + w2∗x2 + bias

def neuron output(x1, x2):
total = summation(x1, x2)
return 1/(1+math.exp(−total))

print(neuron output(0.7, 0.43))

Assignments in functions

* Variables assigned in a function (including parameters) are local
to the function.
- Local variables are “separate” – the interpreter uses a new

namespace for each function call.
- Local variables that are not parameters are undefined before

the first assignment in the function suite.
- Variables with the same name used outside the function are

unchanged after the call.



Functions with no return

* If execution of a function suite reaches the end of the suite
without encountering a return statement, the function call
returns the special value None.
- None is used to indicate “no value”.
- The type of None is NoneType (different from any other

value).

* In interactive mode, the interpreter does not print the return
value of an expression when the value is None.

Side effects and return values

* An expression evaluates to a value.

* A statement does not return a value, but executing it causes
something to happen, e.g.,
- a number = 2 + 3 : variable a number becomes

associated with the value 5;
- print(2 + 3) : the value 5 is printed.
This is called a side effect.

* We can write functions with or without side effects, and
functions that do or don’t return a value (other than None).

* Functions with side effects and None return:
- robot.drive right()
- print(...)

* Functions with return value and no side effect:
- math.sin(x)
- change in percent(old, new)

* Functions with side effects and return value?
- Possible.

* Functions with no side effect and None return value?

Functions of functions

* In python, functions are also values: a function can be passed
as argument to another function.

import math
# weights of arrows
w1 = 3.2
w2 = 1.5
# bias to modify output independent of inputs
bias = −10

def sigmoid(x):
return 1/(1+math.exp(−x))

def neuron output(x1, x2, activation):
total = w1∗x1 + w2∗x2 + bias
return activation(total)

print(neuron output(0.7, 0.43, sigmoid))



Testing and Documentation

Function testing

* A function is a logical unit of testing.
- Document the assumptions (for example, type and range of

argument values);
- Test a variety of cases under the assumptions.

* What are “edge cases”?
- Typical (numeric) examples: values equal to/less than/greater

than zero; very large and very small values; values of equal
and opposite signs; etc.

* Remember that floating-point numbers have limited precision;
== can fail.

>>> change in percent(1, 2)
100.0
>>> change in percent(2, 1)
−50.0
>>> change in percent(1, 1)
0.0
>>> change in percent(1, −1)
−200.0
>>> change in percent(0, 1)
ZeroDivisionError

The function docstring

def change in percent(old, new):
"""Return change from old to new, as
a percentage of the old value.
old value must be non−zero."""
return ((new − old) / old) ∗ 100

* A docstring is a string literal written as the first statement inside
a function’s suite.

* Acts like a comment, but accessible through the built-in help
system.

* Describe what the function does (if not obvious from its name),
and its limits and assumptions.


