
COMP1730/COMP6730
Programming for Scientists

Functions

Lecture outline

* Function definition.

* Function calls & order of evaluation.

* Assignments in functions; local variables.

* Function testing & documentation.

Functions

* In programming, a function is a piece of the program that is given a name, and can
be called by that name.

* Functions definitions promote abstraction (“what, not how”) and help break a
complex problem into smaller parts.

* To encapsulate computations on data, functions have parameters and a return
value.

Function definition
Python:

def change in percent(old, new):
function suite
diff = new − old
return (diff / old) ∗ 100

C/Java:

double change in percent(double old, double new) {
double diff = new − old;
return (diff / old) ∗ 100;

}

* A function definition consists of a name (change in percent) and suite.

* The extent of the suite is defined by indentation, which must be the same for all
statements in the suite (standard is 4 spaces).

* Function parameters are (variable) names: old, new; they can be used (only) in
the function suite.

* Parameters’ values will be set only when the function is called.

* return is a statement: when executed, it causes the function call to end, and
return the value of the expression.

Function call

* To call a function, write its name followed by its arguments in parentheses:

>>> change in percent(489, 556)
13.701431492842536

* The arguments are expressions.

* Their number should match the parameters.

* A function call is an expression: it’s value is the value returned by the function.

Programming problem: Rewrite neuron activity using function

Example to describe activity of a neuron
in a neural network
import math

input signals
x1 = 0.7
x2 = 0.43

weights of arrows
w1 = 3.2
w2 = 1.5

bias to modify output independent of inputs
bias = −10

summation = w1∗x1 + w2∗x2 + bias
output = 1/(1+math.exp(−summation))

print(summation, " ", output)

Function Call Execution

Order of evaluation

* The python interpreter always executes instructions one at a time in sequence; this
includes expression evaluation.

* To evaluate a function call, the interpreter:
- First, evalutes the argument expressions, one at a time, from left to right.
- Then, executes the function suite with its parameters assigned the values

returned by the argument expressions.

* Same with operators: first arguments (left to right), then the operation.

The call stack

* When evaluation of a function call begins, the current instruction sequence is put
“on hold” while the expression is evaluated.

* When execution of the function suite ends, the interpreter returns to the next
instruction after where the function was called.

* The “to-do list” of where to come back to after each current function call is called
the stack.

Demonstrate the code in https://pythontutor.com

https://pythontutor.com

Assignments in functions

* Variables assigned in a function (including parameters) are local to the function.
- Local variables are “separate” – the interpreter uses a new namespace for each

function call.
- Local variables that are not parameters are undefined before the first assignment

in the function suite.
- Variables with the same name used outside the function are unchanged after the

call.
- The full story is a little more complicated – we’ll return to it later in the course.

* Back to pythontutor

Functions with no return

* If execution of a function suite reaches the end of the suite without encountering a
return statement, the function call returns the special value None.
- None is used to indicate “no value”.
- The type of None is NoneType (different from any other value).

* In interactive mode, the interpreter does not print the return value of an expression
when the value is None.

Side effects and return values

* An expression evaluates to a value.

* A statement does not return a value, but executing it causes something to happen,
e.g.,
- a number = 2 + 3 : variable a number becomes associated with the value 5;
- print(2 + 3) : the value 5 is printed.
This is called a side effect.

* We can write functions with or without side effects, and functions that do or don’t
return a value (other than None).

* Functions with side effects and None return:
- stanfordkarel.move()
- print(...)

* Functions with return value and no side effect:
- math.sin(x)
- change in percent(old, new)

* Functions with side effects and return value?
- Possible.

* Functions with no side effect and None return value?

Functions of functions
* In python, functions are also values: a function can be passed as argument to

another function.

import math
weights of arrows
w1 = 3.2
w2 = 1.5
bias to modify output independent of inputs
bias = −10

def sigmoid(x):
return 1/(1+math.exp(−x))

def neuron output(x1, x2, activation):
total = w1∗x1 + w2∗x2 + bias
return activation(total)

print(neuron output(0.7, 0.43, sigmoid))

Testing and Documentation

Test, test, test

* How do we know our program works?

* A function is a logical unit of testing:
- Specify the assumptions under which the function is meant to work, e.g., type

and range of argument values

* Test a variety of cases under the assumptions, esp. “edge cases”:
- Typical (numeric) examples: values equal to/less than/greater than zero; very

large and very small values; values of equal and opposite signs; etc.

* Remember that floating-point numbers have limited precision; == can fail.

>>> change in percent(1, 2)
100.0
>>> change in percent(2, 1)
−50.0
>>> change in percent(1, 1)
0.0
>>> change in percent(1, −1)
−200.0
>>> change in percent(0, 1)
ZeroDivisionError

Some common errors

* SyntaxError:
You have broken the rules of python syntax

* NameError or AttributeError:
You have used a (function) name that doesn’t exist. Check for typos.

* IndentationError:
Too much or too little indentation
- All statements in a function suite must have the same indentation
- All statements outside function definitions must have no indentation

Example errors with Karel the robot

Traceback (most recent call last):
File "karel_test.py", line 8, in main

fill_hole()
File "karel_test.py", line 4, in fill_hole

pick_beeper()
KarelException: Karel crashed while on

avenue 2 and street 1, facing East
Invalid action: Karel attempted to pick up a beeper,

but there were none on the current
corner

* Errors will happen when running your program

* Read the error message!

The function docstring

def change in percent(old, new):
"""Return change from old to new, as
a percentage of the old value.
old value must be non−zero."""
return ((new − old) / old) ∗ 100

* A docstring is a string literal written as the first statement inside a function’s suite.

* Acts like a comment, but accessible through the built-in help system.

* Describe what the function does (if not obvious from its name), and its limits and
assumptions.

