
COMP1730/COMP6730
Programming for Scientists

Control, part 1: Branching

Announcements

Also check news and announcement forum on Wattle

* Fill out week 2-3 survey on Wattle.
- We may make adjustment(s) to improve your learning

experience.

* Homework 2 due by Sunday, 13/8/2023, 11:55pm.

* Week 3 quiz on Wattle and Lab 2 are also released.

* Four class representatives chosen.

Class reps

Aishwarya
Sonavane

Doris Ding Jono Granger Vision Zhang

https://comp.anu.edu.au/courses/comp1730/
communication/

Give them feedback if you don’t want to tell us directly (see Wattle
for their emails).

Outline

* Program control flow

* Branching: The if statement

* Recursion

Program control flow

Sequential program execution

statement

statement

statement

statement
...

* The python interpreter always executes instructions
(statements) one at a time in sequence.

statement

a function()

def a function():

statement

statement

return expression

statement
...

* Function calls “insert” a function suite into this sequence, but the
sequence of instructions remains invariably the same.

Branching program flow

if test:

statement

statement
...

else:

statement

statement
...

statement
...

OR

if test:

statement

statement
...

else:

statement

statement
...

statement
...

* Depending on the outcome of a test, the program executes one
of two alternative branches.

The if statement

if test expression:
suite

other statements()

Statements within the suite must have equal indentation.
1. Evaluate the test expression (converting the value to type bool

if necessary).
2. If the value is True, execute the suite, then continue with the

following statements (if any).
3. If the value is False, skip the suite and go straight to the

following statements (if any).

Example: Absolute difference

def absolute difference(num1, num2):
diff = num1 − num2
if diff < 0:

diff = diff ∗ −1
return diff

adiff = absolute difference(−5, 3)
print("absolute difference is", adiff)

The if statement, with else

if test expression:
suite 1

else:
suite 2

other statements()

1. Evaluate the test expression.
2. If the value is True, execute suite #1, then following

other statements (if any).
2. If the value is False, execute suite #2, then following

other statements (if any).

Example: Absolute difference

def absolute difference(num1, num2):
if num1 >= num2:

return num1 − num2
else:

return num2 − num1

adiff = absolute difference(−5, 3)
print("absolute difference is", adiff)

Programming problem: Stack the red boxes

* Two of three boxes on the
shelf are red, and one is not;
stack the two red boxes
together.

* Write a program that works
wherever the red boxes are.

* robot.sense color() returns the color of the box in front of
the sensor, or no color (’’) if no box detected.

>>> robot.sense color()
’red’

>>> robot.sense color()
’’

- Note that the color name is a string (in ’’)
- The box sensor is one step right of the gripper.

Algorithm idea

is the box red?

no

move right twice

is the box red?

no yes

yes

Truth values (reminder)

* Type bool has two values: False and True.

* Boolean values are returned by comparison operators (==, !=,
<, >, <=, >=) and a few more.

* Ordering comparisons can be applied to pairs of values of the
same type, for (almost) any type.

* Warning #1: Where a truth value is required, python
automatically converts any value to type bool, but it may not be
what you expected.

* Warning #2: Don’t use arithmetic operators (+, -, *, etc.) on
truth values.

Suites: A side remark

* (Almost) Every programming language has a way of grouping
statements into suites/blocks.
- For example, in C, Java and many other:

if (expression) {
suite

}
- or in Ada or Fortran (post -77):

if expression then
suite

end if

* The use of indentation to define suites is a python peculiarity.

def print grade(mark):
"""Print corresponding grade for the mark"""
if mark >= 80:

print("HD")
if mark >= 70:

print("D")
if mark >= 60:

print("Cr")
if mark >= 50:

print("P")
if mark < 50:

print("Fail")

* Is this code correct?

Boolean operators

* The operators and, or, and not combine truth values:

a and b True iff a and b both evaluate to
True.

a or b True iff at least one of a and b
evaluates to True.

not a True iff a evaluates to False.

* Boolean operators have lower precedence than comparison
operators (which have lower precedence than arithmetic
operators).

def print grade(mark):
"""Print corresponding grade for the mark"""
if mark >= 80:

print("HD")
if mark < 80 and mark >= 70:

print("D")
if mark < 70 and mark >= 60:

print("Cr")
if mark < 60 and mark >= 50:

print("P")
if mark < 50:

print("Fail")

The if–elif–else statement

if bool exp 1:
suite 1

elif bool exp 2:
suite 2

elif bool exp 3:
suite 3

...
else:

else suite

statement(s)

* Tests are evaluated in
sequence, and only the suite
corresponding to the first test
that returns True is executed.

* The else suite is executed
only if all tests return False.

def print grade(mark):
"""Print corresponding grade for the mark"""
if mark >= 80:

print("HD")
elif mark >= 70:

print("D")
elif mark >= 60:

print("Cr")
elif mark >= 50:

print("P")
else:

print("Fail")

Recursion

Recursion

* The suite of a function can contain function calls, including calls
to the same function.
- This is known as recursion.

* The function suite must have a branching statement, such that a
recursive call does not always take place (“base case”);
otherwise, recursion never ends.

* Recursion is a way to think about solving a problem: how to
reduce it to a simpler instance of itself?

Problem: Counting boxes

* How many boxes are in
the stack from the box
in front of the sensor
and up?

* If robot.sense color() == ’’, then the answer is zero.

* Else, one plus what the answer would be if the lift was one level
up.

def count boxes():
if robot.sense color() == ’’:

return 0
else:

robot.lift up()
num above = count boxes()

also works without lift down, added to move robot back
to the original position
robot.lift down()

return 1 + num above

The call stack (reminder)

* When a function call begins, the current instruction of the caller
function is put “on a stack”.

* The called function ends when it encounters a return
statement, or reaches the end of the suite.

* The interpreter then returns to the next instruction after where
the function was called.

* The call stack keeps track of where to come back to after each
current function call.

1 ans = count boxes()

2 if robot.sense color() == ’’:

3 robot.lift up()

4 num above = count boxes()

5 if robot.sense color() == ’’:

6 return 0

7 num above = 0

8 robot.lift down()

9 return num above + 1

10 ans = 1

Take home message

* Branching (if) statement allows a program to alter the
sequence of the statements depending on some condition.

* Recursion is used to solve the current problem by looking at a
simpler version of the same problem.

* Recursive calls must occur in a branching statement so that it
does not run forever.

