
COMP1730/COMP6730
Programming for Scientists

Control, part 2: Iteration

echo360 transcripts and close caption corrected, thanks @Alexei!

Outline

* Iteration: The while statement with examples

* Common problems with loops.

Program control flow

Images from Punch & Enbody

Iteration

while test:

statement

statement

...

statement

...

UNTIL

while test:

statement

statement

...

statement

...

* Iteration repeats a suite of statements.

* A test is evaluated before each iteration, and the suite executed
(again) if it is true.

Iteration statements in python

* The while loop repeats a suite of statements as long as a
condition is true.

* The for loop iterates through the elements of a collection or
sequence (data structure) and executes a suite once for each
element.
- We’ll come back to the for loop later in the course.

The while loop statement

while test expression:
suite

other statement(s)

1. Evaluate test expression (converting the value to
type bool if necessary).

2. If the value is True, execute the suite once, then
go back to 1.

3. If the value is False, skip the suite and go on to
the following statements (if any).

Image from Punch &
Enbody

Suites (reminder)

* A suite is a (sub-)sequence of statements.

* A suite must contain at least one statement!

* In python, a suite is delimited by indentation.
- All statements in the suite must be preceded by the same

number of spaces/tabs (standard is 4 spaces).
- The indentation depth of the suite following if / else / while
: must be greater than that of the statement.

* A suite can include nested suites (if’s, etc).

Variable assignment (reminder)

* A variable is a name that is associated with a value in the
program.

* Variable assignment is a statement:
var name = expression

- Note: Equality is written == (two =’s).

* A name–value association is created by the first assignment to
the name;

* subsequent assignments to the same name change the
associated value.

(From pythontutor.com)

* For example,
an int = 3 + 2
an int = an int * 5

1. Evaluate expression 3 + 2 to 5.
2. Store value 5 with name an int

3. Evaluate expression an int * 5 to 25.
4. Store value 25 with name an int, replacing the previous

associated value.

Example: Sums

* What is the max k such that (1 + 2 + . . .+ k) ≤ 20?

k = 1
sum to k = 1
while sum to k <= 20:

print("k =", k, ", sum =", sum to k)
k = k + 1
sum to k = sum to k + k

print("The answer is", k − 1)

* Is this correct? (Test, test, test!)

Coding problem: Counting boxes

* How many boxes are in
the stack from the box
in front of the sensor
and up?

* While robot.sense color() != ’’, move the lift up, and
count how many times.

def count boxes loop():
num = 0
while robot.sense color() != "":

num = num + 1
robot.lift up()

return num

Coding problem: Solving an equation

* Solve f (x) = 0.

* For example, find x such that
x2π − 1 == 0.

* The interval-halving
algorithm.

* Assumption: f (x) is monotone increasing and crosses 0 in the
interval [lower ,upper].

* Idea:
- Find the middle of the interval, m = (lower + upper)/2:
- if f (m) ≈ 0, return m;
- if f (m) < 0, the solution lies between m and upper ;
- if f (m) > 0, the solution lies between lower and m.

* Don’t compare floats
with ==.

Solution using recursion

import math

def f(x):
return x∗∗2 ∗ math.pi − 1

def interval halving recursion(lower, upper):
middle = (lower+upper)/2
value = f(middle)
if abs(value) < 1e−6:

return middle
elif value < 0:

return interval halving recursion(middle, upper)
else:

return interval halving recursion(lower, middle)

Solution using iteration

def interval halving(lower, upper):
while upper − lower > 1e−10:

middle = (lower+upper)/2
value = f(middle)
if abs(value) < 1e−6:

return middle
elif value < 0:

lower = middle
else:

upper = middle
return "No value found"

return from a loop

* A loop (while or for) can appear in a function suite, and a
return statement can appear in the suite of the loop.

def find box(color):
while robot.sense color() != ’’:

if robot.sense color() == color:
return True

robot.lift up()
return False

* Executing the return statement ends the function call, and
therefore also exits the loop.

* Question 1: Can all codes using iteration (loop) be rewritten as
recursion (function calling itself)?

* Question 2: Can all codes with recursion (function calling itself)
be rewritten as iteration (loop)?

PollEverywhere vote results (added after lecture)

Question 1: 81 total votes (correct answer in bold)

* Yes: 52 votes

* No: 24 votes (seemed that some people changed their answer
after the solution was announced ¨̂)

* I don’t know: 4

* I don’t care: 1
Question 2: 76 votes

* Yes: 33 votes

* No: 41 votes

* I don’t know: 1

* I don’t care: 1

Source: ChatGPT

Source: ChatGPT

Writing and debugging loops

Repeat while condition is true

* A while loop repeats as long as the condition (test expression)
evaluates to True.

* If the condition is initially False, the loop executes zero times.

* If no variable involved in the condition is changed during
execution of the suite, the value of the condition will not change,
and the loop will continue forever.

Common problems with while loops

* What is the problem with the following code?

find smallest non−trivial
divisor of num
i = 1
while num % i != 0:

i = i + 1
print("smallest non−trivial divisor of", num,"is", i)

* And this?

i = 0
while i != 100:

i = i + 3

Common problems with while loops

* What is the problem with the following code?

i = 0
while i != stop num:

i = i + step size

- What if stop num < 0?
- or step size < 0?
- or step size does not divide stop num?

Take home message

* Branching (if) and iteration (while loop) are two main control
mechanisms to change the sequential flow of a program.

* Make sure that the test condition will evaluate to False at some
point. Otherwise you will enter an infinite loop!

