
COMP1730/COMP6730
Programming for Scientists

Sequence types

Lecture outline

* Sequence data types

* Indexing, length & slicing

Example sequence data

* GDP per capita (Source:
Google)

* “TAACCCTAACCCTAACCC
TAACCCTA...”
first bit of Human genome
(Source: NCBI database).

Sequences

* Sequence is an ordered collection of values/elements.

* A sequence contains zero or more values.

* Each value in a sequence has a position, or index, ranging from
0 to n − 1.

Sequence data types

* python has three built-in sequence types:
- lists (list) can contain a mix of value types;
- tuples (tuple) are like lists, but immutable (unchangable).
- strings (str): sequence of characters; immutable.

* Sequence types provided by other modules:
- NumPy arrays (numpy.ndarray): later in the course

Indexing & length

3.0 1.5 0.0 -1.5 -3.0sequence:

index: 0 1 2 3 4

-5 -4 -3 -2 -1

* In python, all sequences are indexed from 0.

* The index must be an integer.

* python also allows indexing from the sequence end using
negative indices, starting with -1.

* The length of a sequence is the number of elements, not the
index of the last element.

* len(sequence) returns sequence length.

* Sequence elements are accessed by writing the index in square
brackets, [].

>>> x = [3, 1.5, 0, −1.5, −3]
>>> x[1]
1.5
>> x[−1]
−3.0
>>> len(x)
5
>>> x[5]
IndexError: list index out of range

Functions on sequences

There are many built-in functions that operate on sequences:

* len returns the number of elements in the sequence.

* min and max return the smallest and largest elements in the
sequence.

* sum returns the sum of the elements in the sequence.

* sorted returns a list with the elements of the sequence
arranged in ascending order.

* x in sequence returns True iff x is an element of the
sequence.

The for .. in .. statement

for name in expression:
suite of for
statement1
statement2
...

1. Evaluate the expression, to obtain an iterable collection.
- If value is not iterable: TypeError.

2. For each element E in the collection:
2.1 assign name the value E ;
2.2 execute the loop suite.

Iterating over sequence elements with for loop

while loop over elements:

seq = [1, 4, "three", −2]
i = 0
while i < len(seq):

print(seq[i])
i = i+1

Doing the same with for loop:

seq = [1, 4, "three", −2]
for elem in seq:

print(elem)

or

for i in range(len(seq)):
print(seq[i])

Coding problem: Find the year that Australia has the highest GDP
per capita.

GDP per capita of Australia in USD from 1960 to 2021
Source: datacommons.org and The World Bank
gdp au = [1811, 1878, 1855, 1967, 2131, 2281, 2344,

2580, 2724, 2991, 3305, 3495, 3949, 4771,
6483, 7004, 7487, 7776, 8253, 9294, 10209,
11853, 12779, 11515, 12421, 11441, 11391,
11651, 14284, 17834, 18250, 18860, 18625,
17700, 18130, 20447, 22020, 23645, 21478,
20699, 21853, 19682, 20291, 23706, 30820,
34461, 36571, 41024, 49681, 42810, 52132,
62599, 68047, 68156, 62515, 56709, 49877,
53934, 57207, 54941, 51722, 60445]

This code was live demo during lecture:

def find peak(seq):
"""

Find index of the maximum peak in a sequence
"""
peak id = 0
for i in range(len(seq)):

if seq[i] > seq[peak id]:
peak id = i

return peak id

* Is there a linear relation between GDP and time?

Australia USA

An algorithmic idea for linear regression

* Fit a straight line (y = ax + b) as close to all of the points as
possible, where y is GDP and x the time.

* a is called slope and b is intercept.
- Calculate slope as (last y - first y)/(last x - first x).
- Calculate intercept as average over all points: y [i]− slope ∗ x [i]
- a straight line from point (first x, slope*first x + intercept) to

point (last x, slope*last x + intercept)

This code was live demo during lecture:

import matplotlib.pyplot

def linear regression(x, y):
"""find the straight line fitting
best to x and y,
Assume x and y are two sequences
of the same length"""

slope = (y[−1] − y[0]) / (x[−1]−x[0])

intercept = 0
for i in range(len(y)):

intercept = intercept + y[i] − slope∗x[i]
intercept = intercept / len(y)

print("slope:", slope, " intercept:", intercept)
matplotlib.pyplot.plot(x, y)
matplotlib.pyplot.plot([x[0], x[−1]],

[slope∗x[0]+intercept, slope∗x[−1]+intercept])

Linear regression results

Australia USA

Generalised indexing

* Most python sequence types support slicing – accessing a
subsequence by indexing a range of positions:

sequence[start index:end index]
sequence[start index:end index:step size]

Slicing

* The slice range is “half-open”: start index is included, end index
is one after last included element.

>>> x = [3, 1.5, 0, −1.5, −3]
>>> x[1:4]
[1.5, 0, −1.5]

3.0 1.5 0.0 -1.5 -3.0sequence:

index:

start end

0 1 2 3 4

Slicing is an operator

* The slicing operator returns a sequence, which can be indexed
(or sliced)

* What will the following print:

>>> x = [3, 1.5, 0, −1.5, −3]
>>> print(x[1:4][1])

* Slicing associates to the left.

Indexing vs. Slicing

* Indexing a sequence returns an element: The index must be
valid (i.e., between 0 and length-1 or -1 and -length).

* Slicing returns a subsequence of the same type: Indexes in a
slice do not have to be valid. And a slice may contain 0 or more
elements.

Take home message

* list data type to store an (ordered) sequence of values.

* Sequence index starts from 0, not 1!

* Indexing operator returns an element, whereas slicing operator
returns a sequence.

