
COMP1730/COMP6730
Programming for Scientists

Code Quality

Announcements

* You can discuss your homework 1 with tutor in lab this week.
* Homework 2 marks may be available soon.

What is code quality and why should we care?

* Writing code is easy – writing code so that you (and others) can
be confident that it is correct is not.

* You will always spend more time finding and fixing the errors
that you made (“bugs”) than writing code in the first place.

* Good code is not only correct, but helps people (including
yourself) understand what it does and why it is correct.

(Extreme) example

* What does this function do? Is it correct?

def AbC(ABc):
ABC = len(ABc)
ABc = ABc[ABC−1:−ABC−1:−1]
if ABC == 0:

return 0
abC = AbC(ABc[−ABC:ABC−1:])
if ABc[−ABC] < 0:

abC += ABc[len(ABc)−ABC]
return abC

(Extreme) example – continued

* What does this function do? Is it correct?

def sum negative(input list):
"""Return sum of all negative numbers in input list."""
total = 0
i = 0
while i < len(input list):

if input list[i] < 0:
total = total + input list[i]

i = i+1
return total

Aspects of code quality

1. Commenting and documentation.
2. Variable and function naming.
3. Code organisation (for large programs).
4. Code efficiency (somewhat).

What makes a good comment?

* Raises the level of abstraction: what the code does and why,
not how.
- Except when “how” is especially complex.

* Describe parameters and assumptions
– python is not a typed language.

def sum negative(input list):
"""Return sum of negative numbers in input list.
Assumes input list contains only numbers."""

* Up-to-date and in a relevant place.
* Good commenting is most important when learning to program

and when working with other people.

How not to comment

* Don’t use comments to make up for poor quality in other
aspects (organisation, naming, etc.).

x = 0 # Set the total to 0.

* Wrong, or in the wrong place.

loop over list to compute sum
avg = sum(the list) / len(the list)

* Stating the obvious.

x = 5 # Sets x to 5.

* Assume the reader knows python.

Function docstring

* A (triple-quoted) string as the first statement inside a function
(module, class) definition.

* State the purpose and limitations of the function, parameters
and return value.

def solve(f, y, lower, upper):
"""Returns x such that f(x) = y (approximately).
Assumes f is monotone and that a solution lies in the interval
[lower, upper] (and may recurse infinitely if not)."""

* Can be read by python’s help function.

* Some format conventions for parameters and return value:

def solve(f, y, lower, upper):
"""Find x such that f(x) = y (approximately).

:param f: a monotonic function with one numeric parameter and
return value.
:param y: integer or float, the value of f to solve for.

...

:returns: float, value of x such that f(x) within +/− 1e−6 of y.
"""

Good naming practice

* The name of a function or variable should tell you what it does /
is used for.

* Variable names should not shadow a names of standard types,
functions, or significant names in an outer scope.

def a fun fun(int):
a fun fun = 2 ∗ int
max = max(a fun fun, int)
return max < int

(more about scopes in a coming lecture).

* Names can be long (within reason).
- A good IDE will autocomplete them for you.

* Short names are not always bad:
- i (j, k) are often used for loop indices.
- n (m, k) are often used for counts.
- x, y and z are often used for coordinates.

* Don’t use names that are confusingly similar in the same
context.
- E.g., sum of negative numbers vs.
sum of all negative numbers – what’s the difference?

Code organisation

* Good code organisation
- avoids repetition;
- fights complexity by isolating subproblems and encapsulating

their solutions;
- raises the level of abstraction; and
- helps you find what you’re looking for.

* python constructs that support good code organisation are
functions, classes (not covered in this course) and modules
(later).

Functions

* Functions promote abstraction, i.e. they separate what from
how.

* A good function (usually) does one thing.
* Functions reduce code repetition.
- Helps isolate errors (bugs).
- Makes code easier to maintain.

* A function should be as general as it can be without making it
more complex.

def solve(lower, upper):
"""Returns x such that x ∗∗ 2 ∗ pi ˜= 1. Assumes ..."""

vs.

def solve(f, y, lower, upper):
"""Returns x such that f(x) ˜= y. Assumes ..."""

Problem: Below is a function that returns the position of an
element in a sequence:

def my func(sq, y):
x = 0 # index
this handles the case when y is not in the sequence
if len(sq) == 0:

return 0
while sq[x] != y:

x = x + 1
np.max returns the maximum number in an array
if x < len(sq):

x = x + 1 − 1 # don’t want to change i again
else:

return x
this is the end of the loop
return x

Can the quality of this code be improved?

Efficiency

Premature optimisation is the root of all evil in programming.

C.A.R. Hoare

* Modern computers usually have enough power to solve your
problem, even if the code is not perfectly efficient.

* Programmer time is far more expensive than computer time.
* Code correctness, readability and clarity is more important than

optimisation.

When should you consider efficiency?

* For code that is going to run very frequently.
* If your program is too slow to run at all.

A poor choice of algorithm or data structure may prevent your
program from finishing, even on small inputs.

* When the efficient solution is just as simple and readable as the
inefficient one.

Interval halving algorithm revisited

* Assumption: f (x) is monotone increasing and crosses 0 in the
interval [lower ,upper].

* Idea:
- Find the middle of the interval, m = (lower + upper)/2:
- if f (m) ≈ 0, return m;
- if f (m) < 0, the solution lies between m and upper ;
- if f (m) > 0, the solution lies between lower and m.

* Don’t compare floats
with ==.

Solution using iteration (reminded)

import math
def f(x):

return x∗∗2 ∗ math.pi − 1

def interval halving(lower, upper):
while upper − lower > 1e−10:

middle = (lower+upper)/2
value = f(middle)
if abs(value) < 1e−6:

return middle
elif value < 0:

lower = middle
else:

upper = middle
return "No value found"

Another algorithm - exhaustive search

def solve exhaustive(lower, upper):
x = lower
while x <= upper:

value = f(x)
if abs(value) < 1e−6:

return x
x = x + 1e−6

return "No solution found"

Is this algorithm considered always worse than the previous
algorithm?

Question: Is exhaustive algorithm always worse
than interval halving algorithm?

(This slide is added after lecture)
Results (correct answer in bold): 75 votes in total
* Yes: 8 votes
* No: 61 votes
* I don’t know: 6 votes

Source: ChatGPT

Take-away

* Good code organisation and documentation is important:
- For others to understand your code.
- For you to understand what you have done wrong.

* Efficiency, generality and compactness are also good qualities
of code, but secondary to clarity.

