
COMP1730/COMP6730
Programming for Scientists

Strings and more on sequences

Announcements

* Homework 3 is due on Sunday (27th Aug, 11:55pm).
- Good code quality is required to get full marks!

* From now on, some students may be randomly selected for
in-lab oral assessment of homework.

* Lab this week will be large, working time outside 2 hours lab is
expected.
- Make use of CodeBench! Tutor may discuss your submitted

CodeBench the following week.

Lecture outline

* Character encoding & strings

* Indexing, slicing & sequence operations

* Iteration over sequences

Characters & strings

Strings

* Strings – values of type str in python – are used to store and
process text.

* A string is a sequence of characters.
- str is a sequence type.

* String literals can be written with
- single-quotes, as in 'hello world'
- double-quotes, as in "hello world"
- triple quotes for multi-line strings: '''hello world'''

or """hello world"""
- Beware of copy–pasting code from slides (and other PDF files

or web pages).

* Quoting characters other than those enclosing a string can be
used inside it:

>>> "it’s true!"
>>> ’"To be," said he, ...’

* Quoting characters of the same kind can be used inside a string
if escaped by backslash (\):

>>> ’it\’s true’
>>> "it’s a \"quote\""

* Escapes are used also for some non-printing characters:

>>> print("\t1m\t38s\n\t12m\t9s")

Unicode, encoding and font

* Unicode defines numbers (“code points”) for >140,000
characters (in a space for >1 million).

Encoding

(UTF-8)
Font

Byte(s) Code point Glyph

0100 0101 69
1110 0010
1000 0010

1010 1100 8364

* python 3 uses the unicode character representation for all
strings (a major change from python 2).

* Functions ord and chr map between the character and integer
representation:

>>> ord(’A’)
>>> chr(65 + 4)
>>> chr(32)
>>> chr(8364)
>>> chr(20986)+chr(21475)
>>> ord(’3’)

* See unicode.org/charts/.

More about sequences

Three built-in sequence type in Python:

* list: [’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’]

* tuple: (’H’, ’e’, ’l’, ’l’, ’o’, ’ ’, ’W’, ’o’, ’r’, ’l’, ’d’)

* str: ”Hello World”

* str and tuple are immutable.

Indexing & length (reminder)

Image from Punch & Enbody

* In python, all sequences are indexed from 0.

* ...or from end, starting with -1.

* The index must be an integer.

* The length of a sequence is the number of elements, not the
index of the last element.

Slicing

* Slicing returns a subsequence:

s[start:end]

- start is the index of the first element in the subsequence.
- end is the index of the first element after the end of the

subsequence.

* Slicing works on all built-in sequence types (list, str, tuple)
and returns the same type.

* If start or end are left out, they default to the beginning and
end (i.e., after the last element).

* The slice range is “half-open”: start index is included, end index
is one after last included element.

>>> s = "Hello World"
>>> s[6:10]
’Worl’

Image from Punch & Enbody

* The end index defaults to the end of the sequence.

>>> s = "Hello World"
>>> s[6:]
’World’

Image from Punch & Enbody

* The start index defaults to the beginning of the sequence.

>>> s = "Hello World"
>>> s[:5]
’Hello’

Image from Punch & Enbody

>>> s = "Hello World"
>>> s[9:1]
’’
>>> s[−100:5]
’Hello’

* An empty slice (index range) returns an empty sequence

* Slice indices can go past the start/end of the sequence without
raising an error.

>>> s = "Hello World"
>>> s[3:−3]
’lo Wo’
>>> s[−8:−3]
’lo Wo’
>>> s[−8:−8]
’’

Slicing also works with three arguments:

s[start:end:stepBy]
>>> s = "Hello World"
>>> s[0:11:2]

Operations on sequences
* Reminder: value types determine the meaning of operators

applied to them.
* Concatenation: seq + seq

>>> "comp" + "1730"
>>> [1,2] + [3,4,5]

* Repetition: seq * int

>>> "Oi! " ∗ 3
>>> (1,3) ∗ 2

* Membership: value in seq

- Note: str in str tests for substring.

* Equality: seq == seq, seq != seq.
- Two sequences are equal if they have the same length and

equal elements in every position.

Sequence comparisons

* Comparison (same type): seq < seq, seq <= seq, seq >
seq, seq >= seq, returning True or False.

* seq1 < seq2 if
- seq1[i] < seq2[i] for some index i and the elements in

each position before i are equal; or
- seq1 is a prefix of seq2.

* : Question: What is the value of:

>>> [1,2] < [1, 3]

String comparisons

* Each character corresponds to an integer.

ord(’ ’) == 32
ord(’A’) == 65
ord(’Z’) == 90
ord(’a’) == 97
ord(’z’) == 122

* Character comparisons are based on this.

>>> "the ANU" < "The anu"
>>> "the ANU" < "the anu"
>>> "nontrivial" < "non trivial"

The enumerate function

* The enumerate function takes a sequence and returns a
representation of a sequence of (index, element) pairs.
- Use for with multiple assignment.

for index,char in enumerate("The quick brown fox"):
print("at", index, "we have", char)

instead of
s = "The quick brown fox"
for index in range(len(s)):

print("at", index, "we have", s[index])

String methods

* Methods are only functions with a slightly different call syntax:

"Hello World".find("o") # return lowest index of occurrence
"Hello World".count("o") # count non−overlapping occurrences

instead of

str.find("Hello World", "o")
str.count("Hello World", "o")

* python’s built-in types, like str, have many useful methods.
- help(str.find)
- help(str.count)
- docs.python.org

Programming problem (bioinformatics):

* a k-mer is a substring of length k of a longer DNA sequence
(https://en.wikipedia.org/wiki/K-mer).

* For a DNA sequence, find all distinct k-mers and their number of
occurrences.

AGAGACCCCCT
AGA
GAG
AGA
GAC
ACC
CCC
CCC
CCC
CCT

→

k=3:

AGA 2
GAG 1
GAC 1
ACC 1
CCC 3
CCT 1

k=1:

A 3
G 2
C 5
T 1

