[] Australian P —| Australian

National National
University University

What is a “bug”?
In 1946, when [Grace] Hopper was released from active duty, she
joined the Harvard Faculty at the Computation Laboratory where
she continued her work on the Mark Il and Mark Ill. Operators
COMP1730/COMP6730 traced an error in the Mark Il to a moth trapped in a relay,
coining the term bug. This bug was carefully removed and taped
to the log book:

< T e el
rree | Shapthe] TICEEEE lape (Sine d\uk}

v fdder Tegt

Programming for Scientists

@""L *70 ?ﬂ\ n -L‘

U’ﬂuﬂ)-\ n f'-;lqu\ ~

1S4y

Debugging and Testing

.lr\rﬁ ::\d-n:al =u. e-{ bu Bedinl dcaad|
M"" & 3 n-“ 1 1 {
e | bl
Stemming from the first bug, today we call errors or glitches in a
program a bug.

Source: https://en.wikipedia.org/wiki/Software_bug

[—| Australian Australian

National s National
University o University

The debugging process Kinds of bugs/errors

1. Detection — realising that you have a bug, e.g., by extensive

testing. 1. Syntax errors

- Easy to detect.

2. Isolation — narrowing down where and when it manifests. .
. , . 2. Runtime errors
3. Comprehension — understanding what you did wrong.
4 C ion- and - Easy to detect (when they occur).
- Lorrection; an - Possibly hard to understand (the cause).
5. Prevention — making sure that by correcting the error, you do not 3. Semantic (logic) errors

introduce another.
6. Go back to step 1.

- Difficult to detect and understand.

[—| Australian 2| Australian

National

National
= University

3 University

1. Syntax errors 2. Runtime errors

* |DE/interpreter will tell you where they are.

File "test.py", line 2) . i]
if spam = 42: » Code is syntactically valid, but you're asking the python

interpreter to do something impossible.
- E.g., apply operation to values of wrong type, call a function

SyntaxError: invalid syntax

if spam == 42: that is not defined, etc.
print("yes") — Causes an exception, which interrupts the program and prints
print(“spam is:*, spam) an error message.

- Learn to read (and understand) python’s error messages!

File "../python/test.py", line 5
print("spam is:", spam)

N

IndentationError: unindent does not match any outer indentation level

stralian
National
University

Australian —| Au

National
University

3. Semantic/logic errors

>>> pets = ['cat’, 'dog’, 'mouse’]
>>> 'I have ' + len(pets) + ' pets’

TypeError: can only concatenate str (not "int") to str

5> print (pets[3]) * The code is syntactically valid and runs without error, but it does
the wrong thing (perhaps only sometimes).

* To detect this type of bug, you must have a good understanding
>> print(pests[0]) of what the code is supposed to do.

NameError: name 'pests’ is not defined * Logic errors are usually the hardest to detect and to correct,
particularly if they only occur under certain conditions.

IndexError: list index out of range

>>> print(pets(0))

TypeError: 'list’ object is not callable

Australian Australian
National % National

1 University University

Isolating and understanding a fault Some common errors

= python is not English.

Work back from where it is detected
(e.g., the line number in an error message).

*

if n is not int:

if n is (not int):

* Find the simplest input that triggers the error.
* Use print (or debugger) to see intermediate values of

variables and expressions. * Statement in/not in suite.
* Test functions used by the failing program separately to rule while i <= n:

them out as the source of the error. SCs : i**z

- If the bug only occurs in certain cases, these need to be return s

covered by the test set. o . .
* Precision and range of floating point numbers.

Australian : Australian
National National

; University University

* Loop condition not modified in loop. Defensive programming
def sum_to_n(n):
k=0
Eﬁ:‘fl E 3= n: Everyone knows that debugging is twice as hard as writing a
total = total + k program in the first place. So if you're as clever as you can be

return total when you write it, how will you ever debug it?

x Off-by-one. Brian Kernighan
def smallest_power_of 2(n): * Write code that is easy to read and well documented.
o L rurn the smattest power of 2 that 1s ==n - If it's hard to understand, it's harder to debug.
p =2 *» Make your assumptions explicit, and fail fast when they are
while p <= n: #<or<=7 .
p=p=*2 violated.
k=k+1

return k # k or k—-—17

Australian Australian

National National
University University
Assertions
Bad practice (delayed error)
assert test_expression def sum.of_squares(n):
assert test_expression, "error message" if n<0:

return "error: n is negative"
. . return (n « (n + 1) « (2 *xn+1)) // 6
* The assert statement causes a runtime error if

test_expression evaluates to False.

m
k -
* Violated assumption/restriction results in an immediate error, in a = sum.of_squares(m)
b sum_of_squares(m — k)
c sum_of_squares (k)
ifa—-b !=c:
print(a, b, c)

the place where it occurred.

* Don’t use assertions for conditions that will result in a runtime
error anyway (typically, type errors).

Australian [| Australian
e

National , 5 National
University University

Good practice (immediate error)

def sum_of_squares(n):
assert n >= 0, str(n) + " is negative"
return (n « (n + 1) * (2 *xn+1)) // 6

Testing

sum_of_squares(m)
sum_of_squares(m — k)
sum_of_squares (k)

H-0 oo X 3
o nnnu

print(a, b, c)

Australian <+ Australian
National National

University § University

Unit testing Good test cases

*

Satisfy the assumptions.

* Different kinds of testing (load, integration, user experience, etc) Simple (enough that correctness of the value can be determined
have different purposes. “by hand”).

» Testing for errors (bugs) in a component of the program —
typically a function — is called unit testing.
- Specify the assumptions.
- ldentify test cases (arguments), particularly “edge cases”.
- Verify behaviour or return value in each case.

* The purpose of unit testing is to detect bugs.

*

*

Cover the space of inputs and outputs.
Cover branches in the code.
What are edge cases?

- Integers: zero, positive, negative.

- float: zero, very small (1e-308) or big (1e308).

- Sequences: empty string, empty list, length one.

- Any value that requires special treatment in the code.

*

*

Australian | Australian
National National

University § University

Debugging problem: Here is a function that returns the sum of Added after lecture
even digits of a positive integer (see week 4 lab, exercise 5):

def sum_even_digits(number):

dsum = @ # digit sum ## test cases added during live lecture
if ngmber < 10: assert sum_even_digits(0) == 0
if number % 2 == 0: assert sum_even_digits(l) == 0
dsum = number assert sum_even_digits(2) == 2
. assert sum_even_digits(10) ==
while number >= 10: o assert sum_even_.digits(5317) == 0
extract the last digit assert sum_even_digits(2624) == 14

digit = number % 10
if digit in [0,2,4,6,8]:
dsum = dsum + digit

Bug found when running the last test case, where the left-most
digit is not considered. Lecturer tempted to change the condition

divide by 10 (rounded down) to remove the last digit number >= 10 to number >= 1 which solved that last test case,
number = number // 10 - . .
but it’s still the wrong fix.
return dsum How can you fix it?

But this function is wrong. How can you debug it?

