
COMP1730/COMP6730
Programming for Scientists

More about lists

Lecture outline

* Lists

* Mutable objects & references

Sequence data types (recap)

* A sequence contains n ≥ 0 values (its length), each at an index
from 0 to n − 1.

* python’s built-in sequence types:
- strings (str) contain only characters;
- lists (list) can contain a mix of value types;
- tuples (tuple) are like lists, but immutable.

* Sequence types provided by other modules:
- e.g., NumPy arrays (numpy.ndarray).

Lists

* python’s list is a general sequence type: elements in a list
can be values of any type.

* List literals are written in square brackets with
comma-separated elements:

>>> a list of ints = [2, −4, 2, −8]
>>> a date = [28, "August", 2023]
>>> type(a date)
<class ’list’>

>>> list("abcd")
[’a’, ’b’, ’c’, ’d’]

>>> list(range(10))
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

List comprehension

Create a list by evaluating an expression for each element in a
sequence or iterable data (later in the course):

output list = [expression for item in iterable]

This is equivalent to:

output list = []
for item in iterable:

output list.append(expression)

Example:

>>> [ord(c) for c in "abcd"]
[97, 98, 99, 100]

>>> [1/x for x in range(1,6)]
[1.0, 0.5, 0.3333333, 0.25, 0.2]

Conditional list comprehension

Conditional list comprehension selects only elements that satisfy a
condition:

output list = [expression for item in iterable if condition]

This is equivalent to:

output list = []
for item in iterable:

if condition:
output list.append(expression)

Example:

>>> [i for i in range(2,12) if 12 % i == 0]
[2, 3, 4, 6]

Lists of lists

Elements of a list can be a list:

>>> A = [[1, 2], [3, 4, 5], [6, 7, 8, 9]]
>>> A[0]
[1, 2]
>>> A[1][2]
5
>>> A[0:1]
[[1, 2]]
>>> A[0:1][1:]
[]
>>> A[0:1][1]
IndexError: list index out of range

* Indexing a list returns an element, but slicing a list returns a list.

* Indexing and slicing associate to the left: a list[i][j] ==
(a list[i])[j].

Operations on lists

* Use ’+’ operator to concatenate lists:

>>> [1, 2] + [3, 4, 5]
[1, 2, 3, 4, 5]

* Use ’*’ operator of a list and an int to repeat a list:

>>> 3 ∗ [1, 2]
[1, 2, 1, 2, 1, 2]
>>> [1, 2] ∗ 3
[1, 2, 1, 2, 1, 2]

* Equality, list == list, and ordering comparisons, list <
list, list >= list, etc, work the same way as for other
(standard) sequence types, such as strings.

Lecture outline

* Lists

* Mutable objects & references

Values are objects

* In python, every value is an object.

* Every object has a unique(?) identifier.

>>> id(1)
136608064

(Essentially, its location in memory.)

* Immutable objects never change.
- For example, numbers (int and float), strings and tuples.

* Mutable objects can change.
- For example, lists.

Immutable objects

* Operations on immutable objects create new objects, leaving
the original unchanged.

>>> a string = "spam"

>>> id(a string)

3023147264

>>> b string = a string.replace(’p’, ’l’)

>>> b string

’slam’

>>> id(b string)

3022616448

>>> a string

’spam’

n
o
t
t
h
e
s
a
m
e
!

Mutable objects

* A mutable object can be modified yet it’s identity remains the
same.

* Lists can be modified through:
- element and slice assignment; and
- modifying methods/functions.

Element & slice assignment

>>> a list = [1, 2, 3]
>>> id(a list)

3022622348

>>> b list = a list
>>> a list[2] = 0

>>> b list
[1, 2, 0]

>>> b list[0:2] = [’A’, ’B’]

>>> a list
[’A’, ’B’, 0]

>>> id(b list)

3022622348

t
h
e
s
a
m
e
o
b
j
e
c
t
!

Modifying list methods

* a list.append(new element)

* a list.insert(index, new element)

* a list.pop(index)

- index defaults to -1 (last element).

* a list.remove(a value)

* a list.extend(an iterable)

* a list.sort()

* a list.reverse()

* Note: Most do not return a value.

Lists contain references

* Assignment associates a (variable) name with a reference to a
value (object).
- The variable still references the same object (unless

reassigned) even if the object is modified.

* A list contains references to its elements.

* Slicing a list creates a new list, but containing references to the
same objects (“shallow copy”).

* Slice assignment does not copy.

a list = [1,2,3]
b list = a list
a list.append(4)
print(b list)

Image from pythontutor.com

a list = [1,2,3]
b list = a list[:]
a list.append(4)
print(b list)

Image from pythontutor.com

a list = [[1,2], [3,4]]
b list = a list[:]
a list[0].reverse()
b list.reverse()
print(b list)

Image from pythontutor.com

a list = [[1,2], [3,4]]
b list = a list[:]
a list[0] = a list[0][::−1]
b list.reverse()
print(b list)

Image from pythontutor.com

a list = [1,2,3]
b list = [4,5,6]
a list.append(b list)
c list = a list[:]
b list[0] = ’A’

Image from pythontutor.com

Can you find the mistakes below?

example 1
a list = [3,1,2]
a list = a list.sort()

example 2
a list = [1,2,3]
b list = a list
a list.append(b list)

example 3
a list = [[]] ∗ 3
a list[0].append(1)

(added after lecture)
Polling for: What is the value of a list after?

a list = [3,1,2]
a list = a list.sort()

* [1,2,3]: 43 votes

* [3,2,1]: 2 votes

* None: 8 votes (correct answer)

a list = [[]] ∗ 3
a list[0].append(1)

* [[1], [1], [1]]: 12 votes (correct answer)

* [[1], [], []]: 22 votes

* [1, [], []]: 16 votes

* I don’t know: 2 votes

