
COMP1730/COMP6730
Programming for Scientists

Data analysis and visualisation

Announcements

* Please fill out mid-semester survey on Wattle once you
finished your lab this week ! It’s open until the end of semester
break (17 Sept) and will help us to identify areas for
improvement in the 2nd half of the course!

Recap of 1st half and outline for 2nd half

So far:

* Functional decomposition

* Types and expressions

* Branching, if else

* Iteration, while & for loop

* Sequence, list, tuple, str

* Code quality

* Debugging & testing

* Data analysis & visualisation

What’s next?

* Numpy arrays

* Files, Input/Output

* Dictionaries and sets

* Exception handling

* Complexity, big-O notation

* Dynamic programming

* Computational Science

* Another advanced topic or 2

Many, if not most, concepts also apply to other programming
languages, not just Python!

Many scientific applications
Robot simulator:

Neural network:

Linear regression:

Bioinformatics:

Data science

How-to:

* Represent 2-dimensional
data?

* Read and write data?

* Analyse and visualise data?

* Interpret data?

Barplot:

Piechart:

A working example

COVID-19 cases until 25th March 2022 (Source: Johns Hopkins
University)

Data files

* Many data file formats (e.g., excel, csv, json, binary). We’ll use
the following csv file.

Which data type can we use to represent tables?

Representing tables

* Lists are 1-dimensional, but a list can contain values of any
type, including lists.

* A table can be stored as a list of lists, by row, for example:

data[i] # i:th row
data[i][j] # j:th column of i:th row

* Indexing (and slicing) are operators
* Indexing (and slicing) associate to the left:

data[i][j] == (data[i])[j]

Reading data files

* Use a python module that helps with reading the file format:

import csv
with open("filename.csv") as csvfile:

reader = csv.reader(csvfile)
next(reader) # skip the header
data = [row for row in reader] # reader is an iterable

* More about (reading and writing) files later in the course.

How to select a column of the table?

* List comprehension:

first col = [row[0] for row in data]
last two cols = [row[−2:] for row in data]

* Equivalent to:

first col = []
for row in data:

first col.append(row[0])

Select rows satisfying some conditions?

* Syntax:

[expression for item in iterable if condition]

* Example: select rows where column-1 is > 10

sel rows = [row for row in data if int(row[1]) > 10]

* Equivalent to:

sel rows = []
for row in data:

if int(row[1]) > 10:
sel rows.append(row)

How to sort rows by some keys?

* sorted(seq) returns a list with values in seq sorted in default
order (<).
- We can sort the rows in a table.
- Reminder: comparison of sequences is lexicographic.

* sorted(seq, key=fun) sorts value x by fun(x).

def new order(row):
return −row[−1] # decreasing on last col

sd = sorted(data, key=new order)

Descriptive statistics

* min(seq);

* max(seq);

* mean (sum(seq) / len(seq));

* variance.

* No built-in function for median.

def median(seq):
if len(seq) % 2 == 1:

return sorted(seq)[len(seq) // 2]
else:

return sum(sorted(seq)[(len(seq)//2−1):(len(seq)//2+1)])/2

Visualisation

* The purpose of visualisation is to see or show information –
pretty pictures are only of secondary importance!

* Different kinds of plots show different things:
- barplot
- pie-chart
- histogram or cumulative distribution
- scatterplot
- line and area plot

* Use one that best makes the point!

* Choose your dimensions carefully.

* Label axes, lines, etc.

Matplotlib

* Matplotlib is a Python 2D plotting library, which produces
publication quality figures.

* “Matplotlib makes easy things easy and hard things possible”.

* Documentation: matplotlib.org

Programming problem:

* How many COVID-19 positive cases worldwide until
2022-03-25?

* How many COVID-19 deaths worldwide until 2022-03-25?

* What are the top-10 countries with the most cases until
2022-03-25?

* How to visualise this result?

(added after lecture)
The code was live demo in the lecture. And visualisation with
barplot:

Take home message

* Python is powerful in data analysis.

* Think carefully about visualisation: How can people quickly
interpret the results?

* We have only scratched the surface of Matplotlib. Extensive
documentation: https://matplotlib.org or just google it!

