

Announcements

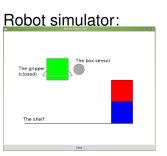
COMP1730/COMP6730 Programming for Scientists

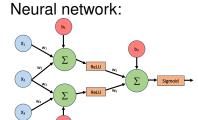
Data analysis and visualisation

* Please fill out mid-semester survey on Wattle once you finished your lab this week! It's open until the end of semester break (17 Sept) and will help us to identify areas for improvement in the 2nd half of the course!

Recap of 1st half and outline for 2nd half

So far:

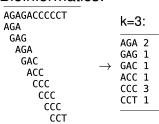

- * Functional decomposition
- * Types and expressions
- * Branching, if else
- * Iteration, while & for loop
- * Sequence, list, tuple, str
- * Code quality
- * Debugging & testing
- * Data analysis & visualisation


What's next?

- * Numpy arrays
- * Files, Input/Output
- * Dictionaries and sets
- * Exception handling
- * Complexity, big-O notation
- * Dynamic programming
- * Computational Science
- * Another advanced topic or 2

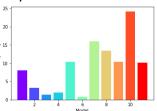
Many, if not most, concepts also apply to other programming languages, not just Python!

Many scientific applications

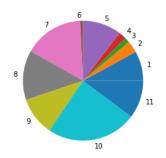


70000 -60000 -50000 -40000 -30000 -20000 -

Linear regression:



Data science


How-to:

- Represent 2-dimensional data?
- * Read and write data?
- * Analyse and visualise data?
- * Interpret data?

Piechart:

A working example

COVID-19 cases until 25th March 2022 (Source: Johns Hopkins University)

1	FIPS	Admin2	Province_Sta	Country_	Reg Last_Update	Lat	Long_	Confirmed	Deaths	Recovered	Active	Combined_R	Incident_Rat	Case_Fatality_	Ratio
2				Afghanista	n 26/3/22 4:20	33.93911	67.709953	177321	7657			Afghanistan	455.506183	4.31815747	
3				Albania	26/3/22 4:20	41.1533	20.1683	273318	3490			Albania	9497.46334	1.2769009	
4				Algeria	26/3/22 4:20	28.0339	1.6596	265612	6873			Algeria	605.714213	2.58760899	
5				Andorra	26/3/22 4:20	42.5063	1.5218	39713	153			Andorra	51398.434	0.38526427	
6				Angola	26/3/22 4:20	-11.2027	17.8739	99102	1900			Angola	301.531041	1.91721661	
7				Antarctica	26/3/22 4:20	-71.9499	23.347	11	. 0			Antarctica		0	
8				Antigua ar	nd f 26/3/22 4:20	17.0608	-61.7964	7482	135			Antigua and I	7640.30716	1.80433039	-
9				Argentina	26/3/22 4:20	-38.4161	-63.6167	9023812	127846			Argentina	19966.0513	1.41676267	
10				Armenia	26/3/22 4:20	40.0691	45.0382	422423	8607			Armenia	14255.4722	2.0375311	
11			Australian Ca	Australia	26/3/22 4:20	-35.4735	149.0124	72571	. 39			Australian Ca	16951.8804	0.05374047	
12			New South V	Australia	26/3/22 4:20	-33.8688	151.2093	1715381	2055			New South W	21130.5864	0.11979846	
13			Northern Ter	Australia	26/3/22 4:20	-12.4634	130.8456	47660	33			Northern Ter	19405.5375	0.06924045	
14			Queensland	Australia	26/3/22 4:20	-27.4698	153.0251	721628	717			Queensland,	14106.6953	0.09935867	
15			South Austra	Australia	26/3/22 4:20	-34.9285	138.6007	227182	246			South Austra	12933.7888	0.10828323	
16			Tasmania	Australia	26/3/22 4:20	-42.8821	147.3272	78805	29			Tasmania, Au	14716.1531	0.0367997	
17			Victoria	Australia	26/3/22 4:20	-37.8136	144.9631	1233174	2722			Victoria, Aust	18598.3499	0.22073122	
18			Western Aus	Australia	26/3/22 4:20	-31.9505	115.8605	132060	34			Western Aus	5020.14749	0.02574587	
19				Austria	26/3/22 4:20	47.5162	14.5501	3665003	15619			Austria	40693.3181	0.42616609	
20				Azerbaijar	26/3/22 4:20	40.1431	47.5769	791654	9675			Azerbaijan	7807.87391	1.22212482	
21				Bahamas	26/3/22 4:20	25.025885	-78.035889	33242	788			Bahamas	8453.18984	2.37049516	
22				Bahrain	26/3/22 4:20	26.0275	50.55	549718	1468			Bahrain	32306.2701	0.26704601	

Data files

★ Many data file formats (e.g., excel, csv, json, binary). We'll use the following csv file.

FIPS, Admin2, Province_State, Country_Region, Last_Update, Lat, Long_, Confirmed, Deaths, Recovered, Active, Combined_Key, Incident_Rate, Case_Fatal ,, Afghanistan, 2022-03-26 04:20:23, 33.93911, 67.789953, 177321, 7657, , Afghanistan, 455.50618250081607, 4.318157465838789 , Albania, 2022-03-26 04:20:23, 41.5153, 20.1683, 273318, 3490, , Albania, 9497.46334080152, 1.2769008993187423 , Algeria, 2022-03-26 04:20:23, 28.0339, 1.6596, 265612, 6873, , Algeria, 605.7142130005892, 2.587608993569568 , Andorra, 2022-03-26 04:20:23, 28.0631, 15218, 39173, 153, , Andorra, 51394, 3395104316, 38526427114546874 , Angola, 2022-03-26 04:20:23, -11.2027, 17.8739, 99182, 1900, , Angola, 301.5310408836196, 1.917216605113923 , Antarctica, 2022-03-26 04:20:23, -11.2027, 17.8739, 99182, 1900, , Antarctica, 202.00, Antarctica, 2022-03-26 04:20:23, -11.909, 23.34699999999999999, 11, 0, , Antarctica, 202.00, Antarctica, 2022-03-26 04:20:23, -11.909, 23.3469999999999999999, 11, 0, , Antarctica, 202.00, Antarctica, 2022-03-26 04:20:23, -11.909, 23.346999999999999999, 11, 0, , Antarctica, 202.00, Antarctica, 2022-03-26 04:20:23, -11.909, 23.346999999999999999, 11, 0, , Antarctica, 202.00, Antarctica, 2022-03-26 04:20:23, -12.0462, 12.7846, Angentina, 1906, 12.5297436, 1.4167626719173672 , Armenia, 2022-03-26 04:20:23, -12.0462, 12.7846, Angentina, 1906, 20.287511093425476 , Australia and 2022-03-26 04:20:23, -32.04620, 20.28751200, 20.287511093425476 , Australia and 2022-03-26 04:20:23, -33.0868, 151.2093, 1715381, 2055, rww. South Wales, Australia, 2022-03-26 04:20:23, -33.0868, 151.2093, 1715381, 2055, rww. South Wales, Australia, 2022-03-26 04:20:23, -32.086515, 2093, 1715381, 2055, rww. South Wales, Australia, 2022-03-26 04:20:23, -34.0899, 150.089951, 71.208, 2071, rww. South Wales, Australia, 2022-03-26 04:20:23, -34.08991, 10.089951, 20099599915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.099959915, 0.0999

Representing tables

- Lists are 1-dimensional, but a list can contain values of any type, including lists.
- * A table can be stored as a list of lists, by row, for example:

```
data[i] # i:th row
data[i][j] # j:th column of i:th row
```

- * Indexing (and slicing) are operators
- * Indexing (and slicing) associate to the left:

```
data[i][j] == (data[i])[j]
```

Which data type can we use to represent tables?

Reading data files

* Use a python module that helps with reading the file format:

```
import csv
with open("filename.csv") as csvfile:
    reader = csv.reader(csvfile)
    next(reader) # skip the header
    data = [ row for row in reader ] # reader is an iterable
```

* More about (reading and writing) files later in the course.

How to select a column of the table?

* List comprehension:

```
first_col = [ row[0] for row in data ]
last_two_cols = [ row[-2:] for row in data ]
```

* Equivalent to:

```
first_col = []
for row in data:
    first_col.append(row[0])
```


Select rows satisfying some conditions?

* Syntax:

```
[ expression for item in iterable if condition ]
```

★ Example: select rows where column-1 is > 10

```
sel_rows = [ row for row in data if int(row[1]) > 10 ]
```

* Equivalent to:

```
sel_rows = []
for row in data:
   if int(row[1]) > 10:
      sel_rows.append(row)
```

How to sort rows by some keys?

- * sorted(seq) returns a list with values in seq sorted in default order (<).
 - We can sort the rows in a table.
 - Reminder: comparison of sequences is lexicographic.
- * sorted(seq, key=fun) sorts value x by fun(x).

```
def new_order(row):
    return -row[-1] # decreasing on last col

sd = sorted(data, key=new_order)
```


Descriptive statistics

```
* min(seq);
* max(seq);
* mean(sum(seq) / len(seq));
* variance.
```

* No built-in function for median.

```
def median(seq):
    if len(seq) % 2 == 1:
        return sorted(seq)[len(seq) // 2]
    else:
        return sum(sorted(seq)[(len(seq)//2-1):(len(seq)//2+1)])/2
```

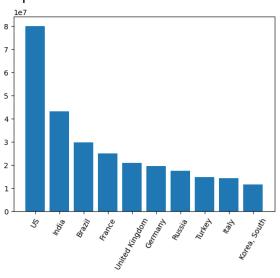
Visualisation

- * The purpose of visualisation is to see or show information pretty pictures are only of secondary importance!
- * Different kinds of plots show different things:
- barplot
- pie-chart
- histogram or cumulative distribution
- scatterplot
- line and area plot
- * Use one that best makes the point!
- * Choose your dimensions carefully.
- * Label axes, lines, etc.

Matplotlib

- * Matplotlib is a Python 2D plotting library, which produces publication quality figures.
- * "Matplotlib makes easy things easy and hard things possible".
- * Documentation: matplotlib.org

Programming problem:


- * How many COVID-19 positive cases worldwide until 2022-03-25?
- ★ How many COVID-19 deaths worldwide until 2022-03-25?
- ★ What are the top-10 countries with the most cases until 2022-03-25?
- * How to visualise this result?

(added after lecture)

The code was live demo in the lecture. And visualisation with barplot:

Take home message

- * Python is powerful in data analysis.
- ★ Think carefully about visualisation: How can people quickly interpret the results?
- * We have only scratched the surface of Matplotlib. Extensive documentation: https://matplotlib.org or just google it!