

Announcements

COMP1730/COMP6730 Programming for Scientists

Introduction to NumPy arrays

- ***** Mid-Semester Survey closed yesterday
- **-** 170 responses (approx). **Thanks!**
- **-** Your feedback will be used to improve your experience
- ***** Homework 5 (4%) is open and due on **01/10/2023, 11:55pm** (end of semester week 8)

Australian
National **University**

Recap of 1st half and outline for 2nd half

So far:

- ***** Functional decomposition
- ***** Types and expressions
- ***** Branching, if else
- ***** Iteration, while & for loop
- ***** Sequences, list, tuple, str
- ***** Code quality
- ***** Debugging & testing
- ***** Data analysis & visualisation

What's next?

- ***** NumPy arrays (**today**)
- ***** Files, Input/Output
- ***** Dictionaries and sets
- ***** Exception handling
- ***** Complexity, big-O notation
- ***** Dynamic programming
- ***** Computational Science
- ***** Another advanced topic or 2

Many, if not most, concepts also apply to other programming languages, not just Python!

Australian
National
University

Lecture outline

- ***** Minimal math background on vectors and arrays
- ***** Differences among NumPy arrays and lists
- ***** Working with 1-rank NumPy arrays
- **-** Creating 1-rank NumPy arrays
- **-** Indexing and slicing. Views versus copies.
- **-** Vectorized code/Vectorization
- ***** Working with 2-rank NumPy arrays

Australian ati∩na

Minimal math background on vectors

- ***** Vectors are typically introduced in high school math courses, e.g., point (x, y) in the plane, point (x, y, z) in space
- ***** In general, a vector *v* can be mathematically defined as a tuple with *n* numbers: $v = (v_0, v_1, \ldots, v_{n-1})$
- \star We can use lists to represent vectors; v_i is stored at $v[i]$
- ***** However, in this lecture, we introduce a new sequence data type to represent mathematical vectors (and arrays, next slide) in the computer, the so-called **NumPy arrays**

Minimal math background on arrays

Australian lational

Australian

National **University**

- *** Arrays** are a generalization of vectors where we can have more than one index. Examples: *Ai*,*^j* (2 indices) and *Bi*,*j*,*^k* (3 indices)
- ***** Example: table of numbers (called matrix by mathematicians); one index for the row, another for the column

- ***** The number of indices in an array is the **rank** or **number of dimensions** of the array
- ***** Example: vectors are rank-1 arrays (or one-dimensional arrays)
- ***** The main reason behind using **NumPy arrays** instead of nested lists to represent mathematical arrays in the computer is **higher computational efficiency**

NumPy Arrays as opposed to lists (I)

NumPy arrays \neq lists

Main differences among NumPy arrays and lists:

- *** A NumPy array can keep ONLY elements of the same type**, typically int, float, or complex numbers, whereas a list can mix objects of different types
- *** NumPy arrays have a fixed size at creation**, unlike lists which can shrink and grow dynamically. Changing the size of a NumPy array will create a new array and delete the original
- *** NumPy arrays can have arbitrary dimensions** (e.g., previous slide) whereas lists are one-dimensional (although, as seen in Lectures 11/12, they can be nested to, e.g., emulate rank-2 arrays)

Main differences among NumPy arrays and lists:

NumPy Arrays as opposed to lists (II)

*** Code written using NumPy arrays might be vectorized**, that is, rewritten in terms of operations on entire arrays at once (without Python loops), **resulting in much faster code** versus lists

NumPv arrays \neq lists

- *** NumPy arrays are NOT built-in in Python**, but provided by an external library/module (called NumPy from Numerical Python)
- **-** Standard practice is to import it as import numpy as np
- **-** NumPy arrays are of type np.ndarray
- **-** Documentation available here (not part of Python documentation)
- **-** It has many different features, here we only cover the basics

Examples NumPy array creation (rank-1 arrays)

The first thing one does with a NumPy array is to create it

```
\gg import numpy as np
```

```
\gg l = [0.0, 0.5, 1.0, 1.5]
\gg x = np.array(l) # Convert list into array of floats
\gg x
array([0. , 0.5, 1. , 1.5])
```
 \gg n = 5 # Length of the two arrays created below

Create rank−1 array of n floats and initialize it with zeros \gg x = np.zeros(n) \gg x array([0., 0., 0., 0., 0.]) # Create rank−1 array with n equispaced floats over interval [0,1] \gg x = np.linspace(0.0, 1.0, n)

```
\gg x
array([0. , 0.25, 0.5 , 0.75, 1. ])
```
Australian National essa National
Ses University

NumPy array views versus copies (I)

***** As with lists, array assignment does **not** copy its elements

```
>>> import numpy as np
\gg \times \times =np.linspace(0.0, 1.0, 5)
>> y=x
>>> y[−1]=1000.0
>>> 0array([0.0e+00, 2.5e−01, 5.0e−01, 7.5e−01, 1.0e+03])
```
*** However**, as opposed to lists, array slicing does **not** return a copy but a "view" to original array

```
>> y=x[1:4]
>>> y[−1]=1000.0
>>> xarray([0.0e+00, 2.5e−01, 5.0e−01, 1.0e+03, 1.0e+03])
```
 \sim Australian National **University**

Array indexing and slicing

- ***** Arrays are **sequence** types
- ***** Arrays indexing works in the same way as lists (Lecture 7)

```
>>> import numpy as np
\gg \times = np.linspace(0.0, 1.0, 5)
>>> x
array([0. 0.25, 0.5 , 0.75, 1. ])>> x[2]+x[−1]
1.5
```
***** Slicing (Lecture 7) can also be used with arrays

```
>>> x[1:4] # (from:to; half−open)
array([0.25, 0.5 , 0.75])
```
***** As opposed to lists, legal to assign single number to array slice

```
\gg x[1:3] = 10.0
>>> x
array([ 0. , 10. , 10. , 10. , 0.75, 1. ])
```
- 95 Australian National **S** University

NumPy array views versus copies (II)

***** The np.copy function returns a copy of the array

```
>>> import numpy as np
\gg \times \times =np.linspace(0.0, 1.0, 5)
\gg y=np.copy(x)
>>> y[−1]=1000.0
>>> x
array([0. 0.25, 0.5 , 0.75, 1. ])>> y=np.copy(x[1:4])
>>> y[−1]=1000.0
>>> x
array([0. , 0.25, 0.5 , 0.75, 1. ])
```


Vectorized code

- ***** With NumPy, it is possible to **work with entire arrays at once** versus using Python loops to process one element at a time
- ***** Code written using this feature is called **vectorized code**
- *** Example**: we want to evaluate the mathematical function

$$
f(x)=\sin(x)e^{-x}
$$

at 10⁶ equispaced points in the interval [0, 2π], and store the result in a NumPy 1-rank array

Option 1 - Non-vectorized code

Evaluates $f(x) = \sin(x)e^{-x}$ at 10⁶ equispaced points within $[0, 2\pi]$

```
import math
import numpy as np
n = 1.000.000x = np.linspace(0, 2∗math.pi, n)
v = np{\cdot}zeros(n)for i in range(0, len(x)):
    y[i] = math.sin(x[i]) * math.exp(-x[i])
```
Remarks:

Australian

National

Australian

National

- ***** Python for loop to evaluate *f*(*x*) one element at a time
- ***** Code pretty similar to the one that one would write with lists
- ***** We can use math.sin and math.exp from the math module as we are evaluating them with one array element at a time

Australian National **University**

Option 2 - Vectorized code

Evaluates $f(x) = \sin(x)e^{-x}$ at 10⁶ equispaced points within [0,2 π]

import math import numpy as np $n = 1.000.000$ x = np.linspace(0, 2∗math.pi, n) $y = np{\cdot}zeros(n)$ $y = np.size(x) * np.exep(-x)$

Remarks:

- ***** No Python for loop (i.e., vectorized code)
- *** Much faster**, as it is very efficiently handled by NumPy under the hood
- ***** Shorter, more readable code, closer to math notation
- *** IMPORTANT(!):** we cannot use math.sin and math.exp on entire arrays, we **must** use NumPy versions np.sin and np.exp instead

Non-vectorized VS vectorized code (performance)

```
In [1]: import math
In [2]: import numpy as np
In [3]: n = 1000000In [4]: x = np. linspace(0.0, 2.0∗math.pi, n)
In [5]: y = np. zeros(n)In [6]: %timeit for i in range(0,len(x)): \, ...: v[i] = math.sin(x[i])*math.exp(
             y[i] = math.sin(x[i])∗math.exp(-x[i])
147 ms ...
```

```
In [7]: %timeit y = np.sin(x)*np.exp(-x)
11.8 ms ...
```
- ***** Code run on laptop with Intel i7-1265U microprocessor
- ***** Measurements taken with %timeit magic command in IPython
- ***** 147 VS 11.8 millisecs. (**vectorized code** ≈**12.5 times faster!**)

Vectorized functions

 \star A function $f(x)$ written for a single number x usually also works for an array of numbers x

```
\gg import numpy as np
\gg def f(x):
       ... return x∗∗3 + np.sin(x)∗np.exp(−3∗x)
\gg x = 1.0\gg y = f(x)
>> V1.0418943734502046
\gg x = np.linspace(0.0, 1.0, 5) # array([0,, 0.25, 0.5, 0.75, 1.])
\gg y = f(x)
>> yarray([0. , 0.13249036, 0.2319743 , 0.4937192 , 1.04189437])
```
*** Exercise**. Write a "scalar" version of $f(x)$ (i.e., that works with one element of x at a time) and compare its performance versus vectorized function above with arrays of increasing length

```
Australian
National
University
```
Vectorized in-place arithmetics (II)

***** When writing functions that modify NumPy arrays passed as arguments, use in-place arithmetics (otherwise, the changes won't to be visible outside the function)

```
\gg def update_array_wrong(a,b):
... a=a+b
\gg def update_array_in_place(a,b):
       a+=b\gg x=np.array([1.0, 2.0, 3.0])
\gg y=np.array([10.0, 20.0, 30.0])
\gg update_array_wrong(x,y)
\gg xarray([1., 2., 3.])
\gg update array in place(x,y)
\gg x
array([11., 22., 33.])
```


Vectorized in-place arithmetics (I)

Consider these two mathematically equivalent statements:

```
a = a + ba == b
```
In practice, much more subtle:

- ***** a=a+b is computed in two steps as (**extra array** w **needed**): Step 1: $w=a+b$ Step 2: $a=w$
- ***** The variable a is reassigned to a new array w in Step 2
- *** However**, a+=b is computed as a[i]+=b[i] for each i, and thus **no extra array is needed**
- ***** a+=b is an **in-place addition**: it changes each element in a rather than letting the name a refer to a new array (result of $a+b$)

```
Australian
National
University
```
Rank-2 arrays recap (math)

A table of numbers (called matrix by mathematicians) such as:

```
\sqrt{ }\overline{1}0 12 −1 5
   −1 −1 −1 0
   11 \quad 5 \quad 5 \quad -21
                              \overline{1}
```
can be represented as a 2-rank array *Aij* with (row identifier) $i = 0, 1, 2$ and (column identifier) $j = 0, 1, 2, 3$

$$
A = \left[\begin{array}{ccc} A_{0,0} & \cdots & A_{0,3} \\ \vdots & \ddots & \vdots \\ A_{2,0} & \cdots & A_{2,3} \end{array} \right]
$$

Rank-2 arrays with NumPy

Example: create and fill a rank-2 NumPy array using indexing

One can also write (as for nested lists): $A[2][3]=-2$

Creating rank-2 NumPy arrays from nested lists

- ***** One can also use a nested list to create a rank-2 NumPy array
- ***** Each element in the nested list represents a different row in the rank-2 array

Australian National **University**

Shape of NumPy array

- ***** The shape of a NumPy array is a tuple with the number of elements in each dimension
- ***** The length of this tuple is the rank of the array

 \mathbf{I}

***** One can access the shape of a NumPy array using the shape attribute

```
\gg import numpy as np
>> A = np.array([[0.0,12.0,−1.0,5.0],
... [−1.0,−1.0,−1.0,0.0],[11.0,5.0,5.0,−2.0]])
\gg A.shape
(3,4)
>> len(A.shape)<br>2
                 2 # A is a rank−2 array!
                    \sqrt{ }
```


Looping over rank-2 array entries

Australian

National

University

Australian National

University

***** One can loop over the entries of a rank-2 array using a nested

loop (e.g., outer loop over the rows, inner loop over the columns)

```
\gg import numpy as np
>> A = np.array([[0.0,12.0,-1.0,5.0],
... [−1.0,−1.0,−1.0,0.0],[11.0,5.0,5.0,−2.0]])
\gg for i in range(0,A.shape[0]):
... for j in range(0,A.shape[1]):
          print("A['+str(i)+". "+str(i)+"]='A[i,i])A[0,0]= 0.0A[0,1]= 12.0A[0,2]= -1.0A[0,3]= 5.0A[1,0]= -1.0...
A[2,3]= -2.0
```


2-rank NumPy array slicing

- ***** One can also use slicing with rank-2 arrays
- \star A[i, :] is row i (same as $A[i]$)
- ***** A[:,j] is column j
- \star : can also be $from:to$ (equivalent to $from:$)

```
\gg import numpy as np
>> A = np.array([[0.0.12.0.-1.0.5.0],
 ... [−1.0,−1.0,−1.0,0.0],[11.0,5.0,5.0,−2.0]])
```
 $>> A[1,:]$ # Row 1; equivalent $A[1,0:]$ and $A[1,0:A.shape[1]]$ array([−1., −1., −1., 0.])

 \gg A[:,3] # Column 3; equivalent A[0:,3] and A[0:A.shape[1],3] $array([5.0., 0., -2.])$

*** Exercise:** is A[1:3,1:3] legal? what does it return?

Australian National **University**

Programming problem idea

Write a vectorized version of homework 2 where the neural network is evaluated on a batch of inputs at once (instead of one input at a time)

More on vectorized code (broadcasting)

- ***** NumPy allows one to write vectorized operations among a single number and an array
- ***** E.g., if A rank-2 NumPy array, and a number, one can write a*A

```
\gg import numpy as np
>> A = np.array([[0.0,12.0,−1.0,5.0],
... [−1.0,−1.0,−1.0,0.0],[11.0,5.0,5.0,−2.0]])
>> a=2.0>> a∗A
array([[ 0., 24., −2., 10.],
      [-2., -2., -2., 0.][22., 10., 10., -4.]]
```
- ***** The result is an array with the same shape as A where each element is multiplied by a
- ***** Actually this is just an example of a more general feature called **broadcasting** that allows one to perform operations among "compatible" arrays of different shapes

Australian National **University**

Take home messages

- ***** NumPy arrays and lists are types with different features
- ***** NumPy arrays less flexible but much faster than lists (if used wisely)
- ***** Vectorization is the process of turning a non-vectorized algorithm with Python loops accessing single array elements into a vectorized version without Python loops
- ***** Vectorization can make scientific programs working with a large number of numerical data much faster