

COMP1730/COMP6730 Programming for Scientists

Introduction to NumPy arrays

Announcements

- * Mid-Semester Survey closed yesterday
 - 170 responses (approx). Thanks!
 - Your feedback will be used to improve your experience
- * Homework 5 (4%) is open and due on **01/10/2023**, **11:55pm** (end of semester week 8)

Recap of 1st half and outline for 2nd half

So far:

- * Functional decomposition
- * Types and expressions
- * Branching, if else
- * Iteration, while & for loop
- * Sequences, list, tuple, str
- * Code quality
- Debugging & testing
- * Data analysis & visualisation

What's next?

- * NumPy arrays (today)
- * Files, Input/Output
- * Dictionaries and sets
- * Exception handling
- * Complexity, big-O notation
- * Dynamic programming
- Computational Science
- Another advanced topic or 2

Many, if not most, concepts also apply to other programming languages, not just Python!

Lecture outline

- Minimal math background on vectors and arrays
- Differences among NumPy arrays and lists
- Working with 1-rank NumPy arrays
 - Creating 1-rank NumPy arrays
 - Indexing and slicing. Views versus copies.
 - Vectorized code/Vectorization
- * Working with 2-rank NumPy arrays

Minimal math background on vectors

- * Vectors are typically introduced in high school math courses, e.g., point (x, y) in the plane, point (x, y, z) in space
- * In general, a vector v can be mathematically defined as a tuple with n numbers: $v = (v_0, v_1, \dots, v_{n-1})$
- **★** We can use lists to represent vectors; v_i is stored at v[i]
- However, in this lecture, we introduce a <u>new</u> sequence data type to represent mathematical vectors (and arrays, next slide) in the computer, the so-called **NumPy arrays**

Minimal math background on <u>arrays</u>

- * Arrays are a generalization of vectors where we can have more than one index. Examples: $A_{i,j}$ (2 indices) and $B_{i,j,k}$ (3 indices)
- * Example: table of numbers (called matrix by mathematicians); one index for the row, another for the column

$$\begin{bmatrix} 0 & 12 & -1 & 5 \\ -1 & -1 & -1 & 0 \\ 11 & 5 & 5 & -2 \end{bmatrix} \qquad A = \begin{bmatrix} A_{0,0} & \cdots & A_{0,3} \\ \vdots & \ddots & \vdots \\ A_{2,0} & \cdots & A_{2,3} \end{bmatrix}$$

- The number of indices in an array is the rank or number of dimensions of the array
- ★ Example: vectors are rank-1 arrays (or one-dimensional arrays)
- The main reason behind using NumPy arrays instead of nested lists to represent mathematical arrays in the computer is higher computational efficiency

NumPy Arrays as opposed to lists (I)

NumPy arrays \neq lists

Main differences among NumPy arrays and lists:

- A NumPy array can keep ONLY elements of the same type, typically int, float, or complex numbers, whereas a list can mix objects of different types
- NumPy arrays have a fixed size at creation, unlike lists which can shrink and grow dynamically. Changing the size of a NumPy array will create a new array and delete the original
- * NumPy arrays can have arbitrary dimensions (e.g., previous slide) whereas lists are one-dimensional (although, as seen in Lectures 11/12, they can be nested to, e.g., emulate rank-2 arrays)

NumPy Arrays as opposed to lists (II)

NumPy arrays \neq lists

Main differences among NumPy arrays and lists:

- Code written using NumPy arrays might be vectorized, that is, rewritten in terms of operations on entire arrays at once (without Python loops), resulting in much faster code versus lists
- NumPy arrays are NOT built-in in Python, but provided by an external library/module (called NumPy from Numerical Python)
 - Standard practice is to import it as import numpy as np
 - NumPy arrays are of type np.ndarray
 - Documentation available here (not part of Python documentation)
 - It has many different features, here we only cover the basics

Examples NumPy array creation (rank-1 arrays)

The first thing one does with a NumPy array is to create it

```
>> import numpy as np
\gg l = [0.0, 0.5, 1.0, 1.5]
>> x = np.array(l) # Convert list into array of floats
>> X
array([0. , 0.5, 1. , 1.5])
>> n = 5 # Length of the two arrays created below
# Create rank-1 array of n floats and initialize it with zeros
>> x = np.zeros(n)
>> X
array([0., 0., 0., 0., 0.])
# Create rank-1 array with n equispaced floats over interval [0,1]
>> x = np.linspace(0.0, 1.0, n)
>> X
array([0. , 0.25, 0.5 , 0.75, 1. ])
```

Array indexing and slicing

- Arrays are sequence types
- ★ Arrays indexing works in the same way as lists (Lecture 7)

```
>>> import numpy as np
>>> x = np.linspace(0.0, 1.0, 5)
>>> x
array([0. , 0.25, 0.5 , 0.75, 1. ])
>> x[2]+x[-1]
1.5
```

* Slicing (Lecture 7) can also be used with arrays

```
>>> x[1:4] # (from:to; half-open)
array([0.25, 0.5 , 0.75])
```

★ As opposed to lists, legal to assign single number to array slice

```
>>> x[1:3] = 10.0
>>> x
array([ 0. , 10. , 10. , 0.75, 1. ])
```

NumPy array views versus copies (I)

* As with lists, array assignment does **not** copy its elements

```
>>> import numpy as np
>>> x=np.linspace(0.0, 1.0, 5)
>>> y=x
>>> y[-1]=1000.0
>>> x
array([0.0e+00, 2.5e-01, 5.0e-01, 7.5e-01, 1.0e+03])
```

 However, as opposed to lists, array slicing does not return a copy but a "view" to original array

```
>>> y=x[1:4]
>>> y[-1]=1000.0
>>> x
array([0.0e+00, 2.5e-01, 5.0e-01, 1.0e+03, 1.0e+03])
```

NumPy array views versus copies (II)

★ The np.copy function returns a copy of the array

```
>>> import numpy as np
>>> x=np.linspace(0.0, 1.0, 5)
>>> y=np.copy(x)

>>> x
array([0. , 0.25, 0.5 , 0.75, 1. ])

>>> y=np.copy(x[1:4])
>>> y[-1]=1000.0
>>> x
array([0. , 0.25, 0.5 , 0.75, 1. ])
```

Vectorized code

- * With NumPy, it is possible to work with entire arrays at once versus using Python loops to process one element at a time
- * Code written using this feature is called vectorized code
- * **Example**: we want to evaluate the mathematical function

$$f(x) = \sin(x)e^{-x}$$

at 10^6 equispaced points in the interval $[0,2\pi]$, and store the result in a NumPy 1-rank array

Option 1 - Non-vectorized code

Evaluates $f(x) = \sin(x)e^{-x}$ at 10⁶ equispaced points within [0, 2 π]

```
import math
import numpy as np
n = 1.000.000
x = np.linspace(0, 2*math.pi, n)
y = np.zeros(n)
for i in range(0,len(x)):
    y[i] = math.sin(x[i])*math.exp(-x[i])
```

Remarks:

- * Python for loop to evaluate f(x) one element at a time
- Code pretty similar to the one that one would write with lists
- * We can use math.sin and math.exp from the math module as we are evaluating them with one array element at a time

Option 2 - Vectorized code

Evaluates $f(x) = \sin(x)e^{-x}$ at 10⁶ equispaced points within [0, 2 π]

```
import math
import numpy as np
n = 1_000_000
x = np.linspace(0, 2*math.pi, n)
y = np.zeros(n)
y = np.sin(x)*np.exp(-x)
```

Remarks:

- No Python for loop (i.e., vectorized code)
- Much faster, as it is very efficiently handled by NumPy under the hood
- * Shorter, more readable code, closer to math notation
- * IMPORTANT(!): we cannot use math.sin and math.exp on entire arrays, we must use NumPy versions np.sin and np.exp instead

Non-vectorized VS vectorized code (performance)

- * Code run on laptop with Intel i7-1265U microprocessor
- ★ Measurements taken with %timeit magic command in IPython
- **★** 147 VS 11.8 millisecs. (vectorized code ≈12.5 times faster!)

Vectorized functions

* A function f(x) written for a single number x usually also works for an array of numbers x

```
>> import numpy as np
>> def f(x):
...    return x**3 + np.sin(x)*np.exp(-3*x)

>> x = 1.0
>> y = f(x)
>> y
1.0418943734502046

>> x = np.linspace(0.0, 1.0, 5) # array([0., 0.25, 0.5, 0.75, 1.])
>> y = f(x)
>> y
array([0. , 0.13249036, 0.2319743 , 0.4937192 , 1.04189437])
```

Exercise. Write a "scalar" version of f(x) (i.e., that works with one element of x at a time) and compare its performance versus vectorized function above with arrays of increasing length

Vectorized in-place arithmetics (I)

Consider these two mathematically equivalent statements:

$$a = a + b$$

 $a += b$

In practice, much more subtle:

★ a=a+b is computed in two steps as (extra array w needed):

Step 1: w=a+b Step 2: a=w

- ★ The variable a is reassigned to a new array w in Step 2
- * However, a+=b is computed as a[i]+=b[i] for each i, and thus no extra array is needed
- a+=b is an in-place addition: it changes each element in a rather than letting the name a refer to a new array (result of a+b)

Vectorized in-place arithmetics (II)

 When writing functions that modify NumPy arrays passed as arguments, use in-place arithmetics (otherwise, the changes won't to be visible outside the function)

```
>>> def update_array_wrong(a,b):
       a=a+b
>>> def update_array_in_place(a,b):
       a+=b
>> x=np.array([1.0,2.0,3.0])
>> y=np.array([10.0,20.0,30.0])
>> update_array_wrong(x,y)
>> X
array([1., 2., 3.])
>> update_array_in_place(x,y)
>> X
array([11., 22., 33.])
```

Rank-2 arrays recap (math)

A table of numbers (called matrix by mathematicians) such as:

$$\left[\begin{array}{ccccc}
0 & 12 & -1 & 5 \\
-1 & -1 & -1 & 0 \\
11 & 5 & 5 & -2
\end{array}\right]$$

can be represented as a 2-rank array A_{ij} with (row identifier) i = 0, 1, 2 and (column identifier) j = 0, 1, 2, 3

$$A = \left[\begin{array}{ccc} A_{0,0} & \cdots & A_{0,3} \\ \vdots & \ddots & \vdots \\ A_{2,0} & \cdots & A_{2,3} \end{array} \right]$$

Rank-2 arrays with NumPy

Example: create and fill a rank-2 NumPy array using indexing

```
import numpy as np
A=np.zeros((3,4)) # Create a 2-rank array with 3 rows, 4 columns
A[0,0]=0
A[0,1]=12
A[0,2]=-1
A[0,3]=5
A[1,0]=-1
...
A[2,3]=-2
# One can also write (as for nested lists):
A[2][3]=-2
```

$$\left[\begin{array}{ccccc}
0 & 12 & -1 & 5 \\
-1 & -1 & -1 & 0 \\
11 & 5 & 5 & -2
\end{array}\right]$$

Creating rank-2 NumPy arrays from nested lists

- * One can also use a nested list to create a rank-2 NumPy array
- Each element in the nested list represents a different row in the rank-2 array

$$\left[\begin{array}{ccccc}
0 & 12 & -1 & 5 \\
-1 & -1 & -1 & 0 \\
11 & 5 & 5 & -2
\end{array}\right]$$

Shape of NumPy array

- The shape of a NumPy array is a tuple with the number of elements in each dimension
- * The length of this tuple is the rank of the array
- One can access the shape of a NumPy array using the shape attribute

$$\left[\begin{array}{cccc}
0 & 12 & -1 & 5 \\
-1 & -1 & -1 & 0 \\
11 & 5 & 5 & -2
\end{array}\right]$$

Looping over rank-2 array entries

 One can loop over the entries of a rank-2 array using a nested loop (e.g., outer loop over the rows, inner loop over the columns)

2-rank NumPy array slicing

- ⋆ One can also use slicing with rank-2 arrays
- * A[i,:] is row i (same as A[i])
- * A[:, j] is column j
- * : can also be from: to (equivalent to from:)

```
>> import numpy as np

>> A = np.array([[0.0,12.0,-1.0,5.0],

... [-1.0,-1.0,-1.0,0.0],[11.0,5.0,5.0,-2.0]])

>> A[1,:] # Row 1; equivalent A[1,0:] and A[1,0:A.shape[1]]

array([-1., -1., -1., 0.])

>> A[:,3] # Column 3; equivalent A[0:,3] and A[0:A.shape[1],3]

array([5.0., 0., -2.])
```

* Exercise: is A[1:3,1:3] legal? what does it return?

More on vectorized code (broadcasting)

- NumPy allows one to write vectorized operations among a single number and an array
- ★ E.g., if A rank-2 NumPy array, and a number, one can write a*A

- * The result is an array with the same shape as A where each element is multiplied by a
- Actually this is just an example of a more general feature called broadcasting that allows one to perform operations among "compatible" arrays of different shapes

Programming problem idea

Write a vectorized version of homework 2 where the neural network is evaluated on a batch of inputs at once (instead of one input at a time)

Take home messages

- NumPy arrays and lists are types with different features
- NumPy arrays less flexible but much faster than lists (if used wisely)
- Vectorization is the process of turning a non-vectorized algorithm with Python loops accessing single array elements into a vectorized version without Python loops
- Vectorization can make scientific programs working with a large number of numerical data much faster