
COMP1730/COMP6730
Programming for Scientists

Functions: advanced topics

Academic integrity (reminder)

* Academic integrity is taken seriously at ANU! – Academic
Integrity Rule 2021 is a legal document at the University

* Discussing programming problems (e.g. from labs) and ways to
solve them with other students is a great way to learn
– just don’t discuss assessment problems

* All assignments are individual. You must write your own code,
and be able to show that you understand every aspect of what
you have written

* Suspected cheating/plagiarism will be investigated seriously
accordingly to ANU academic integrity rule

Lecture outline

* Namespaces & references

* Recursion revisited

Namespaces and function calls

* Assignment statement (e.g., variable=value) associates a
variable name with a reference to a value

* This association is stored in a namespace (a.k.a. frame), i.e., a
mapping among variable names and references to values

* Whenever a function is called, a new local namespace is
dynamically created

* Assignments to variables (including parameters) during
execution of the function are registered in the local namespace

* The local namespace disappears when the function call ends

Scope of a variable

* The scope of a variable is the set of program statements
over which a variable exists, i.e., that can refer to the variable

* In other words, the set of program statements over which the
namespace the variable is defined in persists

* Because there are several namespaces, there can be different
variables with the same name in different scopes

Different vars with same name in different scopes

def f(x):
y = x ** 2
return y - 1

x = 1
y = f(x + 1)

Image from pythontutor.com

Different vars with same name in different scopes

def f(x):
y = x ** 2
return y - 1

x = 1
y = f(x + 1)

Image based on pythontutor.com

The local assignment rule

* Python considers a variable that is assigned anywhere in the
function suite to be a local variable (this includes parameters)

* When a non-local variable is evaluated, its value is taken from
the (enclosing) global namespace

* However, if a function assigns to a variable that is also defined
in the global namespace, the local assignment shadows the
non-local variable (i.e. as if the non-local variable did not exist)

* WARNING: If we refer to this local variable before assignment,
Python will raise an UnboundLocalError (see next slide)

Example: function that reads non-local variable
versus function that shadows non-local variable

def f(x):
return x ** y

>>> y = 2
>>> f(2)
4

def f(x):
if y < 1:

y = 1
return x ** y

>>> y = 2
>>> f(2)
UnboundLocalError:
local variable ’y’
referenced before
assignment

Modifying is NOT assignment!
* Assignment changes/creates the association between a name

and a reference to a value (in the current namespace)
* A modifying operation on a mutable object does NOT change

any name–value association

def f(x):
y = x ∗∗ 2
f list.append([x,y])
return y

>>> f list = []
>>> f(2)
4
>>> f(3)
9
>>> f list
[[2, 4], [3, 9]]

Example of function that modifies non-local list

Function params hold references to args values

* When a function is called, its parameters are assigned
references to the argument values

* If a parameter name refers to a mutable object (e.g., list,
NumPy array, or dictionary), modifications to this object made in
the function suite are visible outside the function’s scope

Example of function that modifies mutable object
through parameter

def f(ns):
total = 0
while len(ns) > 0:

next = ns.pop(0)
total = total + next

return total

>>> a list = [1,2,3]
>>> f(a list)
6
>>> a list
[]

Similar to previous example, HOWEVER, we can now tell from the
function’s signature that the function is going to access to such
mutable object

Example of function that modifies mutable object
through parameter

Image from pythontutor.com

def f(ns):
total = 0
while len(ns) > 0:

next = ns.pop(0)
total = total + next

return total

>>> a list = [1,2,3]
>>> l sum = f(a list)

Other namespaces

* Python’s built-in functions (e.g., type, max, etc.) are defined in
a separate namespace accessible from any part in the program
- Programmer-defined names override built-in names

* Imported modules are executed in their own namespace
- Names in a module namespace are accessed from outside by

prefixing the name of the module to the name

Guidelines for good functions

* Accessing global variables within functions (specially if we
modify them) is in general a bad practice that should be avoided

* Try to stick to functions that access ONLY local variables
- Use parameters for all inputs to the function
- Return all function outputs

(for multiple outputs, return a tuple or list)

* In general, don’t modify mutable argument values through the
function parameters, unless there is a good reason for doing so
(e.g., if it is the specific purpose of the function)

Recursion revisited

* A recursive function is often described as a function that calls
itself

* Function calls form a stack: when the i-th function call ends,
execution returns to where the call was made in the (i − 1)-th
function suite

* The function suite MUST HAVE a branching statement, such
that a recursive call does not always take place (base case);
otherwise, recursion never ends

* Recursion is a way to think about how to solve problems:
reducing it to a smaller instance of itself

Example (contrived)

def f(x):
"""
Returns 2 to the power of x
x is an integer >= 0

"""
if x == 0:

return 1 # base case
else:

y = f(x − 1) # recursive call
return 2 ∗ y

Note that 2x = 2 ∗ 2x−1 for x > 0

1 def f(x):
...

2 y = f(2)

x = 2
3 if x == 0:
4 else:
5 y = f(x - 1)

x = 1
6 if x == 0:
7 else:
8 y = f(x - 1)

x = 0
9 if x == 0:

10 return 1

x = 1, y = 1
11 return 2 * y

x = 2, y = 2
12 return 2 * y

y = 4

Another example

* Compute number of different subsets with k elements (i.e., of
size k) in a set with n elements (n ≥ k ≥ 0)

* Denoted as C(n, k) (example with n = 3, k = 2)

size 2 subsets in {□,△,⃝} (i.e., C(3,2))

size 2 subsets in {△,⃝}: 1

□ out

size 1 subsets in {△,⃝}

sz 1 in {⃝}: 1

△ out

sz 0 in {⃝}: 1

△ in

□ in

* Recursive formulation:

C(n, k) = C(n − 1, k) + C(n − 1, k − 1)
C(n,0) = 1
C(n,n) = 1

def C(n, k):
if k==n or k == 0:

return 1 # base cases
else:

return C(n−1, k) + C(n−1, k−1) # recursive calls

1 ans = choices(3,2)

n = 3, k = 2
2 if k == 0 or k == n:
3 else:
4 choices(n - 1, k)

n = 2, k = 2
5 if k == 0 or k == n:
6 return 1

7 choices(n - 1, k - 1)

n = 2, k = 1
8 if k == 0 or k == n:
9 else:

10 choices(n - 1, k)

n = 1, k = 1
11 if k == 0 or k == n:
12 return 1

13 choices(n - 1, k - 1)

n = 1, k = 0
14 if k == 0 or k == n:

4 choices(n - 1, k)

n = 2, k = 2
5 if k == 0 or k == n:
6 return 1

7 choices(n - 1, k - 1)

n = 2, k = 1
8 if k == 0 or k == n:
9 else:

10 choices(n - 1, k)

n = 1, k = 1
11 if k == 0 or k == n:
12 return 1

13 choices(n - 1, k - 1)

n = 1, k = 0
14 if k == 0 or k == n:
15 return 1

16 return 1 + 1
17 return 1 + 2

ans = 3

Example: Sudoku solver
3 1

3 1
4

1 2 4

1 3 1
3 1

4
1 2 4

2 3 1
3 1

4
1 2 4

3 3 1
3 1

4
1 2 4

4 3 1
3 1

4
1 2 4

· · · · · ·
2 1 3 1
3 1

4
1 2 4

2 2 3 1
3 1

4
1 2 4

2 3 3 1
3 1

4
1 2 4

2 4 3 1
3 1

4
1 2 4

