

Announcements

COMP1730/COMP6730 Programming for Scientists

(Algorithm and problem) Computational complexity

- ★ The last date for students to drop courses without failure is this Friday – 6/10/2023
- * Final exam has been scheduled 14/11/2023
- Two separate exams for COMP1730 (9am-12pm) and COMP6730 (2pm-5pm)
- * Centrally invigilated exam, CSIT and HN computer labs

Australian National University

Algorithm complexity

- * The time (memory) consumed by an algorithm:
 - Counting "elementary operations" (not μ s).
 - Expressed as a function of the size of its arguments.
 - In the worst case.
- Complexity describes scaling behaviour: How much does runtime grow if the size of the arguments grow by a certain factor?
 - Understanding algorithm complexity is important when (but only when) dealing with large problems.

Big-O notation

Australian

National University

- ★ O(f(n)) means roughly "a function that grows at the rate of f(n), for large enough n".
- * For example,
- $n^2 + 2n$ is $O(n^2)$
- -100n is O(n)
- -10^{12} is O(1).

(Image by Lexing Xie)

Australian

National University

Example

Searching an unsorted sequence

- ★ Find the greatest element ≤ x in an unsorted sequence of n elements. (For simplicity, assume some element ≤ x is in the sequence.)
- * Two approaches:
- a) Search through the sequence; or
- **b)** First sort the sequence, then find the greatest element $\leq x$ in a *sorted* sequence.

```
def unsorted_find(x, ulist):
    """
    search unsorted list (ulist) for largest element <= x
    """
    best = min(ulist)
    for elem in ulist:
        if elem == x:
            return elem # elem found
        elif elem < x:
            if elem > best:
                best = elem # update if larger
    return best
```


Analysis

- * Elementary operation: comparison.
 - Can be arbitrarily complex.
- ★ If we're lucky, ulist[0] == x.
- * Worst case?
 - ulist = $[0, 1, 2, \ldots, x 1]$
 - Compare each element with ${\tt x}$ and current value of ${\tt best}$
- ★ What about min(ulist)?
- ★ f(n) = 2n, so O(n)

Measured runtime

Australian

National

University

Searching a sorted sequence

```
def sorted_find(x, slist):
    """
    search the sorted list for the largest element <= x.
    """
    if slist[-1] <= x:
        return slist[-1]
    lower = 0
    upper = len(slist) - 1
    # search by interval halving
    while (upper - lower) > 1:
        middle = (lower + upper) // 2
        if slist[middle] <= x:
            lower = middle
        else:
            upper = middle
    return slist[lower]</pre>
```


Analysis

- * Loop invariant: slist[lower] <= x and x < slist[upper].</pre>
- * How many iterations of the loop?
- Initially, upper lower = n 1.
- The difference is halved in every iteration.
- Can halve it at most $log_2(n)$ times before it becomes 1.
- * $f(n) = \log_2(n) + 1$, so $O(\log(n))$.

Problem complexity

Australian

National

University

- The complexity of a problem is the time (memory) that any algorithm that solves the problem must use, in the worst case, as a function of the size of the arguments.
- In other words, the complexity of a problem is the infimum of the complexities among all algorithms that solve the problem
- For example, mathematicians have been able to prove that any sorting algorithm that uses only pair-wise comparisons needs O(n log(n)) comparisons in the worst case
- Proving these kind of results is out of the scope of this course, and requires advanced arguments in mathematical theory of computation

Measured runtime (list.sort)

Points of comparison

Australian

National

* Algorithm (a): O(n)

Australian National University

* Algorithm (b): $n \log(n) + \log(n) = O(n \log(n))$

	<i>n</i> = 64k		<i>n</i> = 128k		n = 512k	
Unsorted find	0.013	S	0.026	S	0.108	S
Sorted find	0.000017s		0.000018s		0.00002 s	
Sorting	0.07	S	0.18	S		

Rate of growth

- * Algorithm uses T(n) time on input of size n.
- * If we double the size of the input, by what factor does the runtime increase?

Caution

 "Premature optimisation is the root of all evil in programming."

- C.A.R. Hoare

 Remember: Scaling behaviour becomes important when (and only when) problems become *large*, or when they need to be solved *many times*.

NP-Completeness

Example

★ The subset sum problem: Given *n* integers w₁,..., w_n, is there a subset of them that sums to exactly *C*?

(Also known as the "(exact) knapsack problem":


```
def subset_sum(w, C):
```

Australian National

Returns a tuple with two elements.

The first element is True if there is a subset of a list w summing to C. Otherwise, it is False.

```
The second element is the list of elements of
w that sum to C
"""
if len(w) == 0:
    return C == 0, []
# including w[0]
if w[0] <= C:
    can_do, subset = subset_sum(w[1:], C - w[0])
    if can_do:
        return True, [w[0]] + subset
# excluding w[0]
can_do, subset = subset_sum(w[1:], C)
if can_do:
    return True, subset
return False, None</pre>
```


Analysis

Finding vs. checking an answer

- ★ Count recursive function calls (no loops, so every call does a constant max amount of work).
- * Assume argument size (n) is number of weights.
- * Worst case?
 - If the answer is False and C is less than but close to $\sum_i w_i$, almost every call makes two recursive calls.
- * f(n+1) = 2f(n), f(0) = 1 means that $f(n) = 2^n$.

- * Sorting a list vs. $O(n \log(n))$ checking if it's already sorted O(n)
- Finding a subset of w₁,..., w_n
 that sums to C vs.
 checking if a sum is equal to C

 $O(2^{n})$

O(n)

NP-complete problems

- * A problem is **in NP** iff there is an answer- checking algorithm that runs in polynomial time ($O(n^c)$, *c* constant).
- * NP stands for Non-deterministic Polynomial time.
- * A problem is **NP-complete** if it's in NP and *at least as hard as* every other problem in NP.
- ★ We think there is no polynomial time algorithm for solving NP-complete problems, but we don't know.

Australian National University

There are many NP-complete problems...

- * Most populous intractable problem class
- Solving a system of *integer* linear equations
- The Knapsack problem
- * You can click here for a list of NP-complete problem examples

Takehome messages

- ★ Time and memory complexity is expressed in big-O notation as a function of the input size
- ★ See, for example, time complexity of operations on Python built-in types available at the Python wiki
- ★ Computational complexity is a major determinant in choosing a given algorithm/data structure for an application
- * Many real-world problems are computationally hard (NP)