
COMP1730/COMP6730
Programming for Scientists

(Algorithm and problem)
Computational complexity

Announcements

* The last date for students to drop courses without failure is this
Friday – 6/10/2023

* Final exam has been scheduled – 14/11/2023

* Two separate exams for COMP1730 (9am-12pm) and
COMP6730 (2pm-5pm)

* Centrally invigilated exam, CSIT and HN computer labs

Algorithm complexity

* The time (memory) consumed by an algorithm:
- Counting “elementary operations” (not 𝜇s).
- Expressed as a function of the size of its arguments.
- In the worst case.

* Complexity describes scaling behaviour: How much does
runtime grow if the size of the arguments grow by a certain
factor?
- Understanding algorithm complexity is important when (but

only when) dealing with large problems.

Big-O notation

* O(f (n)) means roughly “a
function that grows at the
rate of f (n), for large enough
n”.

* For example,
- n2 + 2n is O(n2)
- 100n is O(n)
- 1012 is O(1).

(Image by Lexing Xie)

Example

* Find the greatest element ≤ x in an unsorted sequence of n
elements. (For simplicity, assume some element ≤ x is in the
sequence.)

* Two approaches:
a) Search through the sequence; or
b) First sort the sequence, then find the greatest element ≤ x in

a sorted sequence.

Searching an unsorted sequence

def unsorted find(x, ulist):
"""
search unsorted list (ulist) for largest element <= x
"""
best = min(ulist)
for elem in ulist:

if elem == x:
return elem # elem found

elif elem < x:
if elem > best:

best = elem # update if larger
return best

Analysis

* Elementary operation: comparison.
- Can be arbitrarily complex.

* If we’re lucky, ulist[0] == x.

* Worst case?
- ulist = [0, 1, 2, ..., x - 1]

- Compare each element with x and current value of best

* What about min(ulist)?

* f (n) = 2n, so O(n)

Measured runtime

Searching a sorted sequence

def sorted find(x, slist):
"""
search the sorted list for the largest element <= x.
"""
if slist[−1] <= x:

return slist[−1]
lower = 0
upper = len(slist) − 1
search by interval halving
while (upper − lower) > 1:

middle = (lower + upper) // 2
if slist[middle] <= x:

lower = middle
else:

upper = middle
return slist[lower]

Analysis

* Loop invariant: slist[lower] <= x and
x < slist[upper].

* How many iterations of the loop?
- Initially, upper - lower = n − 1.
- The difference is halved in every iteration.
- Can halve it at most log2(n) times before it becomes 1.

* f (n) = log2(n) + 1, so O(log(n)).

Measured runtime

Problem complexity

* The complexity of a problem is the time (memory) that any
algorithm that solves the problem must use, in the worst case,
as a function of the size of the arguments.

* In other words, the complexity of a problem is the infimum of
the complexities among all algorithms that solve the problem

* For example, mathematicians have been able to prove that any
sorting algorithm that uses only pair-wise comparisons needs
O(n log(n)) comparisons in the worst case

* Proving these kind of results is out of the scope of this course,
and requires advanced arguments in mathematical theory of
computation

Measured runtime (list.sort)

Points of comparison

* Algorithm (a): O(n)

* Algorithm (b): n log(n) + log(n) = O(n log(n))

n = 64k n = 128k n = 512k

Unsorted find 0.013 s 0.026 s 0.108 s

Sorted find 0.000017s 0.000018s 0.00002 s

Sorting 0.07 s 0.18 s

Rate of growth

* Algorithm uses T (n) time on input of size n.

* If we double the size of the input, by what factor does the
runtime increase?

T
(2

n)
/2

T
(n
)

Caution

* “Premature optimisation is the root of all evil
in programming.”

– C.A.R. Hoare

* Remember: Scaling behaviour becomes important when (and
only when) problems become large, or when they need to be
solved many times.

NP-Completeness

Example

* The subset sum problem: Given n integers w1, . . . ,wn, is there a
subset of them that sums to exactly C?

(Also known as the “(exact) knapsack problem”:

⇒

w0 = 5 w1 = 2 w2 = 9 w3 = 1 C = 16.)

def subset sum(w, C):
"""
Returns a tuple with two elements.

The first element is True if there is a subset of
a list w summing to C. Otherwise, it is False.

The second element is the list of elements of
w that sum to C
"""
if len(w) == 0:

return C == 0, []
including w[0]
if w[0] <= C:

can do, subset = subset sum(w[1:], C − w[0])
if can do:

return True, [w[0]] + subset
excluding w[0]
can do, subset = subset sum(w[1:], C)
if can do:

return True, subset
return False, None

Analysis

* Count recursive function calls (no loops, so every call does a
constant max amount of work).

* Assume argument size (n) is number of weights.

* Worst case?
- If the answer is False and C is less than but close to

∑︀
i wi ,

almost every call makes two recursive calls.

* f (n + 1) = 2f (n), f (0) = 1 means that f (n) = 2n.

Finding vs. checking an answer

* Sorting a list vs. O(n log(n))
checking if it’s already sorted O(n)

* Finding a subset of w1, . . . ,wn O(2n)
that sums to C vs.
checking if a sum is equal to C O(n)

NP-complete problems

* A problem is in NP iff there is an answer- checking algorithm
that runs in polynomial time (O(nc), c constant).

* NP stands for Non-deterministic Polynomial time.

* A problem is NP-complete if it’s in NP and at least as hard as
every other problem in NP.

* We think there is no polynomial time algorithm for solving
NP-complete problems, but we don’t know.

There are many NP-complete problems...

* Most populous intractable problem class
- Solving a system of integer linear equations
- The Knapsack problem

* You can click here for a list of NP-complete problem examples

Takehome messages

* Time and memory complexity is expressed in big-O notation as
a function of the input size

* See, for example, time complexity of operations on Python
built-in types available at the Python wiki

* Computational complexity is a major determinant in choosing a
given algorithm/data structure for an application

* Many real-world problems are computationally hard (NP)

