COMP1730/COMP6730
Programming for Scientists

Exceptions and exception handling

Lecture outline

*» The exception mechanism in Python
* Raising exceptions (assert and raise)
* Catching exceptions

University

Reminder: Kinds of errors

1. Syntax errors: it's not Python!

2. Runtime errors — code is syntactically valid, but you’re asking
the Python interpreter to do something impossible
- E.g., apply operation to values of wrong type, call a function
that is not defined, division by zero, (large) etc.
— Causes an exception (central concept in this lecture)

3. Semantic/logic errors: code runs without error, but does the
wrong thing (for example, returns the wrong answer). Most
severe, harder to detect errors

University

Exceptions

*» Exceptions are a built-in control mechanism in Python for
systematically handling runtime errors:

- An exception is raised when the runtime error occurs

- No further statements in the current code block are executed

— The exception moves up in the call stack until it is caught by
an exception handler

- If no handler catches the exception, it moves all the way up to
the Python interpreter, which prints an error message (and
quits, if in script mode)

* Python allows the programmer to both explicitly raise and catch
exceptions (later in this lecture)

stralian
National

University

Exception names

*» Exceptions have names
* Some examples of exception names built-in in Python:
— TypeError, ValueError
(incorrect type or value for an operation or function)
NameError (variable or function name not defined)
IndexError (invalid sequence index)
KeyError (key not in dictionary)
ZeroDivisionError
and (many) others: click here for full list of built-in exceptions

* Python can be extended with custom (i.e., programmer-defined)
exception names (not covered in this lecture for simplicity)

* For example, modules that you import may define new
exceptions not necessarily in the Python standard library

https://docs.python.org/3/library/exceptions.html#concrete-exceptions

Lecture outline

* The exception mechanism in Python
*» Raising exceptions (assert and raise)
* Catching exceptions

Australian
ional

Assertions: the assert statement

* assert condition, "fail message"
- Evaluates condition
- If the value of condition is not True, raises an
AssertionError along with the message
- (Message is optional)

* Assertions are a very useful mechanism to explicitly check the
programmer’s assumptions, e.g., on function arguments

* Function’s doc-string states assumptions; assertions explicitly
check them

*» We have also used assertions thoroughly in test functions as a
mechanism to detect semantic errors (i.e., to check for code
correctness)

University

Raising exceptions: the raise statement

* raise ExceptionName(...)

- Raises the named exception
— Exception arguments (required and optional) depend on
exception type

*» Can be used to raise any type of runtime error

* Typically used to raise programmer-defined exception types
(although not necessarily, as shown in the example below)

*» What is the difference among these two Python codes?

assert type(var) == list, ’'var is not a list’

if type(var) != list:
raise TypeError(’var is not a list’)

stralian
National

University

Reminder: Defensive programming

* Runtime errors are preferable to semantic errors, because it is
immediately clear when and where they occur
* |t is better to “fail fast” (raise an exception) than to return a

non-sense result
*» Don’t assert more than necessary. For example:

def fun(seq):
assert type(seq) == list

is unnecessary if the function works for any sequence type

Lecture outline

* The exception mechanism in Python
* Raising exceptions (assert and raise)
» Catching exceptions

stralian
National

University

Exception handling

try:

suite # May contain several instructions

except ExceptionName:

error-handling suite # May contain several instructions

*

(Try to) Execute the instructions within suite

If no exception arises while executing suite, skip
error-handling suite and continue as normal

If ExceptionName arises, jump to error-handling suite
then continue with instructions below t ry-except clause

If any other exception different from Except ionName arises,
handle it as if no try-except clause was present (next slide)
NOTE: there can be more than one except : clause in the
same try—except statement (thus allowing to catch and
handle different exceptions in a different way)

NOTE: ExceptionName can be omitted from except : (thus
allowing to catch and handle any exception the same way)

University

Exception handling and functions

* An exception raised in a function interrupts the execution of the
function suite (i.e., remaining instructions are skipped)

* If the exception is caught by a t ry—except statement, then the
error handling suite is executed (as seen in previous slide)

*» BUT, it the exception is uncaught, then it is moved up to the
function’s caller

* The exception stops being moved up in the call chain at the first
matching except clause encountered in the call chain

Australian
ional

Exception handling and functions (Example)

def g(x, y):
try:

return x / y
except TypeError:
return None

def f(x, y):
try:
return g(x, x + y)
except ZeroDivisionError:
return 0
except TypeError:
return 1

Which error handler suite executes? Which value do the following
function calls return?

*x £(2, -2)
* f("ab", "Cd")
* £("ab", 2)

University

When to catch exceptions?

*» Never catch an exception unless there is a sensible way to
handle it

* If a function call does not raise an exception, its return value (or
side effect in the case of functions modifying arguments) should
be correct

*= Therefore, if you cannot compute a correct value, raise an
exception to the caller

Australian
National

: University

Bad practice example (delayed error)

def average(seq):
try:
return sum(seq) / len(seq)
except ZeroDivisionError:
print("empty sequence!")

avgl
avg2

average(a-seq)
average(b_seq)

if avgl < avg2:

* Exception caught but not handled properly
* What happens, e.g., if a_seq is empty but b_seq is not?
* Violation of fail-fast principle

Australian

National
University

Good practice example

def input_number():
"""Tnput a number from keyboard with error checking"""

number = None
while number is None:

try:
ans = input("Enter PIN:")

number = int(ans)

except ValueError:
print("That’'s not a number!")

number = None
return number

Keep asking for keyboard input until input is valid

University

Another good practice example

try:
n = len(seq)
except TypeError:
n=20 # type of seq doesn’t have length

* Test if an operation (e.g., 1en) is defined on a given object

*» A way to check if a value is “a sequence”, “iterable”, etc. (recall
these are abstract concepts, not actual Python types)

*» Few cases where this is actually useful, though

Australian
National

University

try—-except—-finally

try:

suite # May contain several instructions
except ExceptionName:

error-handling suite # May contain several instructions
finally:

clean-up suite # May contain several instructions

* After suite finishes (whether it causes an exception or not),
execute clean-up suite

* If an except clause is triggered, the error handler is executed
before clean—-up suite

* If the exception passes to the caller, clean-up suite is still
executed before leaving the function

Australian

National
University

try—except—-finally (Example)

def read_file(fname):
fo = open(fname)
try:
for line in fo:
process line (may produce exception)

finally:
fo.close() # close file

Ensure file will be closed even if an exception occurs

University

Take-home messages

* Systematically consider:
— What runtime errors can potentially occur in your code?
— Which should be caught, and how should they be handled?
— What assumptions should be checked?

* Use assert or raise to explicitly check on assumptions

*» Never catch an exception if you do not know how to handle it

* Use exceptions to systematically treat runtime errors as
apposed to, e.g.. if+print (error_message) +exit ()
statements scattered accross the code (this would prevent the
caller to deal with the exception in a different way)

