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Programming for Scientists

Exceptions and exception handling
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*» The exception mechanism in Python
* Raising exceptions (assert and raise)
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Reminder: Kinds of errors

1. Syntax errors: it's not Python!

2. Runtime errors — code is syntactically valid, but you’re asking
the Python interpreter to do something impossible
- E.g., apply operation to values of wrong type, call a function
that is not defined, division by zero, (large) etc.
— Causes an exception (central concept in this lecture)

3. Semantic/logic errors: code runs without error, but does the
wrong thing (for example, returns the wrong answer). Most
severe, harder to detect errors
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Exceptions

*» Exceptions are a built-in control mechanism in Python for
systematically handling runtime errors:

- An exception is raised when the runtime error occurs

- No further statements in the current code block are executed

— The exception moves up in the call stack until it is caught by
an exception handler

- If no handler catches the exception, it moves all the way up to
the Python interpreter, which prints an error message (and
quits, if in script mode)

* Python allows the programmer to both explicitly raise and catch
exceptions (later in this lecture)
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Exception names

*» Exceptions have names
* Some examples of exception names built-in in Python:
— TypeError, ValueError
(incorrect type or value for an operation or function)
NameError (variable or function name not defined)
IndexError (invalid sequence index)
KeyError (key not in dictionary)
ZeroDivisionError
and (many) others: click here for full list of built-in exceptions

* Python can be extended with custom (i.e., programmer-defined)
exception names (not covered in this lecture for simplicity)

* For example, modules that you import may define new
exceptions not necessarily in the Python standard library


https://docs.python.org/3/library/exceptions.html#concrete-exceptions
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Assertions: the assert statement

* assert condition, "fail message"
- Evaluates condition
- If the value of condition is not True, raises an
AssertionError along with the message
- (Message is optional)

* Assertions are a very useful mechanism to explicitly check the
programmer’s assumptions, e.g., on function arguments

* Function’s doc-string states assumptions; assertions explicitly
check them

*» We have also used assertions thoroughly in test functions as a
mechanism to detect semantic errors (i.e., to check for code
correctness)
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Raising exceptions: the raise statement

* raise ExceptionName(...)

- Raises the named exception
— Exception arguments (required and optional) depend on
exception type

*» Can be used to raise any type of runtime error

* Typically used to raise programmer-defined exception types
(although not necessarily, as shown in the example below)

*» What is the difference among these two Python codes?

assert type(var) == list, ’'var is not a list’

if type(var) != list:
raise TypeError(’var is not a list’)
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Reminder: Defensive programming

* Runtime errors are preferable to semantic errors, because it is
immediately clear when and where they occur
* |t is better to “fail fast” (raise an exception) than to return a

non-sense result
*» Don’t assert more than necessary. For example:

def fun(seq):
assert type(seq) == list

is unnecessary if the function works for any sequence type
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Exception handling

try:

suite # May contain several instructions

except ExceptionName:

error-handling suite # May contain several instructions

*

(Try to) Execute the instructions within suite

If no exception arises while executing suite, skip
error-handling suite and continue as normal

If ExceptionName arises, jump to error-handling suite
then continue with instructions below t ry-except clause

If any other exception different from Except ionName arises,
handle it as if no try-except clause was present (next slide)
NOTE: there can be more than one except : clause in the
same try—except statement (thus allowing to catch and
handle different exceptions in a different way)

NOTE: ExceptionName can be omitted from except : (thus
allowing to catch and handle any exception the same way)
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Exception handling and functions

* An exception raised in a function interrupts the execution of the
function suite (i.e., remaining instructions are skipped)

* If the exception is caught by a t ry—except statement, then the
error handling suite is executed (as seen in previous slide)

*» BUT, it the exception is uncaught, then it is moved up to the
function’s caller

* The exception stops being moved up in the call chain at the first
matching except clause encountered in the call chain
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Exception handling and functions (Example)

def g(x, y):
try:

return x / y
except TypeError:
return None

def f(x, y):
try:
return g(x, x + y)
except ZeroDivisionError:
return 0
except TypeError:
return 1

Which error handler suite executes? Which value do the following
function calls return?

*x £(2, -2)
* f("ab", "Cd")
* £("ab", 2)
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When to catch exceptions?

*» Never catch an exception unless there is a sensible way to
handle it

* If a function call does not raise an exception, its return value (or
side effect in the case of functions modifying arguments) should
be correct

*= Therefore, if you cannot compute a correct value, raise an
exception to the caller
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Bad practice example (delayed error)

def average(seq):
try:
return sum(seq) / len(seq)
except ZeroDivisionError:
print("empty sequence!")

avgl
avg2

average(a-seq)
average(b_seq)

if avgl < avg2:

* Exception caught but not handled properly
* What happens, e.g., if a_seq is empty but b_seq is not?
* Violation of fail-fast principle
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Good practice example

def input_number():
"""Tnput a number from keyboard with error checking"""

number = None
while number is None:

try:
ans = input("Enter PIN:")

number = int(ans)

except ValueError:
print("That’'s not a number!")

number = None
return number

Keep asking for keyboard input until input is valid
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Another good practice example

try:
n = len(seq)
except TypeError:
n=20 # type of seq doesn’t have length

* Test if an operation (e.g., 1en) is defined on a given object

*» A way to check if a value is “a sequence”, “iterable”, etc. (recall
these are abstract concepts, not actual Python types)

*» Few cases where this is actually useful, though
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try—-except—-finally

try:

suite # May contain several instructions
except ExceptionName:

error-handling suite # May contain several instructions
finally:

clean-up suite # May contain several instructions

* After suite finishes (whether it causes an exception or not),
execute clean-up suite

* If an except clause is triggered, the error handler is executed
before clean—-up suite

* If the exception passes to the caller, clean-up suite is still
executed before leaving the function
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try—except—-finally (Example)

def read_file(fname):
fo = open(fname)
try:
for line in fo:
# process line (may produce exception)

finally:
fo.close() # close file

Ensure file will be closed even if an exception occurs
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Take-home messages

* Systematically consider:
— What runtime errors can potentially occur in your code?
— Which should be caught, and how should they be handled?
— What assumptions should be checked?

* Use assert or raise to explicitly check on assumptions

*» Never catch an exception if you do not know how to handle it

* Use exceptions to systematically treat runtime errors as
apposed to, e.g.. if+print (error_message) +exit ()
statements scattered accross the code (this would prevent the
caller to deal with the exception in a different way)



