
COMP1730/COMP6730
Programming for Scientists

Exceptions and exception handling

Lecture outline

* The exception mechanism in Python

* Raising exceptions (assert and raise)

* Catching exceptions

Reminder: Kinds of errors

1. Syntax errors: it’s not Python!
2. Runtime errors – code is syntactically valid, but you’re asking

the Python interpreter to do something impossible
- E.g., apply operation to values of wrong type, call a function

that is not defined, division by zero, (large) etc.
- Causes an exception (central concept in this lecture)

3. Semantic/logic errors: code runs without error, but does the
wrong thing (for example, returns the wrong answer). Most
severe, harder to detect errors

Exceptions

* Exceptions are a built-in control mechanism in Python for
systematically handling runtime errors:
- An exception is raised when the runtime error occurs
- No further statements in the current code block are executed
- The exception moves up in the call stack until it is caught by

an exception handler
- If no handler catches the exception, it moves all the way up to

the Python interpreter, which prints an error message (and
quits, if in script mode)

* Python allows the programmer to both explicitly raise and catch
exceptions (later in this lecture)

Exception names

* Exceptions have names

* Some examples of exception names built-in in Python:
- TypeError, ValueError

(incorrect type or value for an operation or function)
- NameError (variable or function name not defined)
- IndexError (invalid sequence index)
- KeyError (key not in dictionary)
- ZeroDivisionError
- and (many) others: click here for full list of built-in exceptions

* Python can be extended with custom (i.e., programmer-defined)
exception names (not covered in this lecture for simplicity)

* For example, modules that you import may define new
exceptions not necessarily in the Python standard library

https://docs.python.org/3/library/exceptions.html#concrete-exceptions

Lecture outline

* The exception mechanism in Python

* Raising exceptions (assert and raise)

* Catching exceptions

Assertions: the assert statement

* assert condition, "fail message"

- Evaluates condition
- If the value of condition is not True, raises an
AssertionError along with the message

- (Message is optional)

* Assertions are a very useful mechanism to explicitly check the
programmer’s assumptions, e.g., on function arguments

* Function’s doc-string states assumptions; assertions explicitly
check them

* We have also used assertions thoroughly in test functions as a
mechanism to detect semantic errors (i.e., to check for code
correctness)

Raising exceptions: the raise statement

* raise ExceptionName(...)

- Raises the named exception
- Exception arguments (required and optional) depend on

exception type

* Can be used to raise any type of runtime error

* Typically used to raise programmer-defined exception types
(although not necessarily, as shown in the example below)

* What is the difference among these two Python codes?

assert type(var) == list, ’var is not a list’

if type(var) != list:
raise TypeError(’var is not a list’)

Reminder: Defensive programming

* Runtime errors are preferable to semantic errors, because it is
immediately clear when and where they occur

* It is better to “fail fast” (raise an exception) than to return a
non-sense result

* Don’t assert more than necessary. For example:

def fun(seq):
assert type(seq) == list
...

is unnecessary if the function works for any sequence type

Lecture outline

* The exception mechanism in Python

* Raising exceptions (assert and raise)

* Catching exceptions

Exception handling
try:

suite # May contain several instructions
except ExceptionName:

error−handling suite # May contain several instructions

* (Try to) Execute the instructions within suite

* If no exception arises while executing suite, skip
error-handling suite and continue as normal

* If ExceptionName arises, jump to error-handling suite,
then continue with instructions below try-except clause

* If any other exception different from ExceptionName arises,
handle it as if no try-except clause was present (next slide)

* NOTE: there can be more than one except: clause in the
same try-except statement (thus allowing to catch and
handle different exceptions in a different way)

* NOTE: ExceptionName can be omitted from except: (thus
allowing to catch and handle any exception the same way)

Exception handling and functions

* An exception raised in a function interrupts the execution of the
function suite (i.e., remaining instructions are skipped)

* If the exception is caught by a try-except statement, then the
error handling suite is executed (as seen in previous slide)

* BUT, it the exception is uncaught, then it is moved up to the
function’s caller

* The exception stops being moved up in the call chain at the first
matching except clause encountered in the call chain

Exception handling and functions (Example)
def g(x, y):

try:
return x / y

except TypeError:
return None

def f(x, y):
try:

return g(x, x + y)
except ZeroDivisionError:

return 0
except TypeError:

return 1

Which error handler suite executes? Which value do the following
function calls return?

* f(2, -2)

* f("ab", "cd")

* f("ab", 2)

When to catch exceptions?

* Never catch an exception unless there is a sensible way to
handle it

* If a function call does not raise an exception, its return value (or
side effect in the case of functions modifying arguments) should
be correct

* Therefore, if you cannot compute a correct value, raise an
exception to the caller

Bad practice example (delayed error)

def average(seq):
try:

return sum(seq) / len(seq)
except ZeroDivisionError:

print("empty sequence!")

avg1 = average(a seq)
avg2 = average(b seq)
...

if avg1 < avg2:
...

* Exception caught but not handled properly

* What happens, e.g., if a seq is empty but b seq is not?

* Violation of fail-fast principle

Good practice example

def input number():
"""Input a number from keyboard with error checking"""
number = None
while number is None:

try:
ans = input("Enter PIN:")
number = int(ans)

except ValueError:
print("That’s not a number!")
number = None

return number

Keep asking for keyboard input until input is valid

Another good practice example

try:
n = len(seq)

except TypeError:
n = 0 # type of seq doesn’t have length

* Test if an operation (e.g., len) is defined on a given object

* A way to check if a value is “a sequence”, “iterable”, etc. (recall
these are abstract concepts, not actual Python types)

* Few cases where this is actually useful, though

try-except-finally

try:
suite # May contain several instructions

except ExceptionName:
error−handling suite # May contain several instructions

finally:
clean−up suite # May contain several instructions

* After suite finishes (whether it causes an exception or not),
execute clean-up suite

* If an except clause is triggered, the error handler is executed
before clean-up suite

* If the exception passes to the caller, clean-up suite is still
executed before leaving the function

try-except-finally (Example)

def read file(fname):
fo = open(fname)
try:

for line in fo:
process line (may produce exception)

finally:
fo.close() # close file

Ensure file will be closed even if an exception occurs

Take-home messages

* Systematically consider:
- What runtime errors can potentially occur in your code?
- Which should be caught, and how should they be handled?
- What assumptions should be checked?

* Use assert or raise to explicitly check on assumptions

* Never catch an exception if you do not know how to handle it

* Use exceptions to systematically treat runtime errors as
apposed to, e.g.. if+print(error message)+exit()
statements scattered accross the code (this would prevent the
caller to deal with the exception in a different way)

