Australian

Australian

Announcements - In-lab project assessment Announcements - Final exam format

Final exam worths 60% of your final mark
* In-lab project assessment along this week (i.e., week 11)

* You will be interviewed by a tutor during the lab. Opportunity to: Exercises (24%): Programming problems (36%):
- Defeqd/ show u_nderstanding of your work * Improving code quality (6%) * Problem 1 (9%)
—If Rte)cel\;e PtrsllTlnary feeldbfatc;k on your work - + Testing (6%) + Problem 2 (9%)
* prij :Ce;r:N i\llznbeo:erazl)pprova of the conveners, your mark for the + Debugging (6%) + Problem 3 (9%)
* Time complexity (6%) * Problem 4 (9%)

*» Lab 10, which runs during Weeks 11 and 12, will be on

practicing final exam exercises and programming problems
See Lab 10 (weeks 11 and 12) for examples of practice exam

exercises and programming problems

Australian +| Australian
National

National

University University

Lecture outline

COMP1730/COMP6730

Programming for Scientists

* Python modules
» Command-line interface and parsing

Modules and command-line parsing

Australian Australian
National National

= University University

Modules (Motivation)

* We have been using modules all semester (e.g., robot, math,
numpy, etc.)

*» A module is a collection of interrelated data and functions (also
classes; see tomorrow’s guest lecture)

* Functions in a module can be reused in many different
programs (think, e.g., about numpy or math modules)

* |f you have several functions that can be handy in many different
programs, put them in a module

* Modules are specially relevant as a means to organize different
functionality in large software projects

Modules

* |n Python, writing modules is very easy: just collect the
functions you want in a source file, and that becomes a module

Australian Australian
National National
University University
Modules (example on making our own module) Modules (example on making our own module)
Formulas for computing with interest rates: import math

n def final_.amount (A0, p, n):
* A=Ay (1 + —3605100) """docstring goes here"""
o _n return A0+(1.0 + p/(360.0%100.0))x**n
* Ao = A(1+ z5db700)

def initial_amount(A, p, n):
|Og(%) """docstring goes here"""
* N= —r 5 return Ax(1.0 + p/(360.0%100.0))**(-n)
og(1+ 3557700

2 1 def num_days(A®, A, p):
* p=360x*100 (A_> -1 ""vdocstring goes here"""
0 return math.log(A/A0)/math.log(1.0 + p/(360.0%100.0))
Ap: initial amount; A: final amount; def annual_rate(A®, A, n):
p: annual interest rate (%); n: Number of days """docstring goes here®""

return 360.0%100.0x((A/A0)**(1.0/n) - 1.0)

Australian Australian
National % National

1 University University

Modules (example on making our own module) Modules (names and hamespaces)

*» Collect the 4 functions in a source file interest.py

* Now interest.py becomes a module named interest * When the Python shell runs in “script mode”, the file it's
executing becomes the “main module”.
Example of usage: how many years does it take to double an - lts name becomes ’ _main_.’
initial amount at 5% interest rate? - Its namespace is the global namespace
* The first time a module is imported, that module is loaded
from interest import num.days (executed); it may later be re-loaded
AO = 100.0
D =5.0 * Every loaded module creates a separate (permanent)
n = num_days (A0, 2xA0, p) namespace

years = n/365.0
print(f"Your initial amount will double in {years:.2f} years")

Australian : Australian
National National

; University University

Modules (the import statement) Modules (checking for module names)

* When executing import modname, the Python interpreter:

- checks if modname is already loaded; * The global variable __name__in every module namespace stores
- if not (or if reloading), it: the module name

- finds the module file (normally modname. py) * sys.modules is a dictionary of all loaded modules

- executes the file in a new namespace; * dir (module) returns a list of names defined in module’s

- and stores the module object (roughly, namespace) in the namespace

system dictionary of loaded modules;

- and then associates modname with the module object in the
current namespace.

* dir () lists the current (global) namespace

<+ Australian <+ Australian
» National National

= University 3 University
Modules (example) Adding tests to modules (example)
* Modules can have an if _name__ == ’'main’ statement at
the end containing e.g., tests or code demonstrating the module
>>> __name__ * This block is NOT executed when the file is imported from
' __main__’ another module but ONLY when the file is run as a script
>>> import sys
>>> len(sys.modules) ... # Module’s function definition statements
>>> sys.modules[’math’].__name_. def test_all_functions():
’mathf A = 2.2133983053266699; A0 = 2.0; p =5; n =730
>>> dlrf) ’ A_computed = final_amount(A@, p, n)
[..., "sys’] AO_computed = initial_amount(A, p, n)
>>> import math n_.computed = num_days(A@, A, p)
>>> dir() p-computed = annual_rate(A0, A, n)
[..., 'sys’, 'math’] tol=1E-12
success = abs(A_computed,-A)<tol) and ... abs(n_computed-n)<tol

assert success, "interest module tests failed!"

if __name__ == '__main__":
test_all_functions()

Australian | Australian
National National

University University

The command-line interface

* A command-line (“terminal” or “shell”)
is a text I/O interface to the computer’s
operating system (OS), as apposed to
GUIs, which are based on graphical
elements (windows, buttons, etc.)

The command-line interface * The shell is an interpreter for a

command-based programming
Ianguage (Image from wikipedia)

* The syntax (and to some extent the concepts) of command
programming languages are quite different among OSs, but
there also fairly common aspects among them

* Command-line interfaces are very common in scientific pipelines
(e.g., when running scientific programs on supercomputers)

Australian Australian
National National

University University

Passing arguments from the command-line Example
* Program that evaluates the mathematical formula (1D motion):

1
y(t) = yo + vot + s at?

* A Python program can be run from the command-line, e.g.: 2
$ python my program.py * Input: yy (initial pos), vy (initial vel), a (acceleration), t (time)
where python is the Python interpreter * Output: y(t) (position at time 1)
» We can pass arguments to the program from the command-line: import sys
" " 0 = float(sys.argv[1])
$ python my program.py argl "arg two" 3.1416 50 - ﬂoat(szs.argv[Z])
i ; H i a = float(sys.argv[3])
* sys.argv is a list of strings where sys.argv[0] is the name % float(evs. argvial)
of the Python program and sys.argv[1:] are the arguments yt = y0 + vOxt + 0.5¥artrt . .
* An alternative way to connect the program with the outside world print(f"Position of object at time={t} (s) is {yt} (m")

» Evaluate for yp =10m, vp =2m/s, a=—-9.81 m/s?, t =0.5s:
$ python position.py 10 2 9.81 0.5
*» Do you anticipate any potential issues with the program above?

Australian «| Australian
National <= National
University University
Command-line arguments with options Parsing option-value pairs with argparse module
. . import argparse
*» Many programs, especially on Unix-type systems, take a set of parser = argparse.ArgumentParser()
command-line arguments of the form ——option value, such , ,
. # Define command-line arguments
as, for example. parser.add_argument(’'--v0’, '——initial_velocity’, type=float,
Cys o L o . default=0.0, help="initial velocity’)
% python position.py y0 10 v0 2 a -9.81 £ 0.5 parser.add_argument(’'--y0’, ’'——initial_position’, type=float,
$ python position.py —--t 1.0 default=0.0, help="initial position’)
] .] parser.add_argument(’'—-a’, ’'—-acceleration’, type=float,
* The second invocation relies on default values for the other default=1.0, help='acceleration’)
parameters: we only provide those values that we want to parser.add.argument(’'~—t’, '--time’, type=float,

default=1.0, help="time")
change

» Such option-value pairs facilitate the user to understand and
remember what the different options mean

Read the command line and interpret the arguments
args = parser.parse_args()

. . . # Extract values and evaluate formula
* The argparse module (next slide) provides very convenient y0 = args.yd; v0 = args.v0; a = args.a; t = args.t
way to "parse” command-line arguments with options (e.g., it yt = y0 + vOxt + 0.5%axtx*2

handles all possible errors with meaningful error messages)

Documentation:
https://docs.pvthon.orqg/3/libraryv/argparse.html

