
Announcements - In-lab project assessment

* In-lab project assessment along this week (i.e., week 11)

* You will be interviewed by a tutor during the lab. Opportunity to:
- Defend/show understanding of your work
- Receive preliminary feedback on your work

* If absent without approval of the conveners, your mark for the
project will be zero

* Lab 10, which runs during Weeks 11 and 12, will be on
practicing final exam exercises and programming problems

Announcements - Final exam format

Final exam worths 60% of your final mark

Exercises (24%):

* Improving code quality (6%)

* Testing (6%)

* Debugging (6%)

* Time complexity (6%)

Programming problems (36%):

* Problem 1 (9%)

* Problem 2 (9%)

* Problem 3 (9%)

* Problem 4 (9%)

See Lab 10 (weeks 11 and 12) for examples of practice exam
exercises and programming problems

COMP1730/COMP6730
Programming for Scientists

Modules and command-line parsing

Lecture outline

* Python modules

* Command-line interface and parsing

Modules

Modules (Motivation)

* We have been using modules all semester (e.g., robot, math,
numpy, etc.)

* A module is a collection of interrelated data and functions (also
classes; see tomorrow’s guest lecture)

* Functions in a module can be reused in many different
programs (think, e.g., about numpy or math modules)

* If you have several functions that can be handy in many different
programs, put them in a module

* Modules are specially relevant as a means to organize different
functionality in large software projects

* In Python, writing modules is very easy: just collect the
functions you want in a source file, and that becomes a module

Modules (example on making our own module)

Formulas for computing with interest rates:

* A = A0
(
1 + p

360∗100

)n

* A0 = A
(
1 + p

360∗100

)−n

* n =
log

(
A

A0

)
log(1+ p

360∗100)

* p = 360 ∗ 100
((

A
A0

) 1
n − 1

)
A0: initial amount; A: final amount;

p: annual interest rate (%); n: Number of days

Modules (example on making our own module)

import math

def final amount(A0, p, n):
"""docstring goes here"""
return A0∗(1.0 + p/(360.0∗100.0))∗∗n

def initial amount(A, p, n):
"""docstring goes here"""
return A∗(1.0 + p/(360.0∗100.0))∗∗(−n)

def num days(A0, A, p):
"""docstring goes here"""
return math.log(A/A0)/math.log(1.0 + p/(360.0∗100.0))

def annual rate(A0, A, n):
"""docstring goes here"""
return 360.0∗100.0∗((A/A0)∗∗(1.0/n) − 1.0)

Modules (example on making our own module)

* Collect the 4 functions in a source file interest.py

* Now interest.py becomes a module named interest

Example of usage: how many years does it take to double an
initial amount at 5% interest rate?

from interest import num days
A0 = 100.0
p = 5.0
n = num days(A0, 2∗A0, p)
years = n/365.0
print(f"Your initial amount will double in {years:.2f} years")

Modules (names and namespaces)

* When the Python shell runs in “script mode”, the file it’s
executing becomes the “main module”.
- Its name becomes ’ main ’
- Its namespace is the global namespace

* The first time a module is imported, that module is loaded
(executed); it may later be re-loaded

* Every loaded module creates a separate (permanent)
namespace

Modules (the import statement)

* When executing import modname, the Python interpreter:
- checks if modname is already loaded;
- if not (or if reloading), it:
- finds the module file (normally modname.py)
- executes the file in a new namespace;
- and stores the module object (roughly, namespace) in the

system dictionary of loaded modules;
- and then associates modname with the module object in the

current namespace.

Modules (checking for module names)

* The global variable name in every module namespace stores
the module name

* sys.modules is a dictionary of all loaded modules

* dir(module) returns a list of names defined in module’s
namespace

* dir() lists the current (global) namespace

Modules (example)

>>> name
’ main ’
>>> import sys
>>> len(sys.modules)
...
>>> sys.modules[’math’]. name
’math’
>>> dir()
[..., ’sys’]
>>> import math
>>> dir()
[..., ’sys’, ’math’]

Adding tests to modules (example)
* Modules can have an if name == ’main’ statement at

the end containing e.g., tests or code demonstrating the module

* This block is NOT executed when the file is imported from
another module but ONLY when the file is run as a script

... # Module’s function definition statements

def test all functions():
A = 2.2133983053266699; A0 = 2.0; p = 5; n = 730
A computed = final amount(A0, p, n)
A0 computed = initial amount(A, p, n)
n computed = num days(A0, A, p)
p computed = annual rate(A0, A, n)
tol=1E−12
success = abs(A computed,−A)<tol) and ... abs(n computed−n)<tol
assert success, "interest module tests failed!"

if name == ’ main ’:
test all functions()

The command-line interface

The command-line interface

* A command-line (“terminal” or “shell”)
is a text I/O interface to the computer’s
operating system (OS), as apposed to
GUIs, which are based on graphical
elements (windows, buttons, etc.)

* The shell is an interpreter for a
command-based programming
language (Image from wikipedia)

* The syntax (and to some extent the concepts) of command
programming languages are quite different among OSs, but
there also fairly common aspects among them

* Command-line interfaces are very common in scientific pipelines
(e.g., when running scientific programs on supercomputers)

Passing arguments from the command-line

* A Python program can be run from the command-line, e.g.:
$ python my program.py

where python is the Python interpreter

* We can pass arguments to the program from the command-line:
$ python my program.py arg1 "arg two" 3.1416

* sys.argv is a list of strings where sys.argv[0] is the name
of the Python program and sys.argv[1:] are the arguments

* An alternative way to connect the program with the outside world

Example
* Program that evaluates the mathematical formula (1D motion):

y(t) = y0 + v0t +
1
2

at2

* Input: y0 (initial pos), v0 (initial vel), a (acceleration), t (time)

* Output: y(t) (position at time t)

import sys
y0 = float(sys.argv[1])
v0 = float(sys.argv[2])
a = float(sys.argv[3])
t = float(sys.argv[4])
yt = y0 + v0∗t + 0.5∗a∗t∗t
print(f"Position of object at time={t} (s) is {yt} (m)")

* Evaluate for y0 = 10 m, v0 = 2 m/s, a = −9.81 m/s2, t = 0.5 s:
$ python position.py 10 2 9.81 0.5

* Do you anticipate any potential issues with the program above?

Command-line arguments with options

* Many programs, especially on Unix-type systems, take a set of
command-line arguments of the form --option value, such
as, for example:

$ python position.py --y0 10 --v0 2 --a -9.81 --t 0.5

$ python position.py --t 1.0

* The second invocation relies on default values for the other
parameters: we only provide those values that we want to
change

* Such option-value pairs facilitate the user to understand and
remember what the different options mean

* The argparse module (next slide) provides very convenient
way to ”parse” command-line arguments with options (e.g., it
handles all possible errors with meaningful error messages)

Parsing option-value pairs with argparse module
import argparse
parser = argparse.ArgumentParser()

Define command−line arguments
parser.add argument(’−−v0’, ’−−initial velocity’, type=float,

default=0.0, help=’initial velocity’)
parser.add argument(’−−y0’, ’−−initial position’, type=float,

default=0.0, help=’initial position’)
parser.add argument(’−−a’, ’−−acceleration’, type=float,

default=1.0, help=’acceleration’)
parser.add argument(’−−t’, ’−−time’, type=float,

default=1.0, help=’time’)

Read the command line and interpret the arguments
args = parser.parse args()

Extract values and evaluate formula
y0 = args.y0; v0 = args.v0; a = args.a; t = args.t
yt = y0 + v0∗t + 0.5∗a∗t∗∗2

Documentation:
https://docs.python.org/3/library/argparse.html

https://docs.python.org/3/library/argparse.html

