
Announcements
• Next Friday is a public holiday and ALL LABS ON FRIDAY 29th MARCH HAVE

BEEN MOVED TO A MAKE-UP TIME
• Please remember to check your MyTimetable schedule and attend your make-up lab.
• If you have problems with your allocated time, please use MyTimetable to move to a

different lab. Please don’t email the course address - we will just ask you to use
myTimetable

• Homework 3 is due at the end of this week
• Those students with labs in HN1.25 – please note that your labs have been

moved to better rooms.
• The details of the new rooms should be in your MyTimetable. Please make sure that

you attend these labs and the correct location.
• Head-count at each lab is monitored – and attendance is very good – well

done!
• Apologies about the difficulties with HW1 marks. This was a problem with

our course systems and these have now been fixed.
• The Drop-In session this week will be held in N113 CSIT Building on
Thursday 1-2pm

Lecture Roadmap

• Intro to Programming
• Variables
• Functions

• The stack
• Scope

• Flow control
• if
• while
• for

• Strings
• Lists
• Tuples
• Dictionaries

Sequences have elements

• Strings and Lists are Sequences in Python
• hello_world = “Hello, world!”

• Negative indexes are completely legal syntax (and useful)

H e l l o , w o r l d !

Element: 0 1 2 3 4 5 6 7 8 9 10 11 12

…. -4 -3 -2 -1

Strings (pt II)
COMP1730/COMP6730

Reading: Textbook chapter 8 : Alex Downey, Think Python, 2nd Edition (2016)
OR

Chapter 5 : Lubanovic, Introducing Python, 2nd Edition (2019)
But only up until section: Search and Select

Strings are immutable

• Once a string is assigned, it can only be changed by re-assigning the
whole string.
• If we try to change an element, we get an error:

• If we want to change this character, we need to reassign the string:

Downey (2015) Think Python, 2nd Ed. (Chapter 8)

Strings and the in operator
• The keyword in can be used as a Boolean operator to test if a substring appears

in another word:

Downey (2015) Think Python, 2nd Ed. (Chapter 8)

in with for - string traversal
• The in keyword can also be used with for to iterate through a string:

• Output:
Downey (2015) Think Python, 2nd Ed. (Chapter 8)

Example: in, for and string traversal

• And this is useful, for example – define a function to find common letters in
words:

Downey (2015) Think Python, 2nd Ed. (Chapter 8)

Operations on sequences
• The type of a variable determines the meaning of operators applied

to them:
• On a str, the ‘+’ operator means concatenation
• And the ‘*’ operator means repetition
• == still tests for equality
• != tests inequality

Length of a string with len()

• Because a string is a sequence, we can use the sequence function
len() to return the length of the sequence

• This function will return the length of any sequence – more later
Downey (2015) Think Python, 2nd Ed. (Chapter 8)

Slicing to get sub-strings (Lubanovic Ch 5)

• Sometimes you will need to obtain a substring (part of a string)
• There is short-hand python syntax to make this easy - slices
• Because strings are sequences, you can get a substring by taking a slice

of the sequence:
example_string[start:end]
-start is the index of the first element
-end
• Slicing works of all built-in sequence types (str, list, tuple) and

returns the same type
• If start or end are left out, they default to the beginning and end (ie.

after the last element)

Slices

• The slice range is ‘half-open’:
• The element specified by the start index is included
• But, the element specified by the end index is left out

Punch & Enbody (2012) The Practice of Computing using Python (2nd ed.)

Slices

• If not specified explicitly, the end index defaults to the last element
of the sequence

Punch & Enbody (2012) The Practice of Computing using Python (2nd ed.)

Slices

• The start index defaults to the beginning of the sequence:

Punch & Enbody (2012) The Practice of Computing using Python (2nd ed.)

String methods: upper()

• Convert string to upper case letters:

• Notice again the use of ‘dot’ notation
• This is a string method – works only on str variables
• There is also the method lower()

Downey (2015) Think Python, 2nd Ed.

String methods: split()

• Splits a string at a delimiter, returns a List of resultant sub-strings.
• Comma-separated-values (CSV) is a common text data format. Split

on commas:

• But, you can use split() with any delimiter string:

Lutz (2013) Learning Python, 5nd Ed.

String methods: join()

• The opposite of split(). Joins a List of strings, with a delimiter
string:

• Note the use of the dot method on the string literal. This is a very
python way of doing things.
• Alternatively, could also use a string delimiter variable with the dot

notation:

Lutz (2013) Learning Python, 5nd Ed.

• Searches and replaces instances of a sub-string in a string variable:

• There is also a similar find() method:
• find() returns the lowest index position of a sub-string in a string variable.

String methods: replace()

Lutz (2013) Learning Python, 5nd Ed.

String methods: count()

• The string method count() returns the count of the non-
overlapping occurrences of another string:

• For more information, try help(str.count)

Example: strings and string methods

• str.count() returns non-overlapping count
• Can we use str.find() in a function to return overlapping

counts?

String methods: strip(),lstrip(), rstrip()

• In practice, parsed strings tend to have trailing spaces and newline
characters. Use strip(), lstrip() and rstrip() to easily remove
these:

• And, it is possible to specify exactly what to trim:

Lutz (2013) Learning Python, 5nd Ed.

• Inserting string variables into a pre-defined sentence is commonly
useful. The string method format() makes this easy:

• Note the used of the ‘curly braces’ {} to indicate where the the text
the string variables should be inserted

String methods: format()

Lubanovic (2019) Introducing Python, 2nd Ed.

Exercises

• Exercises 8-1, 8-2 and 8-4, Think Python Ch. 8
• Exercises in Lutz Ch 5 are a little different to what we’ve seen

Reading

• Think Python Ch 8

Lists (part I)
COMP1730/COMP6730

Reading: Textbook chapter 10 : Alex Downey, Think Python, 2nd Edition
(2016)

Lists (finally) (Think Python Ch. 10)
• A list is a sequence. Very useful – essential! You will use these a lot.
• A sequence in python is a continuous series a values, called elements, that

also have an index value (a number)
• Some lists:

• In python, a list can contain a mixture of variable types – and may be
nested:

• Lists in python may contain other sequences. This is known as nesting.
Downey (2015) Think Python, 2nd Ed.

Creating lists
• You can use different ways to create a list:

• Say, you want to perform an operation on the list at the same time:

• rounded becomes [1, 2, 2, 3, 3]

my_list = list() # creates an empty list
my_list = list([1,2,3,4]) # creates a list with the list argument supplied
my_list = [1,2,3,4] # the same thing

precise = [1.23, 1.99, 2.01, 2.51, 3.45]
rounded = []

for number in precise:
 rounded_number = round(number)
 rounded.append(rounded_number)

Lists are mutable:

• The values of list elements can be changed:

• For instance, they have an in operator, like strings:

Lists are sequences (and often work like strings):

Adding to a list with append()
• We can change the value held by existing elements. But we can’t

assign to an element that does not exist.
• To add elements onto the end of the list, we use the append()

method:

• Or, we can insert into the middle of the list with insert():

Sweigart (2019) Automate the boring stuff with python (Chapter 4)

List operations
• Add lists together with ‘+’ operator:

• Multiply with ‘*’ operator:

Downey (2015) Think Python, 2nd Ed.

List traversal
• Like strings, lists can be traversed with a for loop:

• And modified in the process, if desired:

Downey (2015) Think Python, 2nd Ed.

List methods: sort()
• Sort a list with sort()

• Note how the sort is performed on the original list. The result is that
the original list is sorted – and does not create a new list.

Downey (2015) Think Python, 2nd Ed. (chapter 10)

Deleting list elements: pop()

• Lists are mutable, but how to delete an element? With pop().

• The elements with higher indices all shuffle down one, to fill the gap left by
the deleted element.
• There are other ways to delete elements, too: the del and remove()

methods. Each with useful features.

Downey (2015) Think Python, 2nd Ed. (chapter 10)

Delete by value with remove()

• pop() deletes whatever value is present at the index specified.
• remove() deletes the first occurrence of a particular value:

• It won’t remove further occurrences of the value from the list
• You will also get a ValueError error if the list doesn’t contain the

value specified

Sweigart (2019) Automate the boring stuff with python (Chapter 4)

Searching a list with index()

• When you pass a value to the list method index(), it will return the
index value of that value in the list:

• Though, if the value isn’t present you will get a ValueError error

Sweigart (2019) Automate the boring stuff with python (Chapter 4)

reverse()

• Seemingly trivial, but reverse() is useful:

Sweigart (2019) Automate the boring stuff with python (Chapter 4)

More list methods
• Full list at https://docs.python.org/3/tutorial/datastructures.html

Method Description

list.append(x) Add an item to the end of the list.

list.extend(iterable) Extend the list by appending all the items from the iterable.

list.insert(i, x) Insert an item at a given position.

list.remove(x) Remove the first item from the list whose value is equal to x.

list.pop([i]) Remove the item at the given position in the list,

list.clear() Remove all items from the list.

list.index(x[, start[, end]]) Return zero-based index in the list of the first item whose value is equal to x.

list.count(x) Return the number of times x appears in the list.

list.sort(*, key=None, reverse=False) Sort the items of the list in place

list.copy() Return a shallow copy of the list.

https://docs.python.org/3/tutorial/datastructures.html

Exercises

• Exercises 10-1, 10-3 and 10-4, Think Python Ch. 10

Reading

• Think Python Ch 10

