
Intro to Computational Science and Engineering (CSE)

COMP1730/COMP6730 - Programming for scientists - Special Topic

Dr. Alberto F. Martín - alberto.f.martin@anu.edu.au
School of Computing, Australian National University, Canberra, 23th Oct 2023



Lecture outline - Introduction to CSE

What is Computational Science and Engineering (CSE)?

Main ingredients

Application areas of CSE

Two research grand challenges in CSE currently out-of-reach

Dr. Alberto F. Martín · 2022 2/14



The scientific method nowadays (three complementary pillars)

Theory (e.g. relativity, quantum mechanics, etc.)

Mathematical models, theories, etc. (Domain expertise/knowledge lies here)

Mathematical models do NOT have analytical/closed solutions in general (e.g. PDEs)

Experiments

Grounded on observations of reality (e.g., weather balloons in weather forecasting)

Too expensive (e.g., wind tunnel for full scale aeroplanes) or simply impossible (e.g.,
fusion energy, Mars mantle convection) in a vast array of cases

Computational Science and Engineering (CSE) - This lecture

Integrates applied mathematics, computer science, and branches of
science/engineering in a single discipline, e.g., computational biology, computational
chemistry, computational fluid dynamics, computational geophysics, etc.

Leverages computational models (e.g., discrete approximations resulting from advanced
numerical methods), algorithms, data, software and HPC to tackle grand-challenges in
science and engineering

Synergies:
Theory ↔ Experiments. Theory can predict reality/Experiments can validate theory
Theory ↔ CSE. Math models grounded on theory/Theory can validate computational models
Experiments ↔ CSE. Experiments can validate computational models/Computational models

can predict reality in complex scenarios! Dr. Alberto F. Martín · 2022 3/14

https://www.iter.org/


A taxonomy of mathematical models - Discrete vs Continuous

Broadly speaking, there are two main types of mathematical models:
Discrete models
Continuous models

Discrete models
In terms of a finite number of discrete entities and interactions among them
For example: atoms, molecules, etc.
Well-suited for computers (just FLOPs; computers can deal with this)
Examples: molecular dynamics, chemical reactions

Continuous models (e.g., Partial Differential Equations - PDEs)
Encode the laws of nature using 1st physics principles (e.g., motion Newton’s laws)
Involve continuous functions on an infinite set (e.g., the real line)
Expressed in terms of integrals and derivatives of functions
Computers don’t know anything about functions, derivatives, or integrals!
We humans have to transform continuous models into discrete ones (i.e., FLOPs)

Dr. Alberto F. Martín · 2022 4/14



Example of continuous models: Partial Differential Equations (PDEs)

Earth’s Mantle convection (experiments not possible)

Can be modelled as a PDE system: find fluid velocity u(x, t), pressure
p(x, t), and temperature T (x, t) s.t.:

−∇ · (η(u, T )(∇u+∇uT )) +∇p = RaTer

∇ · u = 0

∂tT + u · ∇T −∇2T = γ

Click here for video animations of mantle convection simulations

(Source: ASPECT geodynamics scientific software) Dr. Alberto F. Martín · 2022 5/14

https://aspect.geodynamics.org/gallery.html
https://aspect.geodynamics.org/


Numerical methods: from continuous to discrete models

We use numerical methods to transform continuous problems into
(computer-solvable!) discrete problems

Example: modelling heat conduction in a 1D metal bar

Laplace differential equation
(continuous model)

Find temperature u(x) such that:

−∂x(κ(x)[∂xu(x)]) = f(x) within bar

(boundary conditions omitted for simplicity)

Linear system
(discrete model)

Find solution vector U ∈ Rn such that:

AU = F

with A ∈ Rn×n (matrix) and F ∈ Rn (vector)

This comes at a price: numerical errors and biases (!!!)

The expectation is that the more resolution in the discrete model, the
higher the computational demands and the lower the error

Mathematicians (numerical analysts) can prove bounds for these errors
thus certifying the robustness and accuracy of the discrete models

Dr. Alberto F. Martín · 2022 6/14



Example: FEM simulation pipeline steps (common approach)

1. Unstructured mesh generation
Delaunay triangulations mainstream

2. Mesh partition
Graph-based algorithms mainstream

3. Discrete system assembly
Involves numerical integration on elements
Embarrassingly (trivially) parallel process

AU = F

4. Discrete system solvers
Significance of algorithmically scalable solvers
(FLOPs/mem demands linearly bounded with
resolution)

Multilevel methods mainstream for discrete PDEs
(Multigrid, Multilevel Domain Decomposition)

Dr. Alberto F. Martín · 2022 7/14



R&D in Computational Science and Engineering

Objective: improve the state-of-the-art in computational models,
algorithms, and software to push the boundaries of what is currently
achievable in CSE

Strong potential: simulate out of reach problems, more precise
predictive CSE, improved scientific knowledge, revolutionize
decision-making across science, technology and society

Main research areas

Mathematical modelling

Numerical methods (discretization, solvers)

Data assimilation (e.g., machine learning)

HPC (parallel software/hardware innovations)

Application areas (examples)

Geophysics
Nuclear fusion
Aeronautics
Personalized medicine (brain/heart)
Nanoscience, Smart manufacturing,
(large) Etc.

Dr. Alberto F. Martín · 2022 8/14



Synergy among HPC and CSE is crucial

We already find ourselves in the Exascale era (O(1018) FLOPs/s peak )

Frontier: 1st Exascale supercomputer (Oak Ridge US National Labs)
(∼10M cores, 1.1EFLOPs/s, ranked #1 Jun, 2023 Top500 list)

Performance boost mostly based on adding hardware parallelism (e.g.,
higher #cores/CPU) and heterogeneous hardware (CPUs, GPUs, . . .)

To exploit such vast concurrency is a formidable task for CSE
(breakthroughs in scalable algorithms and software innovations)

Dr. Alberto F. Martín · 2022 9/14

https://www.top500.org/


High quality scientific software is crucial for CSE

Development of high quality, generally applicable, and publicly available
high performance scientific software is key for CSE as a discipline

Vast array of high quality open source CSE software available in the
public domain, e.g.: TRILINOS, PETSc, FENICs, Firedrake,
OpenFOAM, deal.II, (and a large etc.)

From a research point of view, scientific software is a key component
(increases impact, scientific reproducibility, builds a community around
your research, etc.)

I am one of the leaders of the Gridap.jl scientific software ecosystem of
Julia packages. You can learn more about these efforts in my webpage
and references therein

Dr. Alberto F. Martín · 2022 10/14

https://trilinos.github.io/
https://petsc.org/release/
https://fenicsproject.org/
https://www.firedrakeproject.org/
https://www.openfoam.com/
https://www.dealii.org/
https://github.com/gridap/Gridap.jl
https://julialang.org/
https://amartinhuertas.github.io/menu3/


An out-of-reach example problem: full scale simulation of turbulent flows

Turbulent flows (literally all around us) are complex phenomena that
possess a set of features that render their full scale simulation
out-of-reach computationally even with state-of-the-art algorithms and
the most powerful Exascale supercomputers

They are generally 3D, multi-scale (in time and space), mixing,
unsteady, and highly-nonlinear physical phenomena

Typically modelled as a Continuous by the Navier-Stokes equations:
Find fluid velocity u(x, t), and pressure p(x, t) s.t.

∂tu+ (u · ∇)u = −∇p+
1

Re
∇2u in Ω× (0, T ]

∇ · u = 0 in Ω× (0, T ]

Established methods in CSE include (ordered by decreasing accuracy,
decreasing computational demands): DNS, LES, RANS

Example: M. Hosseini, R. Vinuesa, et. al., Turbulent flow around a wing
profile, a direct numerical simulation. V0078, APS Gallery of Fluid
Motion, 2015. Available at YouTube here

Dr. Alberto F. Martín · 2022 11/14

https://en.wikipedia.org/wiki/Direct_numerical_simulation
https://en.wikipedia.org/wiki/Large_eddy_simulation
https://en.wikipedia.org/wiki/Reynolds-averaged_Navier-Stokes_equations
https://www.youtube.com/watch?v=aR-hehP1pTk8


Full scale simulation of turbulent flows and deep learning

Last years have seen a tremendous surge in research on deep learning
techniques to enhance the fidelity of turbulent flow simulations and/or
reduce their computational demands (e.g., via reduce-order modelling)

See the following survey paper on advances on this field:

R. Vinuesa, S. L. Brunton. Enhancing computational fluid dynamics with
machine learning. Nature Computational Science, 2, pp 358–366, 2022.
Available here

Dr. Alberto F. Martín · 2022 12/14

https://www.nature.com/articles/s43588-022-00264-7


Another out-of-reach problem: Digital Twins

Term first coined by NASA in the 60s (as part of Apollo mission)

A Digital Twin is an evolving virtual representation of an object, system
or organ that spans its lifecycle, is updated from real-time data, and uses
simulation, ML, and reasoning to aid in decision-making

Source: SIAM Supercomputing Spotlights Talk by Prof. Karen Wilcox (UT Austin)

“How HPC is Personalizing the Future of Complex Systems”. Available at YouTube here

Dr. Alberto F. Martín · 2022 13/14

https://ntrs.nasa.gov/citations/20210023699
https://www.youtube.com/watch?v=OGFEDXM-SC8


CSE-related courses and workshops at ANU

Some CSE-related courses organized by the School of Computing
(non-exhaustive list):

COMP2710 - Numerical Computing with Julia (S2/2023)

COMP3320 - High Performance Scientific Computation (S2/2023)

COMP4300 - Parallel Systems (S1/2024)

For mathematically oriented students:

MATH3512 - Matrix Computations

MATH3511 - Scientific Computing

MATH3514 - Numerical Optimisation

MATH3349 - Numerical methods for time-dependent PDEs

I am organizing a hands-on workshop at ANU (late Nov, 2023) on finite
element methods for PDEs using the Gridap.jl Julia ecosystem of packages

Dr. Alberto F. Martín · 2022 14/14

https://programsandcourses.anu.edu.au/2023/course/COMP4300
https://programsandcourses.anu.edu.au/2023/course/COMP4300
https://programsandcourses.anu.edu.au/2023/course/COMP4300
https://programsandcourses.anu.edu.au/course/math3512
https://programsandcourses.anu.edu.au/2023/course/MATH3511
https://programsandcourses.anu.edu.au/course/math3514
https://programsandcourses.anu.edu.au/2020/course/math3349
https://opus.nci.org.au/display/Help/Introduction+to+Gridap%3A+Simulating+PDEs+using+finite+elements+in+Julia
https://github.com/gridap/Gridap.jl

