
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

REQUIREMENTS

Week:
2 of 12

A/Prof Alex Potanin and Dr Melina Vidoni

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

2 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

• You need to have an understanding of your potential users to design features
that they are likely to find useful and to design a user interface that is suited to
them.
• Personas are ‘imagined users’ where you create a character portrait of a type of

user that you think might use your product.
• For example, if your product is aimed at managing appointments for dentists, you might create a dentist

persona, a receptionist persona and a patient persona.

• Personas of different types of user help you imagine what these users may want
to do with your software and how it might be used. They help you envisage
difficulties that they might have in understanding and using product features.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS3

Personas

CRICOS PROVIDER #00120C

Jack, a primary school teacher

Jack, age 32, is a primary school (elementary school) teacher in Ullapool, a large
coastal village in the Scottish Highlands. He teaches children from ages 9-12. He was
born in a fishing community north of Ullapool, where his father runs a marine fuels
supply business and his mother is a community nurse. He has a degree in English from
Glasgow University and retrained as a teacher after several years working as a web
content author for a large leisure group.

Jack’s experience as a web developer means that he is confident in all aspects of
digital technology. He passionately believes that the effective use of digital
technologies, blended with face to face teaching, can enhance the learning experience
for children. He is particularly interested in using the iLearn system for project-based
teaching, where students work together across subject areas on a challenging topic.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS4

A Persona for a Primary School Teacher

CRICOS PROVIDER #00120C

• A persona should ‘paint a picture’ of a type of product user. They should be
relatively short and easy-to-read.
• You should describe their background and why they might want to use your

product.
• You should also say something about their educational background and

technical skills.
• These help you assess whether or not a software feature is likely to be useful,

understandable and usable by typical product users.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS5

Persona Descriptions

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS6

Persona Descriptions
Personalization

Include personal
information about

the individual

Persona

Education

Include details of
their education and

experience

Job-related

Figure 3.4 Persona descriptions

Include details of
the individual’s job

Include details of
their interest in the

product

Relevance

© Ian Sommerville 2018:Features, Scenarios and Stories

Personalization
You should give them a name and say something about their personal
circumstances. This is important because you shouldn’t think of a persona as a
role but as an individual. It is sometimes helpful to use an appropriate stock
photograph to represent the person in the persona. Some studies suggest that this
helps project teams use personas more effectively.

Job-related
If your product is targeted at business, you should say something about their job
and (if necessary) what that job involves. For some jobs, such as a teacher where
readers are likely to be familiar with the job, this may not be necessary.

Education
You should describe their educational background and their level of technical skills
and experience. This is important, especially for interface design.

Relevance
If you can, you should say why they might be interested in using the product and
what they might want to do with it.

Table 3.2 Aspects of a persona description

7

CRICOS PROVIDER #00120C

Emma, age 41, is a history teacher in a secondary school (high school) in Edinburgh.
She teaches students from ages 12 to 18. She was born in Cardiff in Wales where both
her father and her mother were teachers. After completing a degree in history from
Newcastle University, she moved to Edinburgh to be with her partner and trained as a
teacher. She has two children, aged 6 and 8, who both attend the local primary school.
She likes to get home as early as she can to see her children, so often does lesson
preparation, administration and marking from home.

Emma uses social media and the usual productivity applications to prepare her
lessons, but is not particularly interested in digital technologies. She hates the virtual
learning environment that is currently used in her school and avoids using it if she can.
She believes that face-to-face teaching is most effective. She might use the iLearn
system for administration and access to historic films and documents. However, she is
not interested in a blended digital/face-to-face approach to teaching.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS8

Emma, a history teacher

CRICOS PROVIDER #00120C

Elena, age 28, is a senior IT technician in a large secondary school (high school) in
Glasgow with over 2000 students. Originally from Poland, she has a diploma in
electronics from Potsdam University. She moved to Scotland in 2011 after being
unemployed for a year after graduation. She has a Scottish partner, no children, and
hopes to develop her career in Scotland. She was originally appointed as a junior
technician but was promoted, in 2014, to a senior post responsible for all the school
computers.

Although not involved directly in teaching, Elena is often called on to help in computer
science classes. She is a competent Python programmer and is a ‘power user’ of digital
technologies. She has a long-term career goal of becoming a technical expert in digital
learning technologies and being involved in their development. She wants to become
an expert in the iLearn system and sees it as an experimental platform for supporting
new uses for digital learning.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS9

Elena, a school IT technician

CRICOS PROVIDER #00120C

• The main benefit of personas is that they help you and other
development team members empathize with potential users of the
software.
• Personas help because they are a tool that allows developers to ‘step

into the user’s shoes’.
• Instead of thinking about what you would do in a particular situation, you can imagine how

a persona would behave and react.
• Personas can help you check your ideas to make sure that you are not

including product features that aren’t really needed.
• They help you to avoid making unwarranted assumptions, based on your

own knowledge, and designing an over-complicated or irrelevant
product.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS10

Persona Benefits

CRICOS PROVIDER #00120C

• Personas should be based on an understanding of the potential product
users, their jobs, their background and their aspirations.
• You should study and survey potential users to understand what they

want and how they might use the product.
• From this data, you can then abstract the essential information about

the different types of product user and use this as a basis for creating
personas.
• Personas that are developed on the basis of limited user information are

called proto-personas.
• Proto-personas may be created as a collective team exercise using whatever information is

available about potential product users. They can never be as accurate as personas
developed from detailed user studies, but they are better than nothing.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS11

Deriving Personas

CRICOS PROVIDER #00120C

• A scenario is a narrative that describes how a user, or a group of
users, might use your system.
• There is no need to include everything in a scenario – the scenario

isn’t a system specification.
• It is simply a description of a situation where a user is using your

product’s features to do something that they want to do.
• Scenario descriptions may vary in length from two to three

paragraphs up to a page of text.

Scenarios

12 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

Fishing in Ullapool
Jack is a primary school teacher in Ullapool, teaching P6 pupils. He has decided that a class project
should be focused around the fishing industry in the area, looking at the history, development and
economic impact of fishing.

As part of this, students are asked to gather and share reminiscences from relatives, use
newspaper archives and collect old photographs related to fishing and fishing communities in the
area. Pupils use an iLearn wiki to gather together fishing stories and SCRAN (a history archive site)
to access newspaper archives and photographs. However, Jack also needs a photo-sharing site as
he wants students to take and comment on each others’ photos and to upload scans of old
photographs that they may have in their families. He needs to be able to moderate posts with
photos before they are shared, because pre-teen children can’t understand copyright and privacy
issues.

Jack sends an email to a primary school teachers’ group to see if anyone can recommend an
appropriate system. Two teachers reply and both suggest that he uses KidsTakePics, a photo-
sharing site that allows teachers to check and moderate content. As KidsTakePics is not integrated
with the iLearn authentication service, he sets up a teacher and a class account with KidsTakePics.

He uses the the iLearn setup service to add KidsTakePics to the services seen by the students in
his class so that, when they log in, they can immediately use the system to upload photos from their
phones and class computers.

Jack’s scenario: using the iLearn
system for class projects

13 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

Scenario name Personas of actors
involved in the scenarios

Overall objective

What’s involved
in reaching the objective

Problem that can’t be addressed
by existing system

Possible ways that the problem
could be tackled

Scenario
description

Figure 3.5 Elements of a scenario description
Figure 3.5 Elements of a scenario description

14

CRICOS PROVIDER #00120C

• A brief statement of the overall objective.

• In Jack’s scenario, this is to support a class project on the fishing industry.

• References to the personas involved (Jack) so that you can get information about the capabilities and
motivation of that user.

• Information about what is involved in doing the activity. For example, in Jack’s scenario this involves
gathering reminiscences from relatives, accessing newspaper archives, etc.

• An explanation of problems that can’t be readily addressed using the existing system.

• Young children don’t understand issues such as copyright and privacy, so photo sharing requires a site that a teacher
can moderate to make sure that published images are legal and acceptable.

• A description of one way that the identified problem might be addressed.

• In Jack’s scenario, the preferred approach is to use an external tool designed for school students.

Scenario elements

15 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• Emma’s scenario is different from Jack’s scenario in that it
describes a common and well-understood process rather than
something new.
• Emma is an e-learning sceptic and she is not interested in

innovative applications. She wants a system that will make her life
easier and reduce the amount of routine administration that she
has to do.
• The scenario discusses how parts of the process (setting up an

email group and web page) are automated by the iLearn system.

Emma’s scenario

16 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

Emma is teaching the history of the First World War to a class of 14 year olds (S3). A
group of S3 students are visiting the historic World War One battlefields in northern
France. She want to set up a ‘battlefields group’ where the students who are attending
the trip can share their research about the places they are visiting as well as their
pictures and thoughts about the visit.

From home, she logs onto the iLearn system system using her Google account
credentials. Emma has two iLearn accounts – her teacher account and a parent account
associated with the local primary school. The system recognises that she is a multiple
account owner and asks her to select the account to be used. She chooses the teacher
account and the system generates her personal welcome screen. As well as her
selected applications, this also shows management apps that help teachers create and
manage student groups.

Emma selects the ‘group management’ app, which recognizes her role and school from
her identity information and creates a new group. The system prompts for the class year
(S3) and subject (history) and automatically populates the new group with all S3
students who are studying history. She selects those students going on the trip and
adds her teacher colleagues, Jamie and Claire, to the group.

Table 3.6 Emma’s scenario: using iLearn for administration

17

© Ian Sommerville 2018:Features, Scenarios and Stories

She names the group and confirms that it should be created. The app sets up an
icon on her iLearn screen to represent the group, creates an email alias for the
group and asks Emma if she wishes to share the group. She shares access with
everyone in the group, which means that they also see the icon on their screen. To
avoid getting too many emails from students, restricts sharing of the email alias to
Jamie and Claire.

The group management app then asksEmma if she wishes to set up a group web
page, wiki and blog. Emma confirms that a web page should be created and she
types some text to be included on that page.

She then accesses flickr using the icon on her screen, logs in and creates a private
group to share trip photos that students and teachers have taken. She uploads
some of her own photos from previous trips and emails an invitation to join the
photo-sharing group to the Battlefield email list. Emma uploads material from her
own laptop that she has written about the trip to iLearn and shares this with the
‘Battlefields Group’. This action adds her documents to the web page and
generates an alert to group members that new material is available.

Table 3.6 Emma’s scenario: using iLearn for administration

18

CRICOS PROVIDER #00120C

• Scenarios should always be written from the user’s perspective and
based on identified personas or real users.
• Your starting point for scenario writing should be the personas that you

have created. You should normally try to imagine several scenarios from
each persona.
• Ideally, scenarios should be general and should not include

implementation information.
• However, describing an implementation is often the easiest way to explain how a task is

done.
• It is important to ensure that you have coverage of all of the potential

user roles when describing a system.

Writing scenarios

19 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

Elena has been asked by David, the head of the art department in her school, to help set up an
iLearn environment for his department. David wants an environment that includes tools for making
and sharing art, access to external websites to study artworks, and ‘exhibition’ facilities so that the
students’ work can be displayed.

Elena’s starts by talking to art teachers to discover the tools that they recommend and the art sites
that they use for studies. She also discovers that the tools they use and the sites they access vary
according to the age of their students. Consequently, different student groups should be
presented with a toolset that is appropriate for their age and experience.

Once she has established what is required, Elena logs into the iLearn system as an administrator
and starts configuring the art environment using the iLearn setup service. She creates sub-
environments for three age groups plus a shared environment that includes tools and sites that
may be used by all students.

She drags and drops tools that are available locally and the URLs of external websites into each
of these environments. For each of the sub-environments, she assigns an art teacher as its
administrator so that they can refine the tool and web site selection that has been set up. She
publishes the environments in ‘review mode’ and makes them available to the teachers in the art
department.

After discussing the environments with the teachers, Elena shows them how to refine and extend
the environments. Once they have agreed that the art environment is useful, it is released to all
students in the school.

Table 3.7 Elena’s scenario: configuring the iLearn system

20

CRICOS PROVIDER #00120C

• It is easy for anyone to read and understand scenarios, so it is possible to
get users involved in their development.
• The best approach is to develop an imaginary scenario based on our

understanding of how the system might be used then ask users to
explain what you have got wrong.
• They might ask about things they did not understand and suggest how

the scenario could be extended and made more realistic.
• Our experience was that users are not good at writing scenarios.
• The scenarios that they created were based on how they worked at the moment. They were

far too detailed and the users couldn’t easily generalize their experience.

User involvement

21 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• Scenarios are high-level stories of system use. They should describe a sequence of interactions with the system
but should not include details of these interactions.

• User stories are finer-grain narratives that set out in a more detailed and structured way a single thing that a user
wants from a software system.

• As an author, I need a way to organize the book that I’m writing into chapters and sections.

• This story reflects what has become the standard format of a user story:

• As a <role>, I <want | need> to <do something>

• As a teacher, I want to tell all members of my group when new information is available

• A variant of this standard format adds a justification for the action:

• As a <role> I <want | need> to <do something> so that <reason>

• As a teacher, I need to be able to report who is attending a class trip so that the school maintains the
required health and safety records.

User stories

22 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• An important use of user stories is in planning.
• Many users of the Scrum method represent the product backlog as a set of user

stories.

• User stories should focus on a clearly defined system feature or
aspect of a feature that can be implemented within a single sprint.
• If the story is about a more complex feature that might take

several sprints to implement, then it is called an epic.
• As a system manager, I need a way to backup the system and restore either individual

applications, files, directories or the whole system.
• There is a lot of functionality associated with this user story. For implementation, it

should be broken down into simpler stories with each story focusing on a single aspect
of the backup system.

User stories in planning

23 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

User stories

Figure 3.6 User stories from Emma’s scenario

As a teacher, I want to be able to
log in to my iLearn account from home
using my Google credentials so that I don’t have
to remember another login id and password.

As a teacher, I want to access
the apps that I use for class
management and administration.

As a teacher and parent, I want
to be able to select the appropriate
iLearn account so that I don’t have to
have separate credentials for each
account.

Figure 3.6 User stories from Emma’s scenario

24

CRICOS PROVIDER #00120C

• Stories can be used to describe features in your product that
should be implemented.
• Each feature can have a set of associated stories that describe how

that feature is used.

Feature description using user stories

25 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

User stories

Figure 3.7 User stories describing the Groups feature

As a teacher, I want to be able
to create a group of students
and teachers so that I can
share information with that
group.

As a teacher, I want the
system to make it easy for
me to select the students
and teachers to be added to
a group.

As a teacher, I want to be
able to send email to all
group members using a
single email address.

As a teacher, I want to be
able to share uploaded
information with other
group members.

As a teacher, I want the iLearn
system to automatically set up
sharing mechanisms such as
wikis, blogs and web sites.

Figure 3.7 User stories describing the Groups feature

26

CRICOS PROVIDER #00120C

• As you can express all of the functionality described in a scenario as user stories, do you really
need scenarios?’

• Scenarios are more natural and are helpful for the following reasons:

• Scenarios read more naturally because they describe what a user of a system is actually doing with that
system. People often find it easier to relate to this specific information rather than the statement of
wants or needs set out in a set of user stories.

• If you are interviewing real users or are checking a scenario with real users, they don’t talk in the
stylized way that is used in user stories. People relate better to the more natural narrative in scenarios.

• Scenarios often provide more context - information about what the user is trying to do and their
normal ways of working. You can do this in user stories, but it means that they are no longer simple
statements about the use of a system feature.

Stories and scenarios

27 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• Your aim in the initial stage of product design should be to create a list of features that define your
product.

• A feature is a way of allowing users to access and use your product’s functionality so the feature list
defines the overall functionality of the system.

• Features should be independent, coherent and relevant:

• Independence
Features should not depend on how other system features are implemented and should not be affected by the
order of activation of other features.

• Coherence
Features should be linked to a single item of functionality. They should not do more than one thing and they
should never have side-effects.

• Relevance
Features should reflect the way that users normally carry out some task. They should not provide obscure
functionality that is hardly ever required.

Feature identification

28 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

Figure 3.8 Feature design

User
knowledge

Technology
knowledge

Product
knowledge

Domain
knowledge

Figure 3.8 Feature design

Feature
design

29

CRICOS PROVIDER #00120C

• User knowledge
You can use user scenarios and user stories to inform the team of what users want and how
they might use it the software features.

• Product knowledge
You may have experience of existing products or decide to research what these products do as
part of your development process. Sometimes, your features have to replicate existing
features in these products because they provide fundamental functionality that is always
required.

• Domain knowledge
This is knowledge of the domain or work area(e.g. finance, event booking) that your product
aims to support. By understanding the domain, you can think of new innovative ways of
helping users do what they want to do.

• Technology knowledge
New products often emerge to take advantage of technological developments since their
competitors were launched. If you understand the latest technology, you can design features
to make use of it.

Table 3.8 Knowledge required
for feature design

30 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

Figure 3.9 Factors in feature set design

Simplicity Functionality

Familiarity

NoveltyAutomation

Control
Feature set

design factors

Figure 3.9 Factors in feature set design

31

CRICOS PROVIDER #00120C

• Simplicity and functionality
• You need to find a balance between providing a simple, easy-to-use system and including

enough functionality to attract users with a variety of needs.

• Familiarity and novelty
• Users prefer that new software should support the familiar everyday tasks that are part of

their work or life. To encourage them to adopt your system, you need to find a balance
between familiar features and new features that convince users that your product can do
more than its competitors.

• Automation and control
• Some users like automation, where the software does things for them. Others prefer to have

control. You have to think carefully about what can be automated, how it is automated and
how users can configure the automation so that the system can be tailored to their
preferences.

Feature trade-offs

32 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• Feature creep occurs when new features are added in response to
user requests without considering whether or not these features
are generally useful or whether they can be implemented in some
other way.
• Too many features make products hard to use and understand
• There are three reasons why feature creep occurs:

• Product managers are reluctant to say ‘no’ when users ask for specific features.
• Developers try to match features in competing products.
• The product includes features to support both inexperienced and experienced users.

Feature creep

33 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

Feature
questions

Figure 3.10 Avoiding feature creep

Can this feature be imple-
mented by extending an
existing feature rather than
adding another feature to the
system?

Does this feature provide
general functionality or is it a
very specific feature?

Does this feature really add
anything new or is it simply
an alternative way of doing
something that is already
supported?

Is this feature likely to be
important to and used by most
software users?

Figure 3.10 Avoiding feature creep

34

CRICOS PROVIDER #00120C

• Features can be identified directly from the product vision or from
scenarios.
• You can highlight phrases in narrative description to identify

features to be included in the software.
• You should think about the features needed to support user actions, identified by

active verbs, such as use and choose.

Feature derivation

35 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• FOR teachers and educators WHO need a way to help students use web-
based learning resources and applications, THE iLearn system is an open
learning environment THAT allows the set of resources used by classes
and students to be easily configured for these students and classes by
teachers themselves.
• UNLIKE Virtual Learning Environments, such as Moodle, the focus of

iLearn is the learning process itself, rather than the administration and
management of materials, assessments and coursework. OUR product
enables teachers to create subject and age-specific environments for
their students using any web-based resources, such as videos,
simulations and written materials that are appropriate

The iLearn system vision

36 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• A feature that allows users to access and use existing web-based
resources;
• A feature that allows the system to exist in multiple different

instantiations;
• A feature that allows user configuration of the system to create a

specific instantiation.

Features from the product vision

37 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

Jack is a primary school teacher in Ullapool, teaching P6 pupils. He has decided that a class
project should be focused around the fishing industry in the area, looking at the history,
development and economic impact of fishing.

As part of this, students are asked to gather and share reminiscences from relatives, use
newspaper archives and collect old photographs related to fishing and fishing communities in the
area. Students use an iLearn wiki to gather together fishing stories and SCRAN (a history archive)
to access newspaper archives and photographs. However, Jack also needs a photo-sharing site
as he wants pupils to take and comment on each others’ photos and to upload scans of old
photographs that they may have in their families. He needs to be able to moderate posts with
photos before they are shared, because pre-teen children can’t understand copyright and privacy
issues.

Jack sends an email to a primary school teachers’ group, which he is a member of to see if
anyone can recommend an appropriate system. Two teachers reply and both suggest that he uses
KidsTakePics, a photo-sharing site that allows teachers to check and moderate content. As
KidsTakePics is not integrated with the iLearn authentication service, he sets up a teacher and a
class account with KidsTakePics.

He uses the the iLearn setup service to add KidsTakePics to the services seen by the students in
his class so that when they log in, they can immediately use the system to upload photos from
their phones and class computers.

Table 3.10 Jack’s scenario with highlighted phrases

38

CRICOS PROVIDER #00120C

• A wiki for group writing.
• Access to the SCRAN history archive. This is a shared national

resource that provides access to historical newspaper and
magazine articles for schools and universities.
• Features to set up and access an email group.
• A feature to integrate applications with the iLearn authentication

service.

Features from Jack’s scenario

39 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• The output of the feature identification process should be a list of
features that you use for designing and implementing your
product.
• There is no need to go into a lot of detail about the features at this

stage. You add detail when you are implementing the feature.
• You can describe features using a standard input-action-output

template by using structured narrative descriptions or by a set of
user stories.

The feature list

40 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

© Ian Sommerville 2018:Features, Scenarios and Stories

iLearn
authentication

Figure 3.11 The iLearn authentication feature

Comments
Future authentication mechanisms
may be based on biometrics and
this should be considered in the
design of the system.

Description
Authentication is used to identify users to the system
and is currently based on a login id/password system.
Users may authenticate themselves using their national
user id and a personal password or may use their
Google or Facebook credentials.

Constraints
All users must have a national user id
and system password that they use for
initial system authentication. They may
then link their account with their
Google/Facebook account for future
authentication sessions.

Figure 3.11 The iLearn authentication feature

41

CRICOS PROVIDER #00120C

• Description
As a system manager, I want to create and configure an iLearn environment by adding and removing services
to/from that environment so that I can create environments for specific purposes.

• As a system manager, I want to set up sub-environments that include a subset of services that are included in
another environment.

• As a system manager, I want to assign administrators to created environments.

• As a system manager, I want to limit the rights of environment administrators so that they cannot accidentally or
deliberately disrupt the operation of key services.

• As a teacher, I want to be able to add services that are not integrated with the iLearn authentication system.

• Constraints
The use of some tools may be limited for license reasons so there may be a need to access license management
tools during configuration.

• Comments
Based on Elena’s and Jack’s scenarios

Feature description using user stories

42 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• Scenarios and user stories should always be your starting point for
identifying product features.
• Scenarios tell you how users work at the moment. They don’t show how they might change

their way of working if they had the right software to support them.
• Stories and scenarios are ‘tools for thinking’ and they help you gain an understanding of

how your software might be used. You can identify a feature set from stories and scenarios.

• User research, on its own, rarely helps you innovate and invent new ways
of working.
• You should also think creatively about alternative or additional features

that help users to work more efficiently or to do things differently.

Innovation and feature identification

43 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• A software product feature is a fragment of functionality that implements something that a user may need
or want when using the product.

• The first stage of product development is to identify the list of product features in which you identify each
feature and give a brief description of its functionality.

• Personas are ‘imagined users’ where you create a character portrait of a type of user that you think might
use your product.

• A persona description should ‘paint a picture’ of a typical product user. It should describe their educational
background, technology experience and why they might want to use your product.

• A scenario is a narrative that describes a situation where a user is accessing product features to do
something that they want to do.

Key Points

44 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• A scenario is a narrative that describes a situation where a user is accessing product
features to do something that they want to do.
• Scenarios should always be written from the user’s perspective and should be based

on identified personas or real users.
• User stories are finer-grain narratives that set out, in a structured way, something

that a user wants from a software system.
• User stories may be used as a way of extending and adding detail to a scenario or as

part of the description of system features.
• The key influences in feature identification and design are user research, domain

knowledge, product knowledge, and technology knowledge.
• You can identify features from scenarios and stories by highlighting user actions in

these narratives and thinking about the features that you need to support these
actions.

Key Points

45 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

• Explain the importance and challenges of requirements in
software engineering.
• Explain how and why requirements articulate the relationship

between a desired system and its environment. Identify
assumptions.
• Distinguish between and give examples of: functional and quality

requirements; informal statements and verifiable requirements.
• State quality requirements in measurable ways

Today’s Goals

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS46

CRICOS PROVIDER #00120C

Requirements say what the system will do
(and not how it will do it)

Overly simplified definition.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS47

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS48

Healthcare.gov

CRICOS PROVIDER #00120C

• The hardest single part of building a software system is deciding
precisely what to build.
• No other part of the conceptual work is as difficult as establishing

the detailed technical requirements ...
• No other part of the work so cripples the resulting system if done

wrong.
• No other part is as difficult to rectify later.

— Fred Brooks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS49

Fred Brooks on Requirements

CRICOS PROVIDER #00120C

A 1994 survey of 8000 projects at 350 companies found: 31% of projects
canceled before completed; 9% of projects delivered on time, within
budget in large companies, 16% in small companies.

• Similar results reported since.

Causes:
1.Incomplete requirements (13.1%)

2.Lack of user involvement (12.4%)

3.Lack of resources (10.6%)

4.Unrealistic expectations (9.9%)

5.Lack of executive support (9.3%)

6.Changing requirements and specifications (8.7%)

7.Lack of planning (8.1%)

8.System no longer needed (7.5%)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS50

A Problem That Stands the Test of Time…

CRICOS PROVIDER #00120C

WHY IS THIS HARD???

51ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS52

Communication Problem

Goal: figure out what should be
built.
Express those ideas so that the
correct thing is built.

CRICOS PROVIDER #00120C

• Involved subproblems?
• Required functionality?
• Nice to have functionality?
• Expected qualities?
• How fast to deliver at what quality for what price?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS53

Overall Problems

CRICOS PROVIDER #00120C

54ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

Mini Break in Monday Lecture

CRICOS PROVIDER #00120C

Requirements in software projects

Requirements
Document

Project estimations
(size, cost, schedules)

Project workplan

Software prototype,
mockup

Follow-up directives

Software architecture

Call for tenders,
proposal evaluation

Quality Assurance
checklists

Project contract

Software evolution
directives

Software documentation

Acceptance test data

Implementation
directives

User manual

55

CRICOS PROVIDER #00120C

• Stories: Scenarios, Use Cases, and user stories
“After the customer submits the purchase information and the payment has been
received, the order is fulfilled and shipped to the customer’s shipping address.”

• Optative statements
The system shall notify clients about their shipping status

• Domain Properties and Assumptions
Every product has a unique product code

Payments will be received after authorization

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS56

Less Simplified Definition:
Online Shopping

CRICOS PROVIDER #00120C

• Knowledge acquisition – how to capture relevant detail about a
system?
• Is the knowledge complete and consistent?

• Knowledge representation – once captured, how do we express it
most effectively?
• Express it for whom?

• Is it received consistently by different people?

• You may sometimes see a distinction between the requirements
definition and the requirements specification.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS57

What is requirements engineering?

CRICOS PROVIDER #00120C

• What the machine should do
• Input
• Output

• Interface
• Response to events

• Criteria:
• Completeness: All requirements are documented

• Consistency: No conflicts between requirements
• Precision: No ambiguity in requirements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS58

Functional Requirements

CRICOS PROVIDER #00120C

• Specify not the functionality of the system, but the quality with
which it delivers that functionality.
• Can be more critical than functional requirements

• Can work around missing functionality
• Low-quality system may be unusable

• (We’ll come back to these in a bit.)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS59

Quality/Non Functional Requirements

CRICOS PROVIDER #00120C

Requirements say what the system will do (and not how it will do
it).

Why not “how”?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS60

Functional Requirements and
Implementation Bias

CRICOS PROVIDER #00120C

THE WORLD AND THE MACHINE

61

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS62

Environment and the Machine

Machine DomainEnvironmental Domain

Requirements
Domain Knowledge

Computers
Software Programs

Specifications

Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997.

Environment Software

Input devices
(e.g. sensors)

Output devices
(e.g. actuators)

monitored
variables

input data

output resultscontrolled
variables

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS63

Actions of an ATM
customer:
withdrawal-request(a, m)
Properties of the
environment:
balance(b, p)

Actions of an ATM
machine:
withdrawal-payout(a, m)
Properties of the
machine:
expected-balance(b, p)

What other models of the
world do machines maintain?

CRICOS PROVIDER #00120C

• Refinement is the act of translating requirements into
specifications (bridging the gap!)
• Requirements: desired behavior (effect on the environment) to be

realized by the proposed system.
• Assumptions or domain knowledge: existing behavior that is

unchanged by the proposed system.
• Conditions under which the system is guaranteed to operate correctly.

• How the environment will behave in response to the system’s outputs.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS64

Domain Knowledge

CRICOS PROVIDER #00120C

• Unshared actions cannot be accurately expressed in the machine
• People can jump over gates (enter without unlocking)

• People can steal or misplace inventory

• Future requirements are also not directly implementable
• Phone system: “After all digits have been dialed, do ring-back, busy-tone or error-tone.”

• …how do you know the user is done dialing?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS65

Some gaps must remain…

CRICOS PROVIDER #00120C

IMPLEMENTATION BIAS

66

CRICOS PROVIDER #00120C

Requirements say what the system will do (and not how it will do
it).

Why not “how”?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS67

CRICOS PROVIDER #00120C

• Requirements describe what is observable at the environment-
machine interface.
• Indicative mood describes the environment (as-is)
• Optative mood to describe the environment with the machine (to-

be).

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS68

Avoiding Implementation Bias

CRICOS PROVIDER #00120C

• “The dictionary shall be stored in a hash table” vs. “the software
shall respond to requests within 5 seconds.”
• Instead of “what” vs. “how”, ask “is this requirement only a

property of the machine domain?”
• Or is there some application domain phenomenon that justifies it?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS69

This can be subtle…

CRICOS PROVIDER #00120C

QUALITY REQUIREMENTS

70

CRICOS PROVIDER #00120C

• What the machine should do
• Input
• Output

• Interface
• Response to events

• Criteria
• Completeness: All requirements are documented

• Consistency: No conflicts between requirements
• Precision: No ambiguity in requirements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS71

Functional Requirements

CRICOS PROVIDER #00120C

• Specify not the functionality of the system, but the quality with
which it delivers that functionality.
• Can be more critical than functional requirements

• Can work around missing functionality
• Low-quality system may be unusable

• Examples?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS72

Quality/Non Functional Requirements

CRICOS PROVIDER #00120C

• Who is going to ask for a slow, inefficient, unmaintainable system?
• A better way to think about quality requirements is as design

criteria to help choose between alternative implementations.
• Question becomes: to what extent must a product satisfy these

requirements to be acceptable?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS73

Here’s the thing …

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS74

74

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

DeadlineVariability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

Selling videos on the web?

CRICOS PROVIDER #00120C

• Requirements serve as contracts: they should be
testable/falsifiable.
• Informal goal: a general intention, such as ease of use.

• May still be helpful to developers as they convey the intentions of the system users.

• Verifiable non-functional requirement: A statement using some
measure that can be objectively tested.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS75

Expressing Quality Requirements

CRICOS PROVIDER #00120C

• Confidentiality requirement: A non-staff patron may never know which
books have been borrowed by others.
• Privacy requirement: The diary constraints of a participant may never be

disclosed to other invited participants without his or her consent.
• Integrity req: The return of book copies shall be encoded correctly and

by library staff only.
• Availability req: A blacklist of bad patrons shall be made available at any

time to library staff. Information about train positions shall be available
at any time to the vital station computer.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS76

Examples

CRICOS PROVIDER #00120C

• Informal goal: “the system should be easy to use by experienced
controllers, and should be organized such that user errors are
minimized.”
• Verifiable non-functional requirement: “Experienced controllers

shall be able to use all the system functions after a total of two
hours training. After this training, the average number of errors
made by experienced users shall not exceed two per day, on
average.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS77

Examples

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS78

Exercise: back to simple

• Let’s write some quality
requirements!
• Try to write an informal

goal, and then turn it
into a verifiable non-
functional
requirement.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS79

Requirements Metrics
Property Measure

CRICOS PROVIDER #00120C

ACTIVITIES OF REQUIREMENTS ENGINEERING

80

CRICOS PROVIDER #00120C

• Identify stakeholders
• Understand the domain

• Analyze artifacts, interact with stakeholders

• Discover the real needs
• Interview stakeholders

• Explore alternatives to address needs

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS81

Typical Steps

CRICOS PROVIDER #00120C

• Who is the system for?
• Stakeholders:

• End users

• System administrators
• Engineers maintaining the system

• Business managers
• …who else?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS82

Question

CRICOS PROVIDER #00120C

Learning goals
• Define and identify stakeholders.
• Demonstrate basic proficiency in executing effective requirements

interviews.
• Evaluate risk for a product

83

CRICOS PROVIDER #00120C

Interviews

84

CRICOS PROVIDER #00120C

Interview Follow-up

•Observations?
• Anything surprising? Unexpected?
• Confirmations of existing ideas?
• Generalizable knowledge?

CRICOS PROVIDER #00120C

Interview Tradeoffs

• Strengths
• What stakeholders do, feel, prefer
• How they interact with the system

• Challenges with current systems

•Weaknesses
• Subjective, inconsistencies

• Capturing domain knowledge
• Familiarity

• Technical subtlety
• Organizational issues, such as politics
• Hinges on interviewer skill

86

CRICOS PROVIDER #00120C

• Identify stakeholder of interest and target information to be
gathered.
• Conduct interview.

• (structured/unstructured, individual/group)

• Record + transcribe interview
• Report important findings.
• Check validity of report with interviewee.

Interview Process

87 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

Example: Identifying Problems
What problems do you run into in your day-to-day work? Is there a standard way of
solving it, or do you have a workaround?

Why is this a problem? How do you solve the problem today? How would you ideally
like to solve the problem?

Keep asking follow-up questions (“What else is a problem for you?”, “Are there other
things that give you trouble?”) for as long as the interviewee has more problems to
describe.

88

CRICOS PROVIDER #00120C

Example: Identifying Problems

So, as I understand it, you are experiencing the following problems/needs (describe the
interviewee’s problems and needs in your own words – often you will discover that you
do not share the same image. It is very very common to not understand each other even
if at first you think you do).

Just to confirm, have I correctly understood the problems you have with the current
solution?

Are there any other problems you’re experiencing? If so, what are they?

89

CRICOS PROVIDER #00120C

Capturing v. Synthesizing
Engineers acquire requirements from many sources

Elicit from stakeholders
Extract from policies or other documentation
Synthesize from above + estimation and invention

Because stakeholders do not always know what they want, engineers must…

Be faithful to stakeholder needs and expectations
Anticipate additional needs and risks
Validate that “additional needs” are necessary or desired

CRICOS PROVIDER #00120C

Interview Advice
Get basic facts about the interviewee before (role, responsibilities, …)

Review interview questions before interview
Begin concretely with specific questions, proposals; work through prototype or scenario

Relate to current system, if applicable.

Be open-minded; explore additional issues that arise naturally, but stay focused on the
system.
Contrast with current system/alternatives. Explore conflicts and priorities

Plan for follow-up questions

91

CRICOS PROVIDER #00120C

Bonus: Guidelines for effective interviews
Identify the right interviewee sample for full coverage of issues

different responsibilities, expertise, tasks, exposure to problems

Come prepared, to focus on right issue at right time
background study first

predesign a sequence of questions for this interviewee

Centre the interview on the interviewee’s work & concerns
Keep control over the interview

Make the interviewee feel comfortable
Start: break ice, provide motivation, ask easy questions

Consider the person too, not only the role

Do always appear as a trustworthy partner

CRICOS PROVIDER #00120C

Bonus: Guidelines for effective interviews
Be focused, keep open-ended questions for the end

Be open-minded, flexible in case of unexpected answers

Ask why-questions without being offending

Avoid certain types of questions ...
opinion or biased
affirmative
obvious or impossible answer for this interviewee

Edit & structure interview transcripts while still fresh in mind
including personal reactions, attitudes, etc

Keep interviewee in the loop
co-review interview transcript for validation & refinement

CRICOS PROVIDER #00120C

• Why? How to use?
• Stakeholders:

• don’t always know what they want or how to articulate it, or how much things cost.
• have domain knowledge, may use jargon, or may leave out “obvious” requirements
that aren’t obvious to a non-expert.
• can be hard to pin down

• Distributed, difficult to access, have hidden needs

• External to the system

• Risk: Missing or hidden stakeholders, “requirements—delay—surprise!”
• Risk: unidentified/unhandled conflicts.

Prototypes, Mockups, Stories

94 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

High- vs low- fidelity mockups

95

CRICOS PROVIDER #00120C

Storyboarding and scenarios

96

CRICOS PROVIDER #00120C

Story

•Who the players are
•What happens to them
• How it happens through specific episode
•Why this happens
•What if such and such an event occurs
•What could go wrong as a consequence

97

CRICOS PROVIDER #00120C

• Storyboards illustrate scenarios: a typical sequence of interaction among system
components that meets an implicit objective.
• Storyboards explicitly cover at least who, what, and how.

• Different types:
• Positive vs negative (should and should not happen)

• Normal vs abnormal

• As part of elicitation:
• Learn about current or proposed system by walking through real-life or hypothetical sequences

• Can ask specific questions

• Elicit the underlying objectives, generalize into models of desired behaviors.

• Identify and resolve conflicts

• Pluses: Concrete, support narrative description

• Minuses: inherently partial.

98

CRICOS PROVIDER #00120C

99

CRICOS PROVIDER #00120C

100 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

End of Monday Lecture/Start of Tuesday Lecture

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

101 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

RESOLVING CONFLICTS

102

CRICOS PROVIDER #00120C

Types of inconsistency
• Terminology clash: same concept named differently in different statements

• e.g. library management: “borrower” vs. “patron”
• Designation clash: same name for different concepts in different statements

• e.g. “user” for “library user” vs. “library software user”
• Structure clash: same concept structured differently in different statements

• e.g. “latest return date” as time point (e.g. Fri 5pm)
• vs. time interval (e.g. Friday)

CRICOS PROVIDER #00120C

Types of inconsistency
• Strong conflict: statements not satisfiable together

• e.g. “participant constraints may not be disclosed to
anyone else” vs. “the meeting initiator should know
participant constraints”

• Weak conflict (divergence): statements not satisfiable together under some boundary
condition

• “patrons shall return borrowed copies within X weeks” vs
“patrons shall keep borrowed copies as long as needed”
contradict only if “needed>x weeks”

CRICOS PROVIDER #00120C

Handling inconsistencies
• Terminology, designation, structure: Build glossary
• Weak, strong conflicts: Negotiation required

• Cause: different objectives of stakeholders => resolve outside of
requirements

• Cause: quality tradeoffs => explore preferences

CRICOS PROVIDER #00120C

Requirements Traceability

• Keep connections between requirements
• What follows from what

106

CRICOS PROVIDER #00120C

Requirements prioritization
• Cost, time, and other limits
• Dependencies among requirements
• Nice to have

• Strategies to base on value contribution

107

CRICOS PROVIDER #00120C

Summary
• Many solicitation strategies, including document analysis, interviews, and

ethnography

• Do not underestimate the challenge of interviews
• Resolving conflicts
• Using prototypes to enhance discussions and decision making
• Many documentation strategies; our focus is on user stories

CRICOS PROVIDER #00120C

Risk

CRICOS PROVIDER #00120C

What are risks?

• A risk is an uncertain factor that may result in a loss of satisfaction of a
corresponding objective

For example…

• System delivers a radiation overdose to patients
(Therac-25, Theratron-780)

• Medication administration record (MAR) knockout

• Premier Election Solutions vote-dropping “glitch”

110

CRICOS PROVIDER #00120C

How to assess the level of risk?
• Risks consist of multiple parts:

• Likelihood of failure

• Negative consequences or impact of failure

• Causal agent and weakness (in advanced models)

• Risk = Likelihood x Impact

CRICOS PROVIDER #00120C

The Swiss cheese model

Regulatory
narrowness

Incomplete
procedures

Mixed
messages

Production
pressures

Responsibility
shifting

Inadequate
training

Attention
distractions

Deferred
maintenance

Clumsy
technology

Institutiona
l

Organizatio
n

Profession
& Team

Individual

Technical

Modified from Reason, 1999, by R.I. Crook

CRICOS PROVIDER #00120C

Aviation failure impact categories

• No effect – failure has no impact on safety, aircraft operation,
or crew workload

• Minor – failure is noticeable, causing passenger inconvenience
or flight plan change

• Major – failure is significant, causing passenger discomfort and
slight workload increase

• Hazardous – high workload, serious or fatal injuries

• Catastrophic – loss of critical function to safely fly and land
DO-178b, Software Considerations in Airborne Systems and Equipment Certification, RTCA,
1992

CRICOS PROVIDER #00120C

Risk assessment matrix

• MIL-STD-882E
https://www.system-safety.org/Documents/MIL-STD-882E.pdf

CRICOS PROVIDER #00120C

DECIDE Model

Detect that the action necessary

Estimate the significance of the action

Choose a desirable outcome

Identify actions needed in order to achieve the chosen option

Do the necessary action to achieve change

Evaluate the effects of the action
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/FAA-H-8083-
2.pdf

CRICOS PROVIDER #00120C

OODA Loop

By Patrick Edwin Moran - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=3904554

CRICOS PROVIDER #00120C

HISTORICAL DETOUR INTO UML (OR BACK INTO THE 1990’S)

117ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS

CRICOS PROVIDER #00120C

Design and implementation

• Software design and implementation is the stage in the software engineering process at
which an executable software system is developed.

• Software design and implementation activities are invariably inter-leaved.
• Software design is a creative activity in which you identify software components and their

relationships, based on a customer’s requirements.

• Implementation is the process of realizing the design as a program.

CHAPTER 7 DESIGN AND IMPLEMENTATION118 30/10/2014

CRICOS PROVIDER #00120C

Build or buy

• In a wide range of domains, it is now possible to buy off-the-shelf systems (COTS) that
can be adapted and tailored to the users’ requirements.
• For example, if you want to implement a medical records system, you can buy a package that is

already used in hospitals. It can be cheaper and faster to use this approach rather than developing
a system in a conventional programming language.

• When you develop an application in this way, the design process becomes concerned
with how to use the configuration features of that system to deliver the system
requirements.

CHAPTER 7 DESIGN AND IMPLEMENTATION119 30/10/2014

CRICOS PROVIDER #00120C

An object-oriented design process

• Structured object-oriented design processes involve developing a number of different
system models.

• They require a lot of effort for development and maintenance of these models and, for
small systems, this may not be cost-effective.

• However, for large systems developed by different groups design models are an
important communication mechanism.

CHAPTER 7 DESIGN AND IMPLEMENTATION120 30/10/2014

CRICOS PROVIDER #00120C

Process stages

• There are a variety of different object-oriented design processes that depend on the
organization using the process.

• Common activities in these processes include:
• Define the context and modes of use of the system;

• Design the system architecture;
• Identify the principal system objects;

• Develop design models;

• Specify object interfaces.

• Process illustrated here using a design for a wilderness weather station.

CHAPTER 7 DESIGN AND IMPLEMENTATION121 30/10/2014

CRICOS PROVIDER #00120C

System context and interactions

• Understanding the relationships between the software that is being designed and its
external environment is essential for deciding how to provide the required system
functionality and how to structure the system to communicate with its environment.

• Understanding of the context also lets you establish the boundaries of the system.
Setting the system boundaries helps you decide what features are implemented in the
system being designed and what features are in other associated systems.

CHAPTER 7 DESIGN AND IMPLEMENTATION122 30/10/2014

CRICOS PROVIDER #00120C

Context and interaction models

• A system context model is a structural model that demonstrates the other systems in the
environment of the system being developed.

• An interaction model is a dynamic model that shows how the system interacts with its
environment as it is used.

CHAPTER 7 DESIGN AND IMPLEMENTATION123 30/10/2014

CRICOS PROVIDER #00120C

System context for the weather station

Weather
information

system
1..n1 Weather

station

Satellite

1

1

1..n

1

Control
system 11

1 1..n

CHAPTER 7 DESIGN AND IMPLEMENTATION124 30/10/2014

CRICOS PROVIDER #00120C

Weather station use cases

CHAPTER 7 DESIGN AND IMPLEMENTATION125 30/10/2014

Shutdown

Report
weather

Restart

Report status

Reconfigure

Weather
information

system

Control
system Powersave

Remote
control

CRICOS PROVIDER #00120C

Use case description—Report weather

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Description The weather station sends a summary of the weather data that has been
collected from the instruments in the collection period to the weather
information system. The data sent are the maximum, minimum, and average
ground and air temperatures; the maximum, minimum, and average air
pressures; the maximum, minimum, and average wind speeds; the total
rainfall; and the wind direction as sampled at five-minute intervals.

Stimulus The weather information system establishes a satellite communication link
with the weather station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour but this frequency
may differ from one station to another and may be modified in the future.

CHAPTER 7 DESIGN AND IMPLEMENTATION126 30/10/2014

CRICOS PROVIDER #00120C

Architectural design

• Once interactions between the system and its environment have been understood, you
use this information for designing the system architecture.

• You identify the major components that make up the system and their interactions, and
then may organize the components using an architectural pattern such as a layered or
client-server model.

• The weather station is composed of independent subsystems that communicate by
broadcasting messages on a common infrastructure.

CHAPTER 7 DESIGN AND IMPLEMENTATION127 30/10/2014

CRICOS PROVIDER #00120C

High-level architecture of the weather station

«subsystem»
Data collection

«subsystem»
Communications

«subsystem»
Configuration manager

«subsystem»
Fault manager

«subsystem»
Power manager

«subsystem»
Instruments

Communication link

CHAPTER 7 DESIGN AND IMPLEMENTATION128 30/10/2014

CRICOS PROVIDER #00120C

Architecture of data collection system

Data collection

Transmitter Receiver

WeatherData

CHAPTER 7 DESIGN AND IMPLEMENTATION129 30/10/2014

CRICOS PROVIDER #00120C

Object class identification
• Identifying object classes is often a difficult part of object oriented design.

• There is no 'magic formula' for object identification. It relies on the skill, experience
and domain knowledge of system designers.

• Object identification is an iterative process. You are unlikely to get it right first time.

CHAPTER 7 DESIGN AND IMPLEMENTATION130 30/10/2014

CRICOS PROVIDER #00120C

Approaches to identification

• Use a grammatical approach based on a natural language description of the system.
• Base the identification on tangible things in the application domain.
• Use a behavioural approach and identify objects based on what participates in what

behaviour.

• Use a scenario-based analysis. The objects, attributes and methods in each scenario
are identified.

CHAPTER 7 DESIGN AND IMPLEMENTATION131 30/10/2014

CRICOS PROVIDER #00120C

Weather station object classes

• Object class identification in the weather station system may be based on the tangible
hardware and data in the system:
• Ground thermometer, Anemometer, Barometer
• Application domain objects that are ‘hardware’ objects related to the instruments in the system.

• Weather station
• The basic interface of the weather station to its environment. It therefore reflects the interactions identified

in the use-case model.

• Weather data
• Encapsulates the summarized data from the instruments.

CHAPTER 7 DESIGN AND IMPLEMENTATION132 30/10/2014

CRICOS PROVIDER #00120C

Weather station object classes
identifier

reportWeather ()
reportStatus ()
powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

WeatherStation

get ()
test ()

Ground
thermometer

temperature

Anemometer

windSpeed
windDirection

get ()
test ()

Barometer

pressure
height

get ()
test ()

WeatherData

airTemperatures
groundTemperatures
windSpeeds
windDirections
pressures
rainfall

collect ()
summarize ()

gt_Ident
an_Ident bar_Ident

CHAPTER 7 DESIGN AND IMPLEMENTATION133 30/10/2014

CRICOS PROVIDER #00120C

Design models

• Design models show the objects and object classes and relationships between these
entities.

• There are two kinds of design model:
• Structural models describe the static structure of the system in terms of object classes and

relationships.

• Dynamic models describe the dynamic interactions between objects.

CHAPTER 7 DESIGN AND IMPLEMENTATION134 30/10/2014

CRICOS PROVIDER #00120C

Examples of design models

• Subsystem models that show logical groupings of objects into coherent subsystems.
• Sequence models that show the sequence of object interactions.
• State machine models that show how individual objects change their state in response

to events.

• Other models include use-case models, aggregation models, generalisation models, etc.

CHAPTER 7 DESIGN AND IMPLEMENTATION135 30/10/2014

CRICOS PROVIDER #00120C

Subsystem models

• Shows how the design is organised into logically related groups of objects.

• In the UML, these are shown using packages - an encapsulation construct. This is a logical
model. The actual organisation of objects in the system may be different.

CHAPTER 7 DESIGN AND IMPLEMENTATION136 30/10/2014

CRICOS PROVIDER #00120C

Sequence models

• Sequence models show the sequence of object interactions that take place
• Objects are arranged horizontally across the top;
• Time is represented vertically so models are read top to bottom;
• Interactions are represented by labelled arrows, Different styles of arrow represent different types

of interaction;
• A thin rectangle in an object lifeline represents the time when the object is the controlling object

in the system.

CHAPTER 7 DESIGN AND IMPLEMENTATION137 30/10/2014

CRICOS PROVIDER #00120C

Sequence diagram describing data collection

:SatComms

request (report)

acknowledge
reportWeather ()

get (summary)

reply (report)

acknowledge

:WeatherStation :Commslink

summarize ()

:WeatherData

acknowledge

send (report)

acknowledge

Weather
information system

CHAPTER 7 DESIGN AND IMPLEMENTATION138 30/10/2014

CRICOS PROVIDER #00120C

State diagrams

• State diagrams are used to show how objects respond to different service requests and
the state transitions triggered by these requests.

• State diagrams are useful high-level models of a system or an object’s run-time behavior.
• You don’t usually need a state diagram for all of the objects in the system. Many of the

objects in a system are relatively simple and a state model adds unnecessary detail to the
design.

CHAPTER 7 DESIGN AND IMPLEMENTATION139 30/10/2014

CRICOS PROVIDER #00120C

Weather station state diagram

transmission done

remoteControl()

reportStatus()restart()

shutdown()

test complete

weather summary
complete

clock collection
done

Operation

reportWeather()

Shutdown Running Testing

Transmitting

Collecting
Summarizing

Controlled

Configuring

reconfigure()

configuration done

powerSave()

CHAPTER 7 DESIGN AND IMPLEMENTATION140 30/10/2014

CRICOS PROVIDER #00120C

Interface specification

• Object interfaces have to be specified so that the objects and other components can be
designed in parallel.

• Designers should avoid designing the interface representation but should hide this in the
object itself.

• Objects may have several interfaces which are viewpoints on the methods provided.
• The UML uses class diagrams for interface specification but Java may also be used.

CHAPTER 7 DESIGN AND IMPLEMENTATION141 30/10/2014

CRICOS PROVIDER #00120C

Weather Station Interfaces

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS142

«interface»
Reporting

weatherReport (WS-Ident): Wreport
statusReport (WS-Ident): Sreport

«interface»
Remote Control

startInstrument(instrument): iStatus
stopInstrument (instrument): iStatus
collectData (instrument): iStatus
provideData (instrument): string

CRICOS PROVIDER #00120C

Communication Diagram

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS143

emphasises
the structural

aspect of
interactions

Moby Dick
:Book

John Smith
:User:Library

:Catalogue

:Loan
{new}

:Librarian

1: lend(usr, itm) 1.1: match(usr)

1.2 : find(itm
)

1.2.1: match(itm)

1.3: create(usr, itm)

{field}

CRICOS PROVIDER #00120C

Sequence Diagram

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS144

emphasises
the time
aspect of

interactions

:Library :Catalogue :Book :User

:Loan
{new}

:Librarian

lend(usr, itm)
match(usr)

find(itm)

create(Item, User)

match(itm)

User

Item
Item

Loan

CRICOS PROVIDER #00120C

State Diagram

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS145

/ increment reserveCount
title reservation

/ increment reserveCount

useful for
specifying
reactive

behaviour

should be internal!

entry / reserveCount := 0

NotReserved

entry / “keep at counter”
exit / “item back on shelf”

Reserved

title reservation

reservation removed

reservation removed
[reserveCount = 1]

/ decrement reserveCount

[reserveCount > 1]
/ decrement reserveCount

CRICOS PROVIDER #00120C

State Diagram

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS146

entry / reserveCount := 0

NotReserved

entry / “keep at counter”
title reservation / increment reserveCount

reservation removed [reserveCount > 1] / decrement reserveCount
exit / “item back on shelf”

Reserved

title reservation
/ increment reserveCount

reservation removed
[reserveCount = 1]

/ decrement reserveCount

internal
transitions

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS147

CRICOS PROVIDER #00120C

Reflection for the Group Assignments Wattle Quiz

[PROCESS]
At our first meeting, we developed an initial outline of our approach. This was followed by
preparing a list of tasks which were required for implementing the X system. Next, we divided
the tasks among ourselves and came up with a rough timeline of the process to be followed.”
[SCHEDULE]
“Although we managed to meet all the milestones and implement all the desired features, the
exact dates for the same could not be followed towards the end.”
[PLANNING]
“Learning how to use API X took a little longer than expected, which caused a setback of a day;
but overall we managed to complete the entire project before the deadline and adhered to the
timeline.”
[TEAM WORK AND COMMUNICATION]
“We all agreed to use tool Y to keep in touch. We used it to announce when we started or
completed individual tasks, current milestone statuses.. We also used Y to schedule a group
meeting for the integration portion of our coding assignment”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS148

CRICOS PROVIDER #00120C

Reflection for the Group Assignments Wattle Quiz

[PLANNING / PROCESS]

“Since I was interested in the planning, we decided as a team I would be in charge of
documenting our progress.. It worked really well to have one person managing what needed to
get done or who needed to do it, and ensuring a shared single vision and set of goals as a group.
However, there exist negatives approaching things this way…I found that my teammates
sometimes would rely on me too heavily.”
[TEAM WORK AND COMMUNICATION]

“An example of something that [would] work well is...issue tracking – something I asked them to
do since first meeting. It’s easy to forget this information over time... If we had simply reminded
ourselves on a regular basis, we would have had fewer problems forgetting these things.”
[PLANNING]

“People seemed to be annoyed because X “was not doing any work”. I believe X did the least
amount of work, but we also assigned X the least amount of work. I wonder if this can all be
traced back to the fact that X could not attend our first group meeting”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS149

CRICOS PROVIDER #00120C

Reflection for the Group Assignments Wattle Quiz

[TEAMWORK]
“It helps to say ‘thank you’ before complaining about a teammate’s work. Only take conflict-
inducing action if you think it is extremely important and are willing to follow up. Otherwise, you
are wasting everyone’s time. Would we have treated each other differently if we had known we
would be partnered up on more than just this assignment for the class?”
[TEAMWORK]
“two takeaways I had from this project are :
– It is best to present yourself as someone who is willing to help out, and do more than what
was originally asked of you. This way, if people decline your offer to help out, they will be okay
with the fact that you may not be working as hard as them at that point in time.
– Respect other people’s time and work, and take that into consideration when you decide to
criticize their work or bring up issues. “

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 2 OF 12: REQUIREMENTS150

