
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

MICROSERVICES

Week:
5 of 12

A/Prof Alex Potanin and Dr Melina Vidoni

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

2 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

•To create a reliable, secure and efficient product, you need to pay
attention to architectural design which includes:
• its overall organization,
•how the software is decomposed into components,
•the server organization
•the technologies that you use to build the software.The architecture of a software product
affects its performance, usability, security, reliability and maintainability.

• There are many different interpretations of the term ‘software
architecture’.
• Some focus on ‘architecture’ as a noun - the structure of a system and others consider

‘architecture’ to be a verb - the process of defining these structures.

Software architecture

3 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Architecture is the fundamental organization of a software system
embodied in its components, their relationships to each other and
to the environment, and the principles guiding its design and
evolution.

The IEEE definition
of software architecture

4 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• A component is an element that implements a coherent set of
functionality or features.
• Software component can be considered as a collection of one or

more services that may be used by other components.
• When designing software architecture, you don’t have to decide

how an architectural element or component is to be implemented.
• Rather, you design the component interface and leave the

implementation of that interface to a later stage of the
development process.

Software architecture and components

5 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Access to services provided by software
components

S2 S3S1 S5 S6S4

Component 1

Services accessed through
the component API

Figure 4.1 Access to services provided by software components

Component 2

Services accessed directly
by other components API

6 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Architecture is important because the architecture of a system has a
fundamental influence on the non-functional system properties, shown
on the next slide.
• Architectural design involves understanding the issues that affect the

architecture of your product and creating an architectural description
that shows the critical components and their relationships.
• Minimizing complexity should be an important goal for architectural

designers.
• The more complex a system, the more difficult and expensive it is to understand and

change.
• Programmers are more likely to make mistakes and introduce bugs and security

vulnerabilities when they are modifying or extending a complex system…

Why is architecture important?

7 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Responsiveness
Does the system return results to users in a reasonable time?

• Reliability
Do the system features behave as expected by both developers and users?

• Availability
Can the system deliver its services when requested by users?

• Security
Does the system protect itself and users’ data from unauthorized attacks and intrusions?

• Usability
Can system users access the features that they need and use them quickly and without errors?

• Maintainability
Can the system be readily updated and new features added without undue costs?

• Resilience
Can the system continue to deliver user services in the event of partial failure or external attack?

8 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

Non-functional system quality attributes

CRICOS PROVIDER #00120C

• A centralized security architecture
In the Star Wars prequel Rogue One (https://en.wikipedia.org/wiki/Rogue_One), the
evil Empire have stored the plans for all of their equipment in a single, highly secure,
well-guarded, remote location. This is called a centralized security architecture. It is
based on the principle that if you maintain all of your information in one place, then
you can apply lots of resources to protect that information and ensure that intruders
can’t get hold of it.
• Unfortunately (for the Empire), the rebels managed to breach their security. They

stole the plans for the Death Star, an event which underpins the whole Star Wars
saga. In trying to stop them, the Empire destroyed their entire archive of system
documentation with who knows what resultant costs. Had the Empire chosen a
distributed security architecture, with different parts of the Death Star plans stored
in different locations, then stealing the plans would have been more difficult. The
rebels would have had to breach security in all locations to steal the complete Death
Star blueprints.

The influence on architecture of system
security

9 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• The benefits of a centralized security architecture are that it is
easier to design and build protection and that the protected
information can be accessed more efficiently.
• However, if your security is breached, you lose everything.
• If you distribute information, it takes longer to access all of the

information and costs more to protect it.
• If security is breached in one location, you only lose the

information that you have stored there.

Centralized security architectures

10 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Shared database architecture

User interface

C1 C2

Shared database

Figure 4.2. Shared database architecture

11 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

This slide shows a system with two
components (C1 and C2) that share a
common database.
• Assume C1 runs slowly because it has to

reorganize the information in the database
before using it.

• The only way to make C1 faster might be to
change the database. This means that C2 also
has to be changed, which may, potentially,
affect its response time.

CRICOS PROVIDER #00120C

Multiple database architecture

User interface

C1

Figure 4.3. Multiple database architecture

C1 database C2 database

C3

Database reconciliation

C2

12 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

• This shows a different architecture used
where each component has its own copy
of the parts of the database that it needs.
• If one component needs to change the database

organization, this does not affect the other
component.

• However, a multi-database architecture
may run more slowly and may cost more
to implement and change.
• A multi-database architecture needs a mechanism

(component C3) to ensure that the data shared by C1
and C2 is kept consistent when it is changed.

CRICOS PROVIDER #00120C

Issues that influence
architectural decisions

Nonfunctional
product characteristics

Product
lifetime

Software
reuse

Number of
users

Software
compatibility Architectural

influences

Figure 4.4 Issues that influence architectural decisions

13 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Nonfunctional product characteristics
Nonfunctional product characteristics such as security and performance affect all users. If you get these wrong, your
product will is unlikely to be a commercial success. Unfortunately, some characteristics are opposing, so you can only
optimize the most important.

• Product lifetime
If you anticipate a long product lifetime, you will need to create regular product revisions. You therefore need an
architecture that is evolvable, so that it can be adapted to accommodate new features and technology.

• Software reuse
You can save a lot of time and effort, if you can reuse large components from other products or open-source software.
However, this constrains your architectural choices because you must fit your design around the software that is being
reused.

• Number of users
If you are developing consumer software delivered over the Internet, the number of users can change very quickly. This
can lead to serious performance degradation unless you design your architecture so that your system can be quickly scaled
up and down.

• Software compatibility
For some products, it is important to maintain compatibility with other software so that users can adopt your product and
use data prepared using a different system. This may limit architectural choices, such as the database software that you
can use.

14 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

The importance of
architectural design issues

CRICOS PROVIDER #00120C

• System maintainability is an attribute that reflects how difficult
and expensive it is to make changes to a system after it has been
released to customers.
• You improve maintainability by building a system from small self-contained parts, each

of which can be replaced or enhanced if changes are required.

• In architectural terms, this means that the system should be
decomposed into fine-grain components, each of which does one
thing and one thing only.
• However, it takes time for components to communicate with each other. Consequently,

if many components are involved in implementing a product feature, the software will
be slower.

Trade off: Maintainability vs performance

15 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• You can achieve security by designing the system protection as a
series of layers (next slide).
• An attacker has to penetrate all of those layers before the system is compromised.

• Layers might include system authentication layers, a separate
critical feature authentication layer, an encryption layer and so on.
• Architecturally, you can implement each of these layers as

separate components so that if one of these components is
compromised by an attacker, then the other layers remain intact.

Trade off: Security vs usability

16 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Authentication layers

Protected asset such as a
database of users’ credit cards

Encryption

Feature authentication

Application authentication

IP authentication

Figure 4.5 Authentication layers

17 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• A layered approach to security affects the usability of the
software.
• Users have to remember information, like passwords, that is needed to penetrate a

security layer. Their interaction with the system is inevitably slowed down by its
security features.

• Many users find this irritating and often look for work-arounds so that they do not have
to re-authenticate to access system features or data.

• To avoid this, you need an architecture:
• that doesn’t have too many security layers,
• that doesn’t enforce unnecessary security,

• that provides helper components that reduce the load on users.

Usability issues

18 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Availability is particularly important in enterprise products, such as products for
the finance industry, where 24/7 operation is expected.
• The availability of a system is a measure of the amount of ‘uptime’ of that

system.
• Availability is normally expressed as a percentage of the time that a system is available to deliver user

services.

• Architecturally, you achieve availability by having redundant components in a
system.
• To make use of redundancy, you include sensor components that detect failure, and switching

components that switch operation to a redundant component when a failure is detected.

• Implementing extra components takes time and increases the cost of system
development. It adds complexity to the system and therefore increases the
chances of introducing bugs and vulnerabilities.

Trade off: Availability vs time-to-market

19 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• How should the system be organized as a set of architectural
components, where each of these components provides a subset
of the overall system functionality?
• The organization should deliver the system security, reliability and performance that

you need.

• How should these architectural components be distributed and
communicate with each other?
• What technologies should you use in building the system and what

components should be reused?

Architectural design questions

20 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Abstraction in software design means that you focus on the
essential elements of a system or software component without
concern for its details.
• At the architectural level, your concern should be on large-scale

architectural components.
• Decomposition involves analysing these large-scale components

and representing them as a set of finer-grain components.
• Layered models are often used to illustrate how a system is

composed of components.

Component organization

21 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

An architectural model of a document
retrieval system

User interaction

Web browser

Authentication and
authorization

Form and query
manager

Web page
generation

User interface management

Search Document
retrieval

Rights
management Accounting

Index
management Index querying Index

creation

Local input
validation

Local printing

Information retrieval

Document index

DB1 DB2 DB3 DB4 DB5

Databases

Figure 4.6 An architectural model of a document retrieval system

Basic services

Database
query

User account
management

Query
validation

Logging

Payments

22 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Complexity in a system architecture arises because of the number and
the nature of the relationships between components in that system.
• When decomposing a system into components, you should try to avoid

unnecessary software complexity.
• Localize relationships

If there are relationships between components A and B, these are easier to understand if A
and B are defined in the same module.

• Reduce shared dependencies
Where components A and B depend on some other component or data, complexity
increases because changes to the shared component mean you have to understand how
these changes affect both A and B.

• It is always preferable to use local data wherever possible and to avoid
sharing data if you can.

Architectural complexity

23 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Examples of component relationships

C2
C1

C1 is-part-of C2

C1

C2

calls

C1 uses C2

C1 C2

C1 C2C1

C1 is-located-with C2

data

C1 shares-data-with C2

Figure 4.7 Examples of component relationships

24 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Architectural design guidelines

Design
guidelines

Separation of concerns
Organize your architecture

into components that focus on
a single concern

Implement once
Avoid duplicating

functionality at different
places in your architecture

Stable interfaces
Design component

interfaces that are coherent
 and that change slowly

Figure 4.8 Architectural design guidelines

25 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Each layer is an area of concern and is considered separately from other
layers.
• The top layer is concerned with user interaction, the next layer down with user interface

management, the third layer with information retrieval and so on.

• Within each layer, the components are independent and do not overlap
in functionality.
• The lower layers include components that provide general functionality so there is no need

to replicate this in the components in a higher level.

• The architectural model is a high-level model that does not include
implementation information.
• Ideally, components at level X (say) should only interact with the APIs of the components in

level X-1. That is, interactions should be between layers and not across layers.

Design guidelines and
layered architectures

26 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Cross-cutting concerns are concerns that are systemic, that is, they affect
the whole system.
• In a layered architecture, cross-cutting concerns affect all layers in the

system as well as the way in which people use the system.
• Cross-cutting concerns are completely different from the functional

concerns represented by layers in a software architecture.
• Every layer has to take them into account and there are inevitably

interactions between the layers because of these concerns.
• The existence of cross-cutting concerns is the reason why modifying a

system after it has been designed to improve its security is often
difficult.

Cross-cutting concerns

27 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Cross-cutting concerns
Figure 4.9 Cross-cutting concerns

Security Performance Reliability

Hardware

 User interface

Operating system

Infrastructure

Application

28 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Security architecture
Different technologies are used in different layers, such as an SQL database or a
Firefox browser. Attackers can try to use of vulnerabilities in these technologies
to gain access.
• Consequently, you need protection from attacks at each layer as well as

protection, at lower layers in the system, from successful attacks that have
occurred at higher-level layers.
• If there is only a single security component in a system, this represents a critical

system vulnerability. If all security checking goes through that component and it
stops working properly or is compromised in an attack, then you have no
reliable security in your system.
• By distributing security across the layers, your system is more resilient to attacks

and software failure (remember the Rogue One example earlier).

Security as a cross-cutting concern

29 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

A generic layered architecture for a web-
based application

Authentication and user interaction management

Browser-based or mobile user interface

Application-specific functionality

Transaction and database management

Figure 4.10 A generic layered architecture for a web-based application

Basic shared services

30 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Browser-based or mobile user interface
A web browser system interface in which HTML forms are often used to collect user input. Javascript
components for local actions, such as input validation, should also be included at this level. Alternatively, a
mobile interface may be implemented as an app.

• Authentication and UI management
A user interface management layer that may include components for user authentication and web page
generation.

• Application-specific functionality
An ‘application’ layer that provides functionality of the application. Sometimes, this may be expanded into
more than one layer.

• Basic shared services
A shared services layer, which includes components that provide services used by the application layer
components.

• Database and transaction management
A database layer that provides services such as transaction management and recovery. If your application
does not use a database then this may not be required.

31 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

Layer functionality in a web-based
application

CRICOS PROVIDER #00120C

• The distribution architecture of a software system defines the
servers in the system and the allocation of components to these
servers.
• Client-server architectures are a type of distribution architecture

that is suited to applications where clients access a shared
database and business logic operations on that data.
• In this architecture, the user interface is implemented on the

user’s own computer or mobile device.
• Functionality is distributed between the client and one or more server computers.

Distribution architecture

36 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Client-server architecture

Client 1

Client 2

Client 3

Client ...

Servers

request

response

request

request

request

response

response

response

Figure 4.12 Client-server architecture

Load
balancer

37 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Client-server communication normally uses the HTTP protocol.
• The client sends a message to the server that includes an instruction such as GET or

POST along with the identifier of a resource (usually a URL) on which that instruction
should operate. The message may also include additional information, such as
information collected from a form.

• HTTP is a text-only protocol so structured data has to be
represented as text. There are two ways of representing this data
that are widely used, namely XML and JSON.
• XML is a markup language with tags used to identify each data item.

• JSON is a simpler representation based on the representation of objects in the
Javascript language.

Client-server communication

39 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Multi-tier client-server architecture

Web server

Figure 4.14 Multi-tier client-server architecture

Application
server

Database
server

Client 1

Client 2

Client 3

Client ...

40 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Services in a service-oriented architecture are stateless
components, which means that they can be replicated and can
migrate from one computer to another.
• Many servers may be involved in providing services
• A service-oriented architecture is usually easier to scale as demand

increases and is resilient to failure.

Service-oriented architecture

41 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Service-oriented architecture
Figure 4.15 Service-oriented architecture

Service
gateway

s1

s2

s3

s4

s5

s6

Web server

Client 1

Client 2

Client 3

Client ...

Services

42 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Data type and data updates
• If you are mostly using structured data that may be updated by different system features, it

is usually best to have a single shared database that provides locking and transaction
management. If data is distributed across services, you need a way to keep it consistent and
this adds overhead to your system.

• Change frequency
• If you anticipate that system components will be regularly changed or replaced, then

isolating these components as separate services simplifies those changes.
• The system execution platform
• If you plan to run your system on the cloud with users accessing it over the Internet, it is

usually best to implement it as a service-oriented architecture because scaling the system is
simpler.

• If your product is a business system that runs on local servers, a multi-tier architecture may
be more appropriate.

Issues in architectural choice

43 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Database
Should you use a relational SQL database or an unstructured NOSQL database?
• Platform

Should you deliver your product on a mobile app and/or a web platform?
• Server

Should you use dedicated in-house servers or design your system to run on a
public cloud? If a public cloud, should you use Amazon, Google, Microsoft, or
some other option?
• Open source

Are there suitable open-source components that you could incorporate into
your products?
• Development tools

Do your development tools embed architectural assumptions about the
software being developed that limit your architectural choices?

Technology choices

44 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• There are two kinds of database that are now commonly used:
• Relational databases, where the data is organised into structured tables
• NoSQL databases, in which the data has a more flexible, user-defined organization.

• Relational databases, such as MySQL, are particularly suitable for
situations where you need transaction management and the data
structures are predictable and fairly simple.
• NoSQL databases, such as MongoDB, are more flexible and potentially

more efficient than relational databases for data analysis.
• NoSQL databases allow data to be organized hierarchically rather than as flat tables and this

allows for more efficient concurrent processing of ‘big data’.

Database

45 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

•Delivery can be as a web-based or a mobile product or both

•Mobile issues:

• Intermittent connectivity You must be able to provide a limited service without network connectivity.

• Processor power Mobile devices have less powerful processors, so you need to minimize computationally-intensive
operations.

• Power management Mobile battery life is limited so you should try to minimize the power used by your application.

• On-screen keyboard On-screen keyboards are slow and error-prone. You should minimize input using the screen
keyboard to reduce user frustration.

• To deal with these differences, you usually need separate browser-based and mobile versions of your
product front-end.

• You may need a completely different decomposition architecture in these different versions to ensure that
performance and other characteristics are maintained.

46 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

Delivery platform

CRICOS PROVIDER #00120C

• A key decision that you have to make is whether to design your
system to run on customer servers or to run on the cloud.
• For consumer products that are not simply mobile apps I think it

almost always makes sense to develop for the cloud.
• For business products, it is a more difficult decision.
• Some businesses are concerned about cloud security and prefer to run their systems

on in-house servers. They may have a predictable pattern of system usage so there is
less need to design your system to cope with large changes in demand.

• An important choice you have to make if you are running your
software on the cloud is which cloud provider to use.

Server

47 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Open source software is software that is available freely, which you can change
and modify as you wish.
• The advantage is that you can reuse rather than implement new software, which reduces development

costs and time to market.
• The disadvantages of using open-source software is that you are constrained by that software and have

no control over its evolution.

• The decision on the use of open-source software also depends on the
availability, maturity and continuing support of open source components.
• Open source license issues may impose constraints on how you use the

software.
• Your choice of open source software should depend on the type of product that

you are developing, your target market and the expertise of your development
team.

Open source

48 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Development technologies, such as a mobile development toolkit
or a web application framework, influence the architecture of your
software.
• These technologies have built-in assumptions about system architectures and you have

to conform to these assumptions to use the development system.

• The development technology that you use may also have an
indirect influence on the system architecture.
• Developers usually favour architectural choices that use familiar technologies that they

understand. For example, if your team have a lot of experience of relational databases,
they may argue for this instead of a NoSQL database.

Development tools

49 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• A software service is a software component that can be accessed from
remote computers over the Internet. Given an input, a service produces
a corresponding output, without side effects.
• The service is accessed through its published interface and all details of the service

implementation are hidden.
• Services do not maintain any internal state. State information is either stored in a database

or is maintained by the service requestor.
• When a service request is made, the state information may be included

as part of the request and the updated state information is returned as
part of the service result.
• As there is no local state, services can be dynamically reallocated from

one virtual server to another and replicated across several servers.

Software services

50 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• After various experiments in the 1990s with service-oriented
computing, the idea of ‘big’ Web Services emerged in the early
2000s.
• These were based on XML-based protocols and standards such as

SOAP for service interaction and WSDL for interface description.
• Most software services don’t need the generality that’s inherent in

the design of web service protocols.
• Consequently, modern service-oriented systems, use simpler,

‘lighter weight’ service-interaction protocols that have lower
overheads and, consequently, faster execution.

Modern web services

51 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES52

https://martinfowler.com/articles/microservices.html

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES53

Mini Break in Monday Lecture

CRICOS PROVIDER #00120C

54 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

55 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Facebook on Oct 4, 2021

Source: https://blog.cloudflare.com/october-2021-facebook-outage/

56 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Facebook on Oct 4, 2021

Source: https://blog.cloudflare.com/october-2021-facebook-outage/

Some interesting insights about the dependency web of the Web:
https://www.synergylabs.org/yuvraj/docs/Kashaf_IMC2020_WebDep.pdf

57 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

MONOLITHS

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES58

CRICOS PROVIDER #00120C

Monolithic styles

Source: https://www.seobility.net (CC BY-SA 4.0)

59 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Monolithic styles: MVC Pattern

60 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

What are the consequences of this architecture? On:

• Scalability
• Reliability

• Performance

• Development

• Maintainability
• Evolution

• Testability

• Ownership
• Data Consistency

Monoliths

61 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

SERVICE-BASED ARCHITECTURE
Separation of concerns

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES62

CRICOS PROVIDER #00120C

Web Browsers

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

63 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Browser: A multi-threaded process

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

64 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Multi-process browser with IPC

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

65 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Browser Architectures

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

66 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

67 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

68 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

MICROSERVICES
Taking it further

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES69

CRICOS PROVIDER #00120C

Hipster Shop User Interface

https://github.com/GoogleCloudPlatform/microservices-demo

70 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Hipster Shop Microservice Architecture

https://github.com/GoogleCloudPlatform/microservices-demo

71 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Netflix

72 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

(as of 2016)

Bookmarks

Recommendations

My List

Metrics

AppBoot

73 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Netflix Microservices

(as of 2016)

https://www.youtube.com/watch?v=CZ3wIuvmHeM
74 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://www.youtube.com/watch?v=CZ3wIuvmHeM

CRICOS PROVIDER #00120C

Who uses Microservices?

75 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

What are the consequences of this architecture? On:

• Scalability
• Reliability

• Performance

• Development

• Maintainability
• Evolution

• Testability

• Ownership
• Data Consistency

Microservices

76 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Scalability

Source: http://martinfowler.com/articles/microservices.html

77 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Team Organization (Conway’s Law)

Source: http://martinfowler.com/articles/microservices.html

“Products” not “Projects”

78 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Data Management and Consistency

Source: http://martinfowler.com/articles/microservices.html

79 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Deployment and Evolution

Source: http://martinfowler.com/articles/microservices.html

80 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Building applications as suite of small and easy to replace services
• fine grained, one functionality per service

(sometimes 3-5 classes)
• composable
• easy to develop, test, and understand
• fast (re)start, fault isolation
• modelled around business domain

• Interplay of different systems and languages
• Easily deployable and replicable
• Embrace automation, embrace faults
• Highly observable

Microservices

81 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• HTTP/REST/JSON/GRPC/etc. communication
• Independent development and deployment
• Self-contained services (e.g., each with own database)
• multiple instances behind load-balancer

• Streamline deployment

Technical Considerations

82 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Complexities of distributed systems
• network latency, faults, inconsistencies
• testing challenges

• Resource overhead, RPCs
• Requires more thoughtful design (avoid ”chatty” APIs, be more coarse-grained)_

• Shifting complexities to the network
• Operational complexity
• Frequently adopted by breaking down monolithic application
• HTTP/REST/JSON communication
• Schemas?

Microservice challenges

86 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Are they really “new”?

• Do microservices solve problems, or push them down the line?

• What are the impacts of the added flexibility?

• Beware of the cult (HackerNews-driven development?)

• “If you can’t build a well-structured monolith, what makes you think microservices is the answer?” – Simon
Brown

• Leads to more API design decisions

Discussion of Microservices

87 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

SERVERLESS
Taking it to the extreme

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES88

CRICOS PROVIDER #00120C

• Instead of writing minimal services, write just functions

• No state, rely completely on cloud storage or other cloud services

• Pay-per-invocation billing with elastic scalability

• Drawback: more ways things can fail, state is expensive

• Examples:
AWS lambda, CloudFlare workers, Azure Functions

• What might this be good for?

• (New in 2019/20) Stateful Functions:
Azure Durable Entities, CloudFlare Durable Objects

Serverless (Functions-as-a-Service)

89 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Microservices are small-scale, stateless, services that have a single
responsibility. They are combined to create applications.
• They are completely independent with their own database and UI

management code.
• Software products that use microservices have a microservices

architecture.
• If you need to create cloud-based software products that are

adaptable, scalable and resilient then it is recommended that you
design them around a microservices architecture.

Microservices

90 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• System authentication

• User registration, where users provide information about their identity, security information, mobile (cell) phone number and email address.

• Authentication using UID/password.

• Two-factor authentication using code sent to mobile phone.

• User information management e.g. change password or mobile phone number.

• Reset forgotten password.

• Each of these features could be implemented as a separate service that uses a central shared database to hold
authentication information.

• However, these features are too large to be microservices. To identify the microservices that might be used in the
authentication system, you need to break down the coarse-grain features into more detailed functions.

91 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

A microservice example

CRICOS PROVIDER #00120C

Functional breakdown of authentication
features User registration

Setup new login id

Setup new password

Setup password recovery information

Setup two-factor authentication

Confirm registration

Authenticate using UID/password

Get login id

Get password

Check credentials

Confirm authentication

Figure 6.1 Functional breakdown of authentication features

92 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Authentication microservices

UID
management

Password
management

User info
management

UID data

Password data

User data

Authentication

Figure 6.2 Authentication microservices

93 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Self-contained
Microservices do not have external dependencies. They manage their own data and
implement their own user interface.

• Lightweight
Microservices communicate using lightweight protocols, so that service communication
overheads are low.

• Implementation-independent
Microservices may be implemented using different programming languages and may use
different technologies (e.g. different types of database) in their implementation.

• Independently deployable
Each microservice runs in its own process and is independently deployable, using automated
systems.

• Business-oriented
Microservices should implement business capabilities and needs, rather than simply provide a
technical service.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES94

Characteristics of microservices

CRICOS PROVIDER #00120C

• Microservices communicate by exchanging messages.
• A message that is sent between services includes some

administrative information, a service request and the data
required to deliver the requested service.
• Services return a response to service request messages.
• An authentication service may send a message to a login service that includes the

name input by the user.

• The response may be a token associated with a valid user name or might be an error
saying that there is no registered user.

Microservice communication

95 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• A well-designed microservice should have high cohesion and low
coupling.
• Cohesion is a measure of the number of relationships that parts of a component have

with each other. High cohesion means that all of the parts that are needed to deliver
the component’s functionality are included in the component.

• Coupling is a measure of the number of relationships that one component has with
other components in the system. Low coupling means that components do not have
many relationships with other components.

• Each microservice should have a single responsibility i.e. it should
do one thing only and it should do it well.
• However, ‘one thing only’ is difficult to define in a way that’s applicable to all services.
• Responsibility does not always mean a single, functional activity.

Microservice characteristics

96 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Password management functionality
Figure 6.3 Password management functionality

User functions

Create password

Change password

Check password

Recover password

Supporting functions

Check password validity

Delete password

Backup password database

Recover password database

Check database integrity

Repair password DB

97 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Microservice support code

Microservice X

 Service functionality

 Message
management

 UI
implementation

 Failure
management

 Data consistency
management

Figure 6.4 Microservice support code

98 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• The REST (REpresentational State Transfer) architectural style is
based on the idea of transferring representations of digital
resources from a server to a client.
• You can think of a resource as any chunk of data such as credit card details, an

individual’s medical record, a magazine or newspaper, a library catalogue, and so on.
• Resources are accessed via their unique URI and RESTful services operate on these

resources.

• This is the fundamental approach used in the web where the
resource is a page to be displayed in the user’s browser.
• An HTML representation is generated by the server in response to an HTTP GET

request and is transferred to the client for display by a browser or a special-purpose
app.

RESTful services

120 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Use HTTP verbs
The basic methods defined in the HTTP protocol (GET, PUT, POST, DELETE) must
be used to access the operations made available by the service.
• Stateless services

Services must never maintain internal state. As I have already explained,
microservices are stateless so fit with this principle.
• URI addressable

All resources must have a URI, with a hierarchical structure, that is used to
access sub-resources.
• Use XML or JSON

Resources should normally be represented in JSON or XML or both. Other
representations, such as audio and video representations, may be used if
appropriate.

RESTful service principles

121 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Create
Implemented using HTTP POST, which creates the resource with the given URI. If the resource
has already been created, an error is returned.

• Read
Implemented using HTTP GET, which reads the resource and returns its value. GET operations
should never update a resource so that successive GET operations with no intervening PUT
operations always return the same value.

• Update
Implemented using HTTP PUT, which modifies an existing resource. PUT should not be used for
resource creation.

• Delete
Implemented using HTTP DELETE, which makes the resource inaccessible using the specified
URI. The resource may or may not be physically deleted.

122 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

RESTful service operations

CRICOS PROVIDER #00120C

• Imagine a system that maintains information about incidents, such as traffic delays, roadworks
and accidents on a national road network. This system can be accessed via a browser using the
URL:

• https://trafficinfo.net/incidents/ (not a real link!)

• Users can query the system to discover incidents on the roads on which they are planning to
travel.

• When implemented as a RESTful web service, you need to design the resource structure so
that incidents are organized hierarchically.

• For example, incidents may be recorded according to the road identifier (e.g. A90), the location (e.g.
stonehaven), the carriageway direction (e.g. north) and an incident number (e.g. 1). Therefore, each
incident can be accessed using its URI:

• https://trafficinfo.net/incidents/A90/stonehaven/north/1 (not a real link!)

123 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

Road information system

CRICOS PROVIDER #00120C

• Incident ID: A90N17061714391
• Date: 17 June 2017
• Time reported: 1439
• Severity: Significant
• Description: Broken-down bus on north carriageway. One lane

closed. Expect delays of up to 30 minutes

Incident description

124 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Retrieve
• Returns information about a reported incident or incidents. Accessed using the GET

verb.

• Add
• Adds information about a new incident. Accessed using the POST verb.

• Update
• Updates the information about a reported incident. Accessed using the PUT verb.

• Delete
• Deletes an incident. The DELETE verb is used when an incident has been cleared.

Service operations

125 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

HTTP request and response processing

HTTP
request

HTTP
response

Service actions

Microservice

Figure 6.13 HTTP request and response processing

Request
processing

Response
generation

126 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

HTTP request and response message
organization

 [Request header]

 [Request body]

REQUEST

[HTTP verb] [URI] [HTTP version]

Figure 6.14 HTTP request and response message organisation

 [Response header]

 [Response body]

RESPONSE

[Response code][HTTP version]

127 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

JSON
{
id: “A90N17061714391”,
“date”: “20170617”,
“time”: “1437”,
“road_id”: “A90”,
“place”: “Stonehaven”,
“direction”: “north”,
“severity”: “significant”,
“description”: “Broken-down bus on north carriageway.
One lane closed. Expect delays of up to 30 minutes.”
}
128 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

XML and JSON descriptions

CRICOS PROVIDER #00120C

XML
<id>
A90N17061714391
</id>
<date>
20170617
</date>
<time>
1437
</time>
…
<description>Broken-down bus on north carriageway. One
lane closed. Expect delays of up to 30 minutes.
</description>

129 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

XML and JSON descriptions

CRICOS PROVIDER #00120C

A GET request and the associated
response REQUEST

GET HTTP/1.1

...
Content-Length: 461
Content-Type: text/json

RESPONSE

HTTP/1.1

Figure 6.15 A GET request and the associated response

200incidents/A90/stonehaven/

Host: trafficinfo.net
...
Accept: text/json, text/xml, text/plain
Content-Length: 0

{
 “number”: “A90N17061714391”,
 “date”: “20170617”,
 “time”: “1437”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “north”,
 “severity”: “significant”,
 “description”: “Broken-down bus on north
 carriageway. One lane closed. Expect delays
of up to 30 minutes.”
}
{
 “number”: “A90S17061713001”,
 “date”: “20170617”,
 “time”: “1300”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “south”,
 “severity”: “minor”,
 “description”: “Grass cutting on verge. Minor
delays”
}

130 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• After a system has been developed and delivered, it has to be deployed on servers, monitored for problems
and updated as new versions become available.

• When a system is composed of tens or even hundreds of microservices, deployment of the system is more
complex than for monolithic systems.

• The service development teams decide which programming language, database, libraries and other
support software should be used to implement their service. Consequently, there is no ‘standard’
deployment configuration for all services.

• It is now normal practice for microservice development teams to be responsible for deployment and service
management as well as software development and to use continuous deployment.

• Continuous deployment means that as soon as a change to a service has been made and validated, the
modified service is redeployed.

131 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

Service deployment

CRICOS PROVIDER #00120C

• Continuous deployment depends on automation so that as soon as a change is committed, a
series of automated activities is triggered to test the software.

• If the software ‘passes’ these tests, it then enters another automation pipeline that packages
and deploys the software.

• The deployment of a new service version starts with the programmer committing the code
changes to a code management system such as Git.

• This triggers a set of automated tests that run using the modified service. If all service tests run
successfully, a new version of the system that incorporates the changed service is created.

• Another set of automated system tests are then executed. If these run successfully, the service
is ready for deployment.

132 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

Deployment automation

CRICOS PROVIDER #00120C

A continuous deployment pipeline

Commit change to
version manage-

ment

Triggers

pass

Reject change Reject change Reject change

Reject change

pass

pass

fail

fail

fail

Figure 6.16 A continuous deployment pipeline

Run unit tests

Containerize
service

Run integration
tests

Build test
system

Replace current
service

Deploy service
container

Run acceptance
tests

fail

pass

133 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Next Week: DevOps

135 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Software architecture is the fundamental organization of a system embodied in its
components, their relationships to each other, and to the environment, and the principles
guiding its design and evolution.

• The architecture of a software system has a significant influence on non-functional system
properties such as reliability, efficiency and security.

• Architectural design involves understanding the issues that are critical for your product and
creating system descriptions that shows components and their relationships.

• The principal role of architectural descriptions is to provide a basis for the development team
to discuss the system organization. Informal architectural diagrams are effective in
architectural description because they are fast and easy to draw and share.

• System decomposition involves analyzing architectural components and representing them as
a set of finer-grain components.

Key Points

136 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• To minimize complexity, you should separate concerns, avoid functional
duplication and focus on component interfaces.
• Web-based systems often have a common layered structure including

user interface layers, application-specific layers and a database layer.
• The distribution architecture in a system defines the organization of the

servers in that system and the allocation of components to these servers.
• Multi-tier client-server and service-oriented architectures are the most

commonly used architectures for web-based systems.
• Making decisions on technologies such as database and cloud

technologies are an important part of the architectural design process.

Key Points

137 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• A microservice is an independent and self-contained software component that runs in its own
process and communicates with other microservices using lightweight protocols.

•Microservices in a system can be implemented using different programming languages and
database technologies.

•Microservices have a single responsibility and should be designed so that they can be easily
changed without having to change other microservices in the system.

•Microservices architecture is an architectural style in which the system is constructed from
communicating microservices. It is well-suited to cloud based systems where each microservice
can run in its own container.

• The two most important responsibilities of architects of a microservices system are to decide
how to structure the system into microservices and to decide how microservices should
communicate and be coordinated.

138 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

Key Points

CRICOS PROVIDER #00120C

• Communication and coordination decisions include deciding on microservice communication
protocols, data sharing, whether services should be centrally coordinated, and failure management.

• The RESTful architectural style is widely used in microservice-based systems. Services are designed so
that the HTTP verbs, GET, POST, PUT and DELETE, map onto the service operations.

• The RESTful style is based on digital resources that, in a microservices architecture, may be
represented using XML or, more commonly, JSON.

• Continuous deployment is a process where new versions of a service are put into production as soon
as a service change has been made. It is a completely automated process that relies on automated
testing to check that the new version is of ‘production quality’.

• If continuous deployment is used, you may need to maintain multiple versions of deployed services
so that you can switch to an older version if problems are discovered in a newly-deployed service.

139 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

Key Points

CRICOS PROVIDER #00120C

• Contrast the monolithic application design with a modular design based on
microservices.
• Reason about how architectural choices affect software quality and process

attributes.
• Reason about tradeoffs of microservices architectures.

• Inspirations:
• Martin Fowler (http://martinfowler.com/articles/microservices.html)
• Josh Evans @ Netflix (https://www.youtube.com/watch?v=CZ3wIuvmHeM)
• Matt Ranney @ Uber (https://www.youtube.com/watch?v=kb-m2fasdDY)
• Christopher Meiklejohn & Filibuster (http://filibuster.cloud)

Key Points

140 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

http://martinfowler.com/articles/microservices.html
https://www.youtube.com/watch?v=CZ3wIuvmHeM
https://www.youtube.com/watch?v=kb-m2fasdDY
http://filibuster.cloud/

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES141

End of Monday Lecture/Start of Tuesday Lecture

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

142 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES143

CRICOS PROVIDER #00120C

Source: https://xkcd.com/1425/

144 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Machine Learning in One Slide

Model

Training

Lots of labelled data
(Inputs, outputs)

(Supervised)

“Bird”

Input

Output

Input

“Bird”

Output

145 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

“It is easy. You just chip away the stone that doesn’t look like
David.” –(probably not) Michelangelo

Traditional Software Development

146 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Observation
• Hypothesis
• Predict
• Test
• Reject or Refine Hypothesis

ML Development

147 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Black-box View of Machine Learning

Image: https://xkcd.com/1838/

148 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Microsoft’s view of Software Engineering
for ML

Source: “Software Engineering for Machine Learning: A Case Study” by Amershi et al. ICSE 2019

149 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Data discovery and management

• Customization and Reuse

• No modular development of model itself

Three Fundamental Differences:

150 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

WHAT CHALLENGES ARE THERE IN BUILDING AND DEPLOYING
ML?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES151

CRICOS PROVIDER #00120C

152 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

153 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

154 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

155 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

MACHINE LEARNING PIPELINE

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES156

CRICOS PROVIDER #00120C

• Static
• Get labeled data (data collection, cleaning and, labeling)
• Identify and extract features (feature engineering)
• Split data into training and evaluation set
• Learn model from training data (model training)
• Evaluate model on evaluation data (model evaluation)
• Repeat, revising features

• with production data
• Evaluate model on production data; monitor (model monitoring)
• Select production data for retraining (model training + evaluation)
• Update model regularly (model deployment)

Typical ML Pipeline

157 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Example Data

158 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Learning Data

159 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Identify parameters of interest that a model may learn on
• Convert data into a useful form
• Normalize data
• Include context
• Remove misleading things

Feature Engineering

160 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Features?

161 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• In OCR/translation:
• Bounding boxes for text of interest
• Character boundaries

• Line segments for each character
• GPS location of phone (to determine likely source language)

Feature Extraction

162 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Features?

163 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• In surge prediction:
• Location and time of past surges
• Events

• Number of people traveling to an area
• Typical demand curves in an area

• Demand in other areas
• Weather

Feature Extraction

164 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Removing outliers
• Normalizing data
• Missing values
• …

Data Cleaning

165 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Build a predictor that best describes an outcome for the observed
features

Learning

166 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Prediction accuracy on learned data vs
• Prediction accuracy on unseen data
• Separate learning set, not used for training

• For binary predictors: false positives vs. false negatives, precision
vs. recall
• For numeric predictors: average (relative) distance between real

and predicted value
• For ranking predictors: top-K, etc.

Evaluation

167 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Evaluation Data and Metrics?

168 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Evaluation Data and Metrics?

169 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Beyond static data sets, build telemetry
• Design challenge: identify mistakes in practice

• Use sample of live data for evaluation
• Retrain models with sampled live data regularly
• Monitor performance and intervene

Learning and Evaluating in Production

170 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

TRADEOFFS IN ML MODELS

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES171

CRICOS PROVIDER #00120C

• Deep Neural Networks
• Decision Trees

Understanding Capabilities and Tradeoffs

172 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Accuracy
• Capabilities (e.g. classification, recommendation, clustering…)
• Amount of training data needed
• Inference latency
• Learning latency; incremental learning?
• Model size
• Explainable? Robust?
• …

ML Model Tradeoffs

173 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

SYSTEM ARCHITECTURE CONSIDERATIONS

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES174

CRICOS PROVIDER #00120C

Where should the model live?

Glasses

Phone

Cloud

OCR
Component

Translation
Component

175 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Where should the model live?

Vehicle

Phone

Cloud

Surge
Prediction

176 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• How much data is needed as input for the model?
• How much output data is produced by the model?
• How fast/energy consuming is model execution?
• What latency is needed for the application?
• How big is the model? How often does it need to be updated?
• Cost of operating the model? (distribution + execution)
• Opportunities for telemetry?
• What happens if users are offline?

Considerations

177 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Static intelligence in the product
• difficult to update

• good execution latency

• cheap operation

• offline operation

• no telemetry to evaluate and improve

• Client-side intelligence
• updates costly/slow, out of sync problems

• complexity in clients

• offline operation, low execution latency

Typical Designs

178 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Server-centric intelligence
• latency in model execution (remote calls)

• easy to update and experiment

• operation cost

• no offline operation

• Back-end cached intelligence
• precomputed common results

• fast execution, partial offline

• saves bandwidth, complicated updates

• Hybrid models

Typical Designs

179 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Coupling of ML pipeline parts
• Coupling with other parts of the system
• Ability for different developers and analysists to collaborate
• Support online experiments
• Ability to monitor

Other Considerations

180 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Responsive
• consistent, high performance

• Resilient
• maintain responsive in the face of failure, recovery, rollback

• Elastic
• scale with varying loads

Reactive Systems

181 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Message-driven, lazy computation, functional programming
• asynchronous, message passing style

• Replication, containment, supervision
• replicate and coordinate isolated components, e.g. with containers

• Data streams, “infinite data”, immutable facts
• streaming technologies, data lakes

• See “big data systems” and “cloud computing”

Common Design Strategies

182 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• What steps to take?
• What information to collect?

Making Decisions

183 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

UPDATING MODELS

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES184

CRICOS PROVIDER #00120C

• Models are rarely static outside the lab
• Data drift, feedback loops, new features, new requirements
• When and how to update models?
• How to version? How to avoid mistakes?

Updating Models

185 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Server

Data Stream
(e.g. Kafka)

logsother
features
(e.g weather)

Data Lake

archival

Analytics
(OLAP)

Stream
Processing

Models

learning in nightly
batch processing

incremental
learning

• Latency and automation
vary widely

• Heavily distributedserving

186 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

187 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Update Strategy?

188 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Update Strategy?

189 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

PLANNING FOR MISTAKES

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES190

CRICOS PROVIDER #00120C

• No specification
• ML components detect patterns from data (real and

spurious)
• Predictions are often accurate, but mistakes always

possible
• Mistakes are not predicable or explainable or similar to

human mistakes
• Plan for mistakes
• Telemetry to learn about mistakes?

Mistakes will happen

191 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• System outage
• Model outage
• model tested? deployment and updates reliable? file corrupt?

• Model errors
• Model degradation
• data drift, feedback loops

How Models can Break

192 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Worst thing that can happen?
• Backup strategy? Undoable? Nontechnical compensation?

Hazard Analysis

193 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Investigating in ML

• e.g., more training data, better data, better features, better engineers

• Less forceful experience

• e.g., prompt rather than automate decisions, turn off

• Adjust learning parameters

• e.g., more frequent updates, manual adjustments

• Guardrails

• e.g., heuristics and constraints on outputs

• Override errors

• e.g., hardcode specific results

Mitigating Mistakes

194 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Mistakes?

195 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Mistakes?

196 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Purpose:
• monitor operation

• monitor success (accuracy)

• improve models over time (e.g., detect new features)

• Challenges:
• too much data – sample, summarization, adjustable

• hard to measure – intended outcome not observable? proxies?

• rare events – important but hard to capture

• cost – significant investment must show benefit

• privacy – abstracting data

Telemetry

197 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Identify differences between traditional software development
and development of ML systems.
• Understand the stages that comprise the typical ML development

pipeline.
• Identify challenges that must be faced within each stage of the

typical ML development pipeline.

Key Points

198 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Machine learning in production systems is challenging
• Many tradeoffs in selecting ML components and in integrating

them in larger system
• Plan for updates
• Manage mistakes, plan for telemetry

Key Points

199 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Quotes from this wonderful paper suggested by Mary Shaw:
• https://web.engr.oregonstate.edu/~burnett/Reprints/vlhcc16-ML-trialsTribulations.pdf

200 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: MICROSERVICES

https://web.engr.oregonstate.edu/~burnett/Reprints/vlhcc16-ML-trialsTribulations.pdf

