Week: COMP 2120/ COMP 6120
6 of 12

DEVOPS

ANU Acknowledgment of Country

2 ¢ AlATSIS Explore Family history Collection Research Education What's new About Shop Search Q

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

S O

.
= LUGhH
" ? Ridwp" Leaflet | Rendered with MapTiler Desktop

https://aiatsis.gov.au/explore/map-indigenous-australia

"- 5
=T
2 ANU SCHOOL OF COMPUTING | COMP 2120/COMP 6120 | WEEK 6 OF 12: DEVOPS

https://aiatsis.gov.au/explore/map-indigenous-australia

DevOps Phases

What is DevOps?

chris meiklejohn @cmeik - 6h v
&. My dear industry friends and followers: what are your favorite resources on

DevOps?

(think: good content, resources, for upper-year undergraduates on the art,

techniques, goals, etc.)

Q 9 0 3 Q 15 & il

% Senior Oops Engineer v
S8 @ReinH

Replying to @cmeik

devops is really more of a feeling

1:59 PM - Oct 19, 2020 - Twitter Web App

1 Retweet 14 Likes

9 T L 4

>

Bringing together two traditionally separate groups within software organizations
- Development, typically measured on features completed, code shipped
- Operations, typically measured through stability, reliability, availability

Benefits:
- Increased Velocity: how quickly products and applications are pushed to release
- Increased Quality: successful delivery of features and products

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

4 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Software Support

Engineering Software Products
An Introduction to Modern

* Traditionally, separate teams were responsible for software &L
development, software release and software support.

* The development team passed over a ‘final’ version of the
software to a release team. This team then built a release version,
tested this and prepared release documentation before releasing
the software to customers.

* A third team was responsible for providing customer support.

* The original development team were sometimes also responsible for implementing
software changes.

* Alternatively, the software may have been maintained by a separate ‘maintenance
team’.

5 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Development, release and support

Problem and bug ™\ ¢
reports

Development Release Support
Tested software Deployed software
ready for release ready for use

6 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

DevOps

* There are inevitable delays and overheads in the traditional support model.

* To speed up the release and support processes, an alternative approach called
DevOps (Development + Operations) has been developed.

* Three factors led to the development and widespread adoption of DevOps:

* Agile software engineering reduced the development time for software, but the traditional
release process introduced a bottleneck between development and deployment.

 Amazon re-engineered their software around services and introduced an approach in which a
service was developed and supported by the same team. Amazon’s claim that this led to
significant improvements in reliability was widely publicized.

* It became possible to release software as a service, running on a public or private cloud.
Software products did not have to be released to users on physical media or downloads.

_

7 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

DevOps

Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

Mult-skilled DevOps team

8 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS
CRICOS PROVIDER #00120C

DevOps principles

* 1
Engineering Software Products
An Introduction to Modern

Software Engineering

* Everyone is responsible for everything >
All team members have joint responsibility for developing, delivering and
supporting the software.

e Everything that can be automated should be automated
All activities involved in testing, deployment and support should be
automated if it is possible to do so. There should be minimal manual
involvement in deploying software.

* Measure first, change later
DevOps should be driven by a measurement program where you collect
data about the system and its operation. You then use the collected data
to inform decisions about changing DevOps processes and tools.

=

F
= -
=7

9 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Benefits of DevOps

£ NG Jill
8. i
Engineering Software Products
An Introduction to Modern
Software Engineering

* Faster deployment > St
Software can be deployed to production more quickly because communication

delays between the people involved in the process are dramatically reduced.

* Reduced risk
The increment of functionality in each release is small so there is less chance of

feature interactions and other changes causing system failures and outages.

* Faster repair
DevOps teams work together to get the software up and running again as soon
as possible. There is no need to discover which team were responsible for the

problem and to wait for them to fix it.

* More productive teams
DevOps teams are happier and more productive than the teams involved in the
separate activities. Because team members are happier, they are less likely to
leave to find jobs elsewhere.

i

~
<
="

10 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Code management

* During the development of a software product, the development team will
probably create tens of thousands of lines of code and automated tests.

* These will be organized into hundreds of files. Dozens of libraries may be used,
and several, different programs may be involved in creating and running the
code.

 Code management is a set of software-supported practices that is used to
manage an evolving codebase.

* You need code management to ensure that changes made by different
developers do not interfere with each other, and to create different product
versions.

* Code management tools make it easy to create an executable product from its
source code files and to run automated tests on that product.

i

~
<
="

11 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

A code management problem

Alice and Bob worked for a company called FinanceMadeSimple and were team members
involved in developing a personal finance product. Alice discovered a bug in a module called
TaxReturnPreparation. The bug was that a tax return was reported as filed but, sometimes, it
was not actually sent to the tax office. She edited the module to fix the bug. Bob was working
on the user interface for the system and was also working on TaxReturnPreparation.
Unfortunately, he took a copy before Alice had fixed the bug and, after making his changes, he
saved the module. This overwrote Alice’s changes but she was not aware of this.

The product tests did not reveal the bug as it was an intermittent failure that depended on the
sections of the tax return form that had been completed. The product was launched with the
bug. For most users, everything worked OK. However, for a small number of users, their tax
returns were not filed and they were fined by the revenue service. The subsequent
investigation showed the software company was negligent. This was widely publicised and, as
well as a fine from the tax authorities, users lost confidence in the software. Many switched
to a rival product. FinanceMadeSimple failed and both Bob and Alice lost their jobs.

i

~
<
="

12

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS
CRICOS PROVIDER #00120C

Code management and DevOps

* 1
ineering Software Products
An Introduction to Modern
Software Engineering

Engi

- Source code management, combined with automated system Bl i1k
building, is essential for professional software engineering.

* |n companies that use DevOps, a modern code management
system is a fundamental requirement for ‘automating everything’.

* Not only does it store the project code that is ultimately deployed,
it also stores all other information that is used in DevOps
processes.

* DevOps automation and measurement tools all interact with the
code management system

=

F
= -
=7

13 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Code management and DevOps

S Infrastructure
as code

Code management system

DevOps automation

Continuous Continuous Continuou
integration deployment delivery

Branching and merging

Recover
version
information

Code
repository

Save and
retrieve
versions

Transfer code to/from developer’s filestore

DevOps measurement

Data Data Report
collection analysis generation

Engineering Software Products
An Introduction to Modern
Software Engineering

14

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Code management fundamentals

 Code management systems provide a set of features that support
four general areas:

* Code transfer Developers take code into their personal file store to work on it then
return it to the shared code management system.

* Version storage and retrieval Files may be stored in several different versions and
specific versions of these files can be retrieved.

* Merging and branching Parallel development branches may be created for concurrent
working. Changes made by developers in different branches may be merged.

* Version information Information about the different versions maintained in the system
may be stored and retrieved

P
N~

15 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Code repository

 All source code management systems have the general form shown on
an earlier slide: with a shared repository and a set of features to manage
the files in that repository:

» All source code files and file versions are stored in the repository, as are other artefacts such
as configuration files, build scripts, shared libraries and versions of tools used.

* The repository includes a database of information about the stored files such as version
information, information about who has changed the files, what changes were made at
what times, and so on.

* Files can be transferred to and from the repository and information
about the different versions of files and their relationships may be
updated.

» Specific versions of files and information about these versions can always be retrieved from
the repository.

=/
16 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS =

Features of code management systems

N !
il j
Engineering Software Products
An Introduction to Modern
Software Engineering

Version and release identification m
Managed versions of a code file are uniquely identified when they are submitted to the system and can b
retrieved using their identifier and other file attributes.

Change history recording
The reasons why changes to a code file have been made are recorded and maintained.

Independent development
Several developers can work on the same code file at the same time. When this is submitted to the code
management system, a new version is created so that files are never overwritten by later changes.

Project support
All of the files associated with a project may be checked out at the same time. There is no need to check out files

one at a time.

Storage management
The code management system includes efficient storage mechanisms so that it doesn’t keep multiple copies of

files that have only small differences.

17

'. J
N/
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Git

* 1
ineering Software Products
An Introduction to Modern

* In 2005, Linus Torvalds, the developer of Linux, revolutionisediliffai L

source code management by developing a distributed version
control system (DVCS) called Git to manage the code of the Linux

kernel.

* This was geared to supporting large-scale open source
development. It took advantage of the fact that storage costs had
fallen to such an extent that most users did not have to be
concerned with local storage management.

* Instead of only keeping the copies of the files that users are
working on, Git maintains a clone of the repository on every user’s

computer
_

Engi

18 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Repository cloning in Git

Shared Git repository

Engineering Software Products

Master branch Branch 1 e
F1 F2 F3 F4 F5 F6 F7 F9 F21
F7 F8 F9 F10 F11
F12 F13 F14 F15 Y Branch2
F16 F17 F18 F19
F20 F21 F22 F23 F2 F3
F24 F25 F26 F27 T

Commit and branch information

Clone
Alice’s repository

Master branch

F1 F2 F3 F4 F5 F6
F7 F8 F9 F10 F11
F12 F13 F14 F15
F16 F17 F18 F19
F20 F21 F22 F23
F24 F25 F26 F27

T

Commit and branch information

19 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

* Resilience

* Everyone working on a project has their own copy of the repository. If the shared repository is
damaged or subjected to a cyberattack, work can continue, and the clones can be used to restore
the shared repository. People can work offline if they don’t have a network connection.

* Speed

 Committing changes to the repository is a fast, local operation and does not need data to be
transferred over the network.

* Flexibility

* Local experimentation is much simpler. Developers can safely experiment and try different
approaches without exposing these to other project members. With a centralized system, this
may only be possible by working outside the code management system.

P p—
N~

20 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Git repositories

21

Figure 10.6 Git repositories

Project 1

olo

olo

DevOps and Code Management

Project 3

@@

olo

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Github

(=) (=)
N\

Project 2

Project 4

© lan Sommerville 2018:

An Introduction to Modern
Software Engineering

lan Sommerville

|

Branching and merging

ts

Engineering Software Produ
An Introduction to Modern
Software Engineering

o

Branching and merging are fundamental ideas that are supported by all code management systems.

* A branch is an independent, stand-alone version that is created when a developer wishes to change a file.

* The changes made by developers in their own branches may be merged to create a new shared branch.

* The repository ensures that branch files that have been changed cannot overwrite repository files without a

merge operation.
* |If Alice or Bob make mistakes on the branch they are working on, they can easily revert to the master file.

* |f they commit changes, while working, they can revert to earlier versions of the work they have done. When they have
finished and tested their code, they can then replace the master file by merging the work they have done with the
master branch

22

.
_
—
N/
=

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Branching and merging

Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sor

Feature experiment branch

Alice

Master branch
Merge

Bob

Bug fix branch

23

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS
CRICOS PROVIDER #00120C

DevOps automation

* By using DevOps with automated support, you can dramatically reduce
the time and costs for integration, deployment and delivery.

* Everything that can be, should be automated is a fundamental principle
of DevOps.

* As well as reducing the costs and time required for integration,

deployment and delivery, process automation also makes these
processes more reliable and reproducible.

* Automation information is encoded in scripts and system models that
can be checked, reviewed, versioned and stored in the project

repository.

24 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Aspects of DevOps automation

* 1
Engineering Software Products
An Introduction to Modern

Software Engineering

* Continuous integration " St
Each time a developer commits a change to the project’s master branch, an
executable version of the system is built and tested.

e Continuous delivery
A simulation of the product’s operating environment is created and the
executable software version is tested.

e Continuous deployment
A new release of the system is made available to users every time a change is
made to the master branch of the software.

* Infrastructure as code
Machine-readable models of the infrastructure (network, servers, routers, etc.)
on which the product executes are used by configuration management tools to
build the software’s execution platform. The software to be installed, such as
compilers and libraries and a DBMS, are included in the infrastructure model.

=

F
= -
=

25 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

System integration

.

.
aal
i g
Engineering Software Products

An Introduction to Modern
Software Engineering

lan Sor
e

 System integration (system building) is the process of gathering all of the elements required in a working
system, moving them into the right directories, and putting them together to create an operational system

 Typical activities that are part of the system integration process include:
* Installing database software and setting up the database with the appropriate schema.
* Loading test data into the database.
* Compiling the files that make up the product.
* Linking the compiled code with the libraries and other components used.
* Checking that external services used are operational.
* Deleting old configuration files and moving configuration files to the correct locations.

* Running a set of system tests to check that the integration has been successful.

26 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Continuous Integration (Cl)

e Continuous integration simply means that an integrated version of the
system is created and tested every time a change is pushed to the
system’s shared repository.

* On completion of the push operation, the repository sends a message to
an integration server to build a new version of the product

* The advantage of continuous integration compared to less frequent
integration is that it is faster to find and fix bugs in the system.

* If you make a small change and some system tests then fail, the problem
almost certainly lies in the new code that you have pushed to the project
repo.

* You can focus on this code to find the bug that’s causing the problem.

i

~
<
="

27 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Continuous Integration (Cl)

Source code files

Database

from code management files

GET

i

COMPILE

A
I
I
I

Trigger
from repo

>| AND BUILD

T

Executable

Executable
tests

l

Deployable

system

—O-

TEST

system

—QO

Libraries Configuration

files

Engineering Software Products
An Introduction to Modern

28

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Breaking the build

* In a continuous integration environment, developers have to make sure
that they don’t ‘break the build’.

* Breaking the build means pushing code to the project repository which,
when integrated, causes some of the system tests to fail.

* If this happens to you, your priority should be to discover and fix the
problem so that normal development can continue.

* To avoid breaking the build, you should always adopt an ‘integrate twice’
approach to system integration.

* You should integrate and test on your own computer before pushing code to the project
repository to trigger the integration server

29 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Local integration

From project repo

Make changes Commit changes Pull changes Merge master
to code to local repo to master branch with local repo

Executable
system
Compile and Test Push code
build system system to project repo
Test
success
Test failure
Executable

tests

Englneermg Software Prod
An Introduction to M d
Software Enginee

30

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

System building

* Continuous integration is only effective if the integration process is fast
and developers do not have to wait for the results of their tests of the
integrated system.

* However, some activities in the build process, such as populating a
database or compiling hundreds of system files, are inherently slow.

* It is therefore essential to have an automated build process that
minimizes the time spent on these activities.

* Fast system building is achieved using a process of incremental building,
where only those parts of the system that have been changed are rebuilt

i

~
<
="

31 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Dependencies

Running a set of system tests depends on the
existence of executable object code for both the
program being tested and the system tests.

In turn, these depend on the source code for

the system and the tests that are compiled to
create the object code. @

Figure on the right shows the dependencies
involved in creating the object code for a source

code files called Mycode. Mycode (source)
An automated build system uses the P
specification of dependencies to work out what

needs to be done. It uses the file modification _
timestamp to decide if a source code file has @

been changed.

32

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS
CRICOS PROVIDER #00120C

Continuous Delivery =
dain d D e p I OV men t (C D) E"gi"e::i;i?:;z,:““

Software Engineering

lan Sommerville

i

* Continuous integration means creating an executable version of a software system whenever a change is
made to the repository. The Cl tool builds the system and runs tests on your development computer or
project integration server.

* However, the real environment in which software runs will inevitably be different from your development
system.

* When your software runs in its real, operational environment bugs may be revealed that did not show up in
the test environment.

* Continuous delivery means that, after making changes to a system, you ensure that the changed system is
ready for delivery to customers.

* This means that you have to test it in a production environment to make sure that environmental factors do
not cause system failures or slow down its performance.

i

~
<
="

33 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS
CRICOS PROVIDER #00120C

Continuous Delivery
and Deployment (CD)

Required Tested Test
software Q system Q set

Configure | | |Install system Run acceptance
test server on test server tests

Continuous delivery

All tests pass

Y

Install software on |, | Switch operation to
production servers new software

Continuous deployment

34 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

The deployment pipeline

e After initial integration testing, a staged test environment is created.

* This is a replica of the actual production environment in which the system will
run.

* The system acceptance tests, which include functionality, load and performance
tests, are then run to check that the software works as expected. If all of these
tests pass, the changed software is installed on the production servers.

* To deploy the system, you then momentarily stop all new requests for service
and leave the older version to process the outstanding transactions.

* Once these have been completed, you switch to the new version of the system
and restart processing.

-
=7
35 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Benefits of Continuous Deployment (CD)

* Reduced costs
If you use continuous deployment, you have no option but to invest in a completely automated deployment pipeline.
Manual deployment is a time-consuming and error-prone process. Setting up an automated system is expensive and time-
consuming but you can recover these costs quickly if you make regular updates to your product.

* Faster problem solving
If a problem occurs, it will probably only affect a small part of the system and it will be obvious what the source of that

problem is. If you bundle many changes into a single release, finding and fixing problems is more difficult.

* Faster customer feedback
You can deploy new features when they are ready for customer use. You can ask them for feedback on these features and

use this feedback to identify improvements that you need to make.

» A/B Testing and Canary Deployments
This is an option if you have a large customer base and use several servers for deployment. You can deploy a new version
of the software on some servers and leave the older version running on others. You then use the load balancer to divert
some customers to the new version while others use the older version. You can then measure and assess how new
features are used to see if they do what you expect.

ot

~
~—
=

36 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS
CRICOS PROVIDER #00120C

Infrastructure as Code

* I[n an enterprise environment, there are usually many different physical or
virtual servers (web servers, database servers, file servers, etc.) that do different
things. These have different configurations and run different software packages.

* |t is therefore difficult to keep track of the software installed on each machine.

* The idea of infrastructure as code was proposed as a way to address this
problem. Rather than manually updating the software on a company’s servers,
the process can be automated using a model of the infrastructure written in a

machine-processable language.

e Configuration Management (CM) tools such as Puppet can automatically install
software and services on servers according to the infrastructure definition

i

~
<
="

37 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Infrastructure as Code (Puppet)

https://phoenixnap.com/blog/what-is-puppet

Infrastructure as Code (Ansible)

https://phoenixnap.com/blog/ansible-vs-terraform-vs-puppet

39 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

’f»)

Infrastructure as Code (Terraform)

https://phoenixnap.com/blog/ansible-vs-terraform-vs-puppet

40 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

#
gy
~
=

Benefits of infrastructure as code

Engineering Software Products
An Introduction to Modern

* Defining your infrastructure as code and using a configuration s i
management system solves two key problems of continuous
deployment.

* Your testing environment must be exactly the same as your deployment environment.
If you change the deployment environment, you have to mirror those changes in your
testing environment.

 When you change a service, you have to be able to roll that change out to all of your
servers quickly and reliably. If there is a bug in your changed code that affects the
system’s reliability, you have to be able to seamlessly roll back to the older system.

* The business benefits of defining your infrastructure as code are
lower costs of system management and lower risks of unexpected
problems arising when infrastructure changes are implemented.

_

41 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Characteristics of infrastructure as code

Visibility m L
Your infrastructure is defined as a stand-alone model that can be read, discussed, understood an
reviewed by the whole DevOps team.

Reproducibility

Using a configuration management tool means that the installation tasks will always be run in the
same sequence so that the same environment is always created. You are not reliant on people
remembering the order that they need to do things.

Reliability

The complexity of managing a complex infrastructure means that system administrators often make
simple mistakes, especially when the same changes have to be made to several servers. Automating
the process avoids these mistakes.

Recovery

Like any other code, your infrastructure model can be versioned and stored in a code management
system. If infrastructure changes cause problems you can easily revert to an older version and
reinstall the environment that you know works.

42

". J
N/
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Containers

An Introduction to Modern
Software Engineering

docker

* A container provides a stand-alone execution environment running on top of an operating system such as
Linux.

* The software installed in a Docker container is specified using a Dockerfile, which is, essentially, a definition
of your software infrastructure as code.

* You build an executable container image by processing the Dockerfile.
» Using containers makes it very simple to provide identical execution environments.

* For each type of server that you use, you define the environment that you need and build an image for execution. You
can run an application container as a test system or as an operational system; there is no distinction between them.

* When you update your software, you rerun the image creation process to create a new image that includes the
modified software. You can then start these images alongside the existing system and divert service requests to them.

.
_
—
N/
=

43 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

DevOps Measurement

» After you have adopted DevOps, you should try to continuously improve
your DevOps process to achieve faster deployment of better-quality
software.

* There are four types of software development measurement:

* Process measurement You collect and analyse data about your development, testing and
deployment processes.

» Service measurement You collect and analyse data about the software’s performance,
reliability and acceptability to customers.

* Usage measurement You collect and analyse data about how customers use your product.

* Business success measurement You collect and analyse data about how your product
contributes to the overall success of the business.

_

44 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Automating Measurement

* As far as possible, the DevOps principle of automating everything
should be applied to software measurement.

* You should instrument your software to collect data about itself
and you should use a monitoring system to collect data about your
software’s performance and availability.

* Some process measurements can also be automated.

 However, there are problems in process measurement because people are involved.

They work in different ways, may record information differently and are affected by
outside influences that affect the way they work.

= —
=7
45 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Metrics used in the DevOps scorecard

Process metrics Engineering Software Products

An Introduction to Modern
Software Engineering
—————

- -~ lan Sommerville

, ~ L
- ~ |
-7 Deployment Change RN o
e frequency volume RRN
7 N N\
7/ N\
/ \
/" Percentage of Lead time from \

¢+ failed deployments development to deployment

DevOps
metrics

I Mean time to
recovery

Percentage increase |
in customer numbers

* _ Performance Number of L7
S customer complaints -~
e
RN Availability e
~ -
~ - _ -

Service metrics

46

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Metrics scorecard

e Payal Chakravarty from IBM suggests a practical approach to

DevOps measurement based around a metrics scorecard with 9
metrics:

These are relevant to software that is delivered as a cloud service. They include
process metrics and service metrics

For the process metrics, you would like to see decreases in the number of failed
deployments, the mean time to recovery after a service failure and the lead time from
development to deployment.

You would hope to see increases in the deployment frequency and the number of lines
of changed code that are shipped.

For the service metrics, availability and performance should be stable or improving,

the number of customer complaints should be decreasing, and the number of new
customers should be increasing.

47

P
N~

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Metrics Trends (via Logging or Similar)

Availability

Deployment
frequency

Number of
customer
complaints

._/.—.\./.

1T 1 | |

Executing
software

Log 1

Log 2

—>

K

5 Weeks

Log 3

Log
analyser

Y

Metrics
dashboard

48

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Mini Break in Monday Lecture

49

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Deployment and Evolution

%38

A

Source: http://martinfowler.com/articles/microservices.html

bl
bl
k
/

monolith - multiple modules in the same process microservices - modules running in different processes

’&’)- R

P 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS

Netflix: Microservice Architecture

100s of microservices

1,000s of production changes per day
10,000s of virtual machines

100,000s of customer interactions per second
1,000,000s of metrics per minute (actually, 2 million)

81.5 million customers

10s of operations engineers
no single engineer knows the entire application

51

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Development transformation at Amazon: 2001-
2009

2001 2009

i
74//////// @@@@@@

O ®
> © ® :

O O

© ®

® ®

Monolithic Microservices + 2 pizza teams
application + teams

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

52

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

We were just waiting.

DD De

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

53

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

We were just waiting.

o O o e

COEPECPE P69

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

54

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

How do we get to DevOps?

Goals:

1. Technological: Automated process for moving code from dev to release.
Starting with check-in, build, unit test, build artifact,
integration test, load test, as moves through stage to production,
finally, with monitoring and other telemetry.

2. Cultural: Building cohesive, multidisciplinary teams.
Typically, developers are the “first responders” when things go bad in

production.
Sense of “ownership” by the developer all the way from inception to release.

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

55 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

=7

What can it look like when it’s done?

Netflix Spinnaker (open-source CI/CD fully automated pipeline):

» Takes code from code repository to production.

* Allows developers to specify required tests.

* Determines where, how code should be run in system (e.g., replication, placement.)
* Supports canary deployments, traffic management.

* Just publish the repo!

56 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Exercise: DevOps Pipeline

o

AN

RN

Choices

RN

4

J

o

.

J

[Check in

)

(o)

Run load tests

)

Style check] [

Build container
images

|

Require Manual
approval to advance

[Peer review

)

[Run integration tests][

Run unit tests

]

[
[

Run penetration tests]

Deploy to prod

I

Record errors

i Igﬂ
%W”s 0/ .

QOFTWARE

ENCINEERING

57

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

A Typical DevOps Pipeline

Develop

~

Check in]

)
[
[

Peer review]

—

)

Style check

Compilation

Run unit tests

Build container
images

N

—

([Run integration |

tests

B

Deploy to prod

)

Run load tests

[Run penetration |

tests

J

2

Require Manual
approval to
advance

2N

—)

Monitor

[Record errors]

58

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

What do we need to practice for DevOps:

Continuous Integration (Cl)

1. Constant testing as code is checked-in/pushed to the repository (e.g., GH hooks, etc.)
2. Verify the build process works (i.e., parsing, compilation, code generation, etc.)

3. Verify unit tests pass, style checks pass, other static analysis tools.

4. Build artifacts

Continuous Delivery & Deployment (CD)
1. Moving build artifacts from test -> stage -> prod environments.
Environments always differ! (e.g., ENV, PlI, data, etc.)
2. Gate code, if necessary, from advancing without manual approval.
Useful when initially transitioning applications into a modern DevOps pipeline.

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

59 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

P 17" 313
Foundallo

What do we need to practice for DevOps?| A

‘ENGINEERIN

Infrastructure as Code

1. Required resources (e.g., cloud services, access policies, etc.) are created by code.
No Ul provisioning, no manual steps (avoid: easy to forget, time consuming!)

2. “Immutable Infrastructure”
No update-in-place (e.g., SSH to server.)
Replace with new instances, decommission old instances.

3. Nothing to prod without it being in code, checked-in, versioned along side code!

Observability (Monitoring, Logging, Tracing, Metrics)
1. Be able to know how your application is running in production
2. Track and analyze low-level metrics on performance, resource allocation
3. Capture high-level metrics on application behavior
1. What’s “normal”?
2. What’s abnormal?

=7

60 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

CI/CD

Continuous Integration (Cl)

Commit and check-in code frequently (always can squash later)

Commits build on previous commits (know precisely where the build breaks)
Automated feedback and testing on commits

Artifact creation (e.g., container images, WAR files, etc.)

Ensure code, supporting infrastructure, documentation are all versioned together

uhwn e

Continuous Deployment (CD)

1. Artifacts automatically shipped into test, stage, production environments

2. Prevents “manual” deployment, avoids “manual” steps, early detection of problems
3. Can be tied to a “manual” promotion technique to advance through environments
4. Multi-stage deployment with automatic rollback on failure detection

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

61 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

DEPLOYING CODE

62

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

o

&)

o>

Nightly Build

e Build code and run smoke test (Microsoft 1995)

* Benefits
* it minimizes integration risk
* |t reduces the risk of low quality
* it supports easier defect diagnosis

* itimproves morale

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Ring Deployment: Microsoft

* Commits flow out to rings, de-flight if issue

* For example:

* Ring 0 =>Team

* Ring 1 => Dogfood
* Ring 2 => Beta

* Ring 3 => Many

* Ring 4 => All

* Windows 10 Insiders Program

* Dev Channel (weekly builds of Windows 10)
* Beta Channel (dev + validated updates by Microsoft)

* Release Preview Channel (highest quality, validated updates)

64

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Rapid Release/Mozilla

* There are four channels: Nightly, Alpha, Beta, Release Candidate

* Code flows every 2 weeks to next channel, unless fast tracked by
release engineer.

* Involve corporate customer specific testing in testing (Practice also
used by IBM, Redhat)

* same for Windows Edge browser Insiders Program:
e Canary: nightly builds

* Dev: weekly builds
* Beta: 6 weeks

“Big bang” deployments

State 0

\ Final State

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

66 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

o = A y
|) 4
b - o
; ; — . A
(- L o
N "
y o v
- / 4
\4 b & f
i Sl
IS - !
A Dy, &ﬁ

T 3¢

seid ¥l
T S\
“ "
..\‘“
C h UucC k

S
Ros

-

Si

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

\

67 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Igﬂ

Dark Launches at Instagram F.2>
QOFTWARE

ENGINEERING

 Early: Integrate as soon as possible. Find bugs early. Code can run
in production about 6 months before being publicly announced.

e Often: Reduce friction. Try things out. See what works. Push small
changes just to gather metrics, feasibility testing. Large changes
just slow down the team. Do dark launches, to see what
performance is in production, can scale up and down. "Shadow
infrastructure" is too expensive, just do in production.

* Incremental: Deploy in increments. Contain risk. Pinpoint issues.

CRICOS PROVIDER #00120C

Facebook process (until 2016)

e Release is cut Sunday 6pm
e Stabilize until Tuesday, canaries, release. ruewapusnis 12004

e Cherry pick: Push 3 times a day (Wed-Fri) sor00cnerpicks

Trunk/Mainline

Cherry-pick

Release branch

reference: https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

69 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Facebook quasi-continuous release

oy : Push-blocking alerts
(002 Riodlolion Push-blocking tasks

Crashbot for WWW
Emergency button

2% production

employees

Master

[Sacoastb ek gneb] | |1 [([0 O -

70

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

=/

=7

Rolling deployments

Final State

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

71 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Red/Black (Blue/Green) deployments

User Traffic

|

mL — User Traffic

oad Balancer

i -}

¢ §e Re | ¢ Je §e |

OIS OIS N Ol NN OIS 1}

(o Jo Jo | o Jo Qo n

Code Version 1 Code Version 2
Load Balancer ﬁl
¢ NJeo H§e | e HNe Je |
¢ Jeo Q§e | ¢ Jeo Je |
o Jo Qo | e Jo Jo
Code Version 1 Code Version 2

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

72 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Canary deployments

User Traffic

|
0 0 o

Load Balancer

Most Usersgﬁ llg\Few Users
i ’ l
OEEOE -
Majority Infrastructure _

Code Version1 Code Version 2

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

User Traffic

|
© o o

Load Balancer

Ill

All Infrastructure

Code Version 2

73

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

eature

years

months

weeks

days

Flags

>

longevity

-

3 Release
Toggles

S m—

.= -~

GateKeeper

Project: 64bit_rollout

all users
(delete)

Rank Move Group D«

New Restraint

Restraint Type

1 .
! Permission |
' Toggles |

\

-~
~

.

Ops
Toggles

PR

P I
“cammmmman==®

.

.
~
-~
.

~ - 2 .
S S :ExpenmentE
y v Toggles

.) .

-

dynamism_

changes with
a deployment

changes with runtime
re-configuration

changes with
each request

Age - Younger
Application
Browser

Code Location
Country
Datacenter

Is Employee
Friend Count - Less
Friend Count - More
Gatekeeper project
D

Locale

Network

os

Remote IP

Server IP

Server Time - After

Server Time - Before

| History | RenderTime

WHITELIST ME

BLACKLIST ME

On
Sanenl vuvtxzdqrp
n/a
Alpha Def. n/a
Updated 4/21/09 3:23:04pm
Console none
Name

Description 64 bit rollout
Needs Flush No

74 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

MONITORING PRODUCTION

75

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

CRICOS PROVIDER #00120C

What is Observability?

“As a philosophy, observability is our ability as
developers to know and discover what is going on in
our systems. In practice, it means adding telemetry to
our systems in order to measure change and track
workflows.”

The New Stack, “What is observability?” 28 Feb 2020
https://thenewstack.io/what-is-observability/

76 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Observability: Dashboards

1. What’s happening now?

III

2. What does “normal” behavior look like?
3. What does it look like when something’s gone (or is going) wrong?

4. Can | correlate events to changes in the actual graphs?

reference: https://www.youtube.com/watch?v=mBU3AJ3jlrg

77 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Observability: Dashboard Example

. kubernetes

Kubelets up

Desired pods

Available pods

Unavailable pods

Running containers

131

Stopped containers

2

2N
O

Resource utilization

Sum requests (CPU) per node an

*docker

Pod deployments

Number of running pods per node CPU usage per node

Sum requests (memory) per node 4»

Number of Kubernetes events

© ©

©

Kubernetes
kubernetes-minion-group-c9gx
OOMKilling on kubernetes-minion-group-
xiza

kubernetes-minion-group-c9gx
OOMKilling on kubernetes-minion-group-
sl

kubernetes-minion-group-c9gx
‘OOMKilling on kubernetes-minion-group-
sr9g

Events

Number of Docker events

o (A7)
Docker

gcrio/google_containers /fluentd-gcp:1.25

1 0om on kubernetes-minion-group-
173h.c.datadog-demo-1336.internal

gcriio/google_containers/fluentd-gcp:1.25
1 0om on kubernetes-minion-group-
xiza.cdatadog-demo-1336.internal

gerio/google_containers /fluentd-gep:1.25
1 00m on kubernetes-minion-group-
x.c.datadog -demo-1336.internal

Desired pods per deployment 4 Most CPU-intensive pods 4 Most RAM-intensive pods "
C | 11.82M default/kube-dSxr) = 165 group-c9g g 9 io/90ogle_containers fluentd-gep:1.25
i s73m 163 o @ OOMKilling on kubernetes-minion-group- o 100m on kubernetes-minion-group-
i - Kfvw c.datadog-demo-1336.internal
2 a5 160
sam 15 Kubernetes-minion-group-c9gx datadog/docker-dd-agentiatest 1
° - - »] @ ‘OOMKilling on kubernetes - minion-group- aofter exec_create: tail /var/log/sysiog -n 50. &
il il sl i Sho, ~ 1730 exec_start: tail /var/log/syslog -n 57 on
som 54
Available pods per deployment " e " 50eb10320e66
. 4 b S o kubernetes-minion-group-c9gx
: B o e s
p: 7.64M 8178 default/dd-agent-36sat <9gx Gotter €Xec_start: /bin/sh - test
. $(/opt/datadog-
2 agent/embeddedbin/python
ladoarstesbilaiongronp-Chgx /opt/datadog-agent/bin/supervisorctl -c
PN ~ - Disk I/0 & Network ‘OOMKilling on kubernetes-minion-group- /etc/dd-agent/supervisor.conf status |
e 200 1o 10 r5p8 ko
Unavailable pods per deployment 4 Network in per node 4 Network out per node “
w @ kubarnates-minlon-group-cogx datadog/docker-dd-agentiatest 1
™ OOMMNag on kebernetas-minion-group- u‘rm brspabepeairigina
- 6 Sie $(/opt/datadog-
agent/embedded/bin/python
“ 2 Y . /opt/datadog-agent/bin/supervisorctl ~c
AT s S 0OMKilling on aroup statws |
e oo o W * 1o e oo oo ® % oo oo o 173 Sk ek
Running containers by pod 4 Network errors per node # DiskUO per node n Kubernetes-minion-group-61al g uvioldatadogbillstaging 1 exec_start:
OOMKilling on kubernetes-minion-group- Gocker Sh, 1 exec_create: shon i-
0516da67eac232¢76
50 { - sr9g
| S—
B a
kubernetes-minion-group-61qi gcrio/google_containers /fluentd-gcp:1.25
fmrrrrer— - OOMKilling on kubernetes-minion-group- Gocter 100m on kubernetes- minion-group-
IR ———— oy sr9g.c.datadog-demo-1336.internal
e —————— 4
v = B datadog/docker-dd-agentiatest 1
S - - - = = - i - - = = lubemetes-minon-growp-6lal | gy datados/docker-d-agenciates

exec stare: /bin/sh —c test

https://datadog-prod.imgix.net/img/blog/monitoring-kubernetes-with-datadog/kubernetes-dashboard.png?fit=max

78 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

|II

Observability: Defining “Norma

reference: https://www.youtube.com/watch?v=vq4QZ4_YDok

Observability:
When things aren’t “Normal”

SPS Legend: M Experiment M Control

PROD:US-EAST-1 o & W &2 == Log PROD:US-EAST-1 q
Automatic
SPS Server Successes (License Requests) SPS Client Successes (Startplays) i
rollback on high
bt variance!
20.0
4.04
15.0
3.0
10.0-
2.0
1.0 5.0
0.0- 1 1 1 1 1 1 1 1 0.0 1 1 1 1 1 1 1
10:27 10:30 10:33 10:36 10:39 10:42 10:45 10:48 10:27 10:30 10:33 10:36 10:39 10:42 10:45 10:48
MONITORING!

This is starting to sound awfully like a
quality attribute....

reference: https://www.youtube.com/watch?v=qyzymLlj9ag

80 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

CONTINUOUS INTEGRATION

81

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Process Roundup

* Group Processes
* Continuous Integration

 Code Review
* Pair/Mob Programming
* Individual Processes

e Asking Questions

* How to run a meeting

82 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

State of Code Review 2017

What do you believe is the number one thing a company
can do to improve Codo quality?

Code Review

Continuous Integration
Functional Testing
Integration Testing

Detailed Requirements

Training/On-boarding

y N = 567

Other

83 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

History of CI

v

P _] (1999) Extreme Programming (XP) rule: “Integrate Often”

1 (2000) Martin Fowler posts “Continuous Integration” blog
Cerusecorvo. (2007) First Cl tool

& Jenkins (2005) Hudson/Jenkins

@ Travis C1 (2011) Travis C

© . .
88 (2019) GitHub Actions

N
-~
=
=
=

84 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Cl/CD Pipeline overview

L Code Edit W Tests Run

Code (
L Deployed }< l\Code Merged:]

Github Flow

86

O
>0 |

. C featureName

QOFTWARE

'ENGINEERIN

Remote
Master featureName

Local Repo

Staging Area

Working Dir

https://docs.github.com/en/get-started/quickstart/github-flow

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Sample Cl Workflow

i Create Pull Request
= GitHub tells Travis Cl build is mergeable

€ |t builds and passes tests
== Travis updates PR
PR is merged

https://docs.github.com/en/actions/migrating-to-github-actions/migrating-from-travis-ci-to-github-actions

i
-5
~
S—
=

P 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS

Example CI/CD Pipeline

</>
coMmmIT % ﬂe REVIEW STAGING PRODUCTION
@ @] {® o 0—-0 1@ 1@ (
BUILD UNIT |NTEGRATION
TESTS TESTS
@ CD PIPELINE
Cl PIPELINE
RELATED CODE

88 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

| ov'glsnsﬂf \
Cl Research ﬁ%ee

'ENGINE

“My favorite way of thinking about build time is basically, you have
tea time, lunch time, or bedtime...”

150+
g 125"
3 100-
2 75
3
& so
25 —
60

1 5 10 20 30
Minutes

DevOps: More Resources

SRE Books

OREILLY"

Building Secure &
Reliable Systems

Best Practices for Designing, Implementing
and Maintaining Systems

It

Reliability
Engineering

Reliability
Workbook

Heather Adkins, Betsy Beyer, . Edited by Betsy Beyer, 3
Paul Blankinship, itr Lowandowski Nl Richard| :ﬁhl:rg?s?:;;i K Rensh, Edited by Betsy Beyer, Chris Jones, Nicole Forsgren, PhD
Loby SR Jennifer Petoff & Niall Murphy J H .
ez Humble, cnd Gene Kim
Mocti Fondor nd Coortaey Gl

il Yayseek LERRnE

90 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

Developers say:

Cl helps us catch bugs earlier
Cl makes us less worried about breaking our builds
Cl lets us spend less time debugging

“IClI] does have a pretty big impact on [catching bugs]. It allows us to find issues even
before they get into our main repo, ... rather than letting bugs go unnoticed, for months,

and letting users catch them.”

91 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

: | s |
Developers report: go%fzgg

ENGINEERING

Do developers on projects with Cl give (more/similar/less) value to
automated tests?

B Higher Similar Lower
0% 25% 50% 75% 100%

Developers report:

Do developers on projects with Cl give (more/similar/less) value to

automated tests?
Do projects with Cl have (higher/similar/lower) test quality?

M Higher Similar Lower
0% 25% 50% 75% 100%

93 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

~ %

:QOF TWARE

Developers report:

JENGINE

Do developers on projects with Cl give (more/similar/less) value to

automated tests?

Do projects with Cl have (higher/similar/lower) test quality?
Do projects with Cl have (higher/similar/lower) code quality?

B Higher Similar Lower
0% 25% 50% 75% 100%

COFTW

Developers report:

JENGINE

Do developers on projects with Cl give (more/similar/less) value to
automated tests?

Do projects with Cl have (higher/similar/lower) test quality?

Do projects with Cl have (higher/similar/lower) code quality?

Are developers on projects with Cl (more/similar/less) productive?

B Higher Similar Lower
0% 25% 50% 75% 100%

Most of the benefits of Cl come
from running tests

OBSERVATION

\

Key Points

£ NG |
8. i
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

i

* DevOps is the integration of software development and the management of that software once it has been
deployed for use. The same team is responsible for development, deployment and software support.

* The benefits of DevOps are faster deployment, reduced risk, faster repair of buggy code and more
productive teams.

* Source code management is essential to avoid changes made by different developers interfering with each
other.

* All code management systems are based around a shared code repository with a set of features that
support code transfer, version storage and retrieval, branching and merging and maintaining version
information.

* Git is a distributed code management system that is the most widely used system for software product
development. Each developer works with their own copy of the repository which may be merged with the

shared project repository.

98 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS
CRICOS PROVIDER #00120C

Key Points

£ NG |
8. i
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

i

* Continuous integration means that as soon as a change is committed to a project repository, it is integrated
with existing code and a new version of the system is created for testing.

* Automated system building tools reduce the time needed to compile and integrate the system by only
recompiling those components and their dependents that have changed.

* Continuous deployment means that as soon as a change is made, the deployed version of the system is
automatically updated. This is only possible when the software product is delivered as a cloud-based
service.

* Infrastructure as code means that the infrastructure (network, installed software, etc.) on which software
executes is defined as a machine-readable model. Automated tools, such as Chef and Puppet, can provision
servers based on the infrastructure model.

* Measurement is a fundamental principle of DevOps. You may make both process and product
measurements. Important process metrics are deployment frequency, percentage of failed deployments,
and mean time to recovery from failure.

i

~
<
="

99 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS
CRICOS PROVIDER #00120C

| s |
:Qo;}mks &

ENCINEERING

Key Points

* Articulate the various purposes of a design document.

* Use design documentation to ensure that the correct thing is being
implemented.

* Write useful, clear, high-quality design documentation.

" P‘nﬁns
Foundalions

OFTWARE 'S

ENGINEERING

Key Points

* Understand process aspects of QA
e Describe the tradeoffs of QA techniques

 Select an appropriate QA technique for a given project and quality
attribute

e Decide the when and how much of QA
* Overview of concepts how to enforce QA techniques in a process

* Understand human and social challenges of adopting QA
techniques

* Understand how process and tool improvement can solve the
dilemma between features and quality

P 2120 / COMP 6120 | WEEK 6 OF 12: DEVOPS

End of Monday Lecture/Start of Tuesday Lecture

102

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 6 OF 12: DEVOPS

CRICOS PROVIDER #00120C

