Week: COMP 2120/ COMP 6120
10 of 12

MORE TESTING,
THEN STATIC ANALYSIS

ANU Acknowledgment of Country

M AIATSIS

-—-—-,m,,,m-----

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

Explore Family history

Collection Research Education What's new About

Search Q

Shop

+ U
— |® Leeton

larrandera @

r e Corowa

| L]
Waveroo
o Wangaratta

Cootamundra ®

Wagga degé;r., o
River

Tumut @

)P

Begae

Ridwell '

Edar

S O

Leaflet | Rendered with MapTiler Desktop

https://aiatsis.gov.au/explore/map-indigenous-australia

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

o
:
—

==
=

OOOOOOOOOOOOOOOOOOOOO

https://aiatsis.gov.au/explore/map-indigenous-australia

DYNAMIC ANALYSIS AND ADVANCED AUTOMATED TESTING

Puzzle:
Find x such that pl (x) returns True
def pl(x):
if x * x - 10 == 15:
return True

return False

Puzzle:
Find x such that p2 (x) returns True
def p2(x):
if X > @0 and x < 1000:
if ((x - 32) * 5/9 == 100):
return True

return False

Puzzle:
Find x such that p3 (x) returns True

def p3(x):
if x > 3 and x < 100:

zZ =X - 2
c =20
while z >= 2:
if z ** (x - 1) % x == 1:

c +1

Il @

z z -1

if ¢ == x - 3:
return True

return False

FindBugs (2006 !

qekSIr,,

S

bé o 0«\
18 } 56
7, <

because it's easy’

Docs and Info

FindBugs 2.0

Demo and data

Users and supporters
FindBugs blog

Fact sheet

Manual

Manual(ja/ H 4%5f)

FAQ

Bug descriptions

Bug descriptions(ja/ H A%#)
Bug descriptions(fr)
Mailing lists

Documents and Publications
Links

Downloads
FindBugs Swag

Development
Open bugs
Reporting bugs
Contributing
Dev team

-
TRYLAS g™

FindBugs

S
™ NERSIT,
- - r

)
S -

-~

AL) S
'1/<Y\ _\'7\‘

FindBugs™ - Find Bugs in Java Programs

This is the web page for FindBugs, a program which uses static analysis to look for bugs in Jav:
terms of the Lesser GNU Public License. The name FindBugs™ and the FindBugs logo are trac
has been downloaded more than a million times.

The current version of FindBugs is 3.0.1.
FindBugs requires JRE (or JDK) 1.7.0 or later to run. However, it can analyze programs compi

The current version of FindBugs is 3.0.1, released on 13:05:33 EST, 06 March, 2015. We are ve
FindBugs. File bug reports on our sourceforge bug tracker

Changes | Talks | Papers | Sponsors | Support

FindBugs 3.0.1 Release

¢ A number of changes described in the changes document, including new bug patterns:
o BSHIFT WRONG ADD PRIORITY,
o CO COMPARETO INCORRECT FLOATING,

DC PARTIALLY CONSTRUCTED,

DM BOXED PRIMITIVE FOR COMPARE,

DM INVALID MIN MAX,

ME MUTABLE ENUM FIELD,

ME ENUM FIELD SETTER,

MS MUTABLE COLLECTION,

MS MUTABLE COLLECTION PKGPROTECT,

DANMCE ADRAV INNEY

2 0 0 0 0 0 0 ©

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Security and Robustness

FUZZ TESTING

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

I'OM{E}’ TACOS!

M 50
RaNDOM.

YEAH,

ME ToO.

(AN 122‘218

Original: https://xkcd.com/1210 CC-BY-NC 2.5

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

https://xkcd.com/1210

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the
Rellablllty OofF

LY

Iltllltles

COMMUNICATIONS OF THE AGM/ December 1990/Vol.33, No.12

Communications of the ACM (1990)

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

(14

On a

dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash.

29

Fuzz Testing

w0019[a%#

l I Execute |

[/dev/random

1990 study found crashes in:

adb, as, bc, cb, col, diction, emacs, eqn, ftp,
indent, lex, look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style, tsort, unigq,
vgrind, vi

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

R
S
~—
S~
=

Common Fuzzer-Found Bugs in C/C++

Causes: incorrect arg validation, incorrect type casting, executing
untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero, use-after-
free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

How to identify these bugs in languages like C/C++?

Automatic Oracles: Sanitizers

e Address Sanitizer (ASAN)

* LeakSanitizer (comes with ASAN)

* Thread Sanitizer (TSAN)

* Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer

Compile with “clang —fsanitize=address’ lS the dCCess OUt Of bounds7
int get_element(int* a, int i) {

if (a == NULL) abort();

region = get_allocation(a);

int get_element(int* a, int i) {
return al[i];

1 2 if (in_heap(region)) {
} Is it null: low, high = get_bounds(region);
int get_element(int* a, int i) { if ((a + i) < low || (a +i) > high) {
if (a == NULL) abort(); abort();
return af[il]; }
¥ }

return af[il];

|s this a reference to a stack-allocated variable after return?
int get_element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_stack(region)) {
if (popped(region)) abort();

}
if (in_heap(region)) { ... }
return af[i];

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS =

AddressSanitizer

Asan is a memory error detector for C/C++. It finds:

Use after free (dangling pointer dereference)
Heap buffer overflow

Stack buffer overflow

Global buffer overflow

Use after return

Use after scope)
Initialization order bugs '
Memory leaks ” I

https://github.com/google/sanitizers/wiki/AddressSanitizer

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Strengths and Limitations

e Exercise: Write down two strengths and two weaknesses of
fuzzing. Bonus: Write down one or more assumptions that fuzzing
depends on.

Strengths and Limitations

* Strengths:

* Cheap to generate inputs

e Easy to debug when a failure is identified

e Limitations:

 Randomly generated inputs don’t make sense most of the time.

* E.g. Imagine testing a browser and providing some "input” HTML randomly: dgsad51350 gsd;gj
Isdkg3125j@ ! T%#(W+123sd asf j

* Unlikely to exercise interesting behavior in the web browser

* Can take a long time to find bugs. Not sure when to stop.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

| r:lﬁw;zs % |
:co??"/v'fﬁ
ggENG'NEER'NG

Mutation-Based Fuzzing (e.g. Radamsa)

Mutation Heuristics

=" Binary input
= Bit flips, byte flips
= Change random bytes
" |[nsert random byte chunks
= Delete random byte chunks
= Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, O, 1, -1,

= Other suggestions?

= Text input
= |nsert random symbols or keywords from a dictionary
= Other suggestions?

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

American Fuzzy Lop
(https://github.com/google/AFL)

2) The afl-fuzz approach

American Fuzzy Lop is a brute-force fuzzer coupled with an exceedingly simple but rock-solid instrumentation-
guided genetic algorithm. It uses a modified form of edge coverage to effortlessly pick up subtle, local-scale
changes to program control flow.

Simplifying a bit, the overall algorithm can be summed up as:
1. Load user-supplied initial test cases into the queue,
2. Take next input file from the queue,
3. Attempt to trim the test case to the smallest size that doesn't alter the measured behavior of the program,
4. Repeatedly mutate the file using a balanced and well-researched variety of traditional fuzzing strategies,

5. If any of the generated mutations resulted in a new state transition recorded by the instrumentation, add
mutated output as a new entry in the queue.

6. Go to 2.

The discovered test cases are also periodically culled to eliminate ones that have been obsoleted by newer,
higher-coverage finds; and undergo several other instrumentation-driven effort minimization steps.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Coverage-Guided Fuzzing (e.g. AFL)

Coverage-Guided Fuzzing with AFL

November 07, 2014
Pulling JPEGs out of thin air

This is an interesting demonstration of the capabilities of afl; I was actually pretty surprised that it worked!

$ mkdir in_dir ’—'r—wﬂr—vr—v[—w—v[—'y—u—u—]v—,v—w—n—ur—w—'ﬁy—vl—lﬂ:-;

$ echo 'hello' >in_dir/hello = = = = = oy —
$./afl-fuzz -i in_dir -o out_dir ./jpeg-9a/djpeg m [_] m = l—' m—" A W = l_! ‘_' ”rr ‘_t m I—’T,

_— ! il | | 1
r—,v—,—yr—-r—hrfqr;:ﬂwi:lﬁrm—vmﬁar—w;wmr_w_'m

o 1 I) - - - [

http://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

The bug-o-rama trophy case

Coverage-Guided Fuzzing with AFL

1JG jpeg ! libjpeg-turbo 1 2 libpng !
libtiff12345 mozjpeg PHP12345678
Mozilla Firefox 1234 Internet Explorer 1234 Apple Safari 1
Adobe Flash / PCRE1234567 sqlite 123 4= OpenSSL1234567
LibreOffice 123 4 poppler 2= freetype 1 2
GnuTLS ! GnuPG1234 OpenSSH12345
PuTTY12 ntpd 12 nginx123

bash (post-Shellshock) £ 2

tepdump 123456789

JavaScriptCore 123 4

pdfium 12

ffmpeg 12345

libmatroska *

libarchive 123456

BIND 123

wireshark X 2 3

QEMU12

ImageMagick 223456789

lems?

http://lcamtuf.coredump.cx/afl/

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

http://lcamtuf.coredump.cx/afl/

ClusterFuzz @ Chromium

@ bugs chromium ~ All issues ~ Q_ label:ClusterFuzz -status:Duplicate

1- 100 of 25423 Next » List

D v Pri v M~ Stars v ReleaseBlock ~ Component ¥ Status ~ Owner v
1133812 1 e 2 e BIink>GetUserMedi Untriaged = ---

1133763 1 - 1 - - Untriaged -

1133701 1 e 1 e Blink>JavaScript Untriaged = ---

1133254 1 - 2 - - Untriaged = ----

1133124 1 — 1 — —— Untriaged e

1133024 2 e 3 e Internals>Network Started dmcardle@ch

Ul>Accessibility, . . .
1132958 1 - 2 - Blink>Accessibility Assigned sin...@chromi

1132907 2 - 2 - Blink>JavaScript>GC Assigned dinfuehr@chr

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Can fuzzing be applied to unit testing?

* Where “inputs” are not just strings or binary files?

* Yes! Possible to randomly generate strongly typed values, data
structures, API calls, etc.

* Recall: Property-Based Testing

@Property
testSameLength(List<Integer> input) {
output = sort(input)

output.size() == input.size() :

ﬁ»;

Generators

Ra ndom |_ '| S t < I N t ege r> Exercise: Write a generator for

Creating random HashMap<String, Integer>

List 1ist = new ArraylList();

while (randomBoolean()) { // randomly stop/go
list.append(randomInt()); // random element

}

return list;

List 1ist = new ArraylList();

int len = randomInt(); // pick a random length
for (int 1 = 0 to len) {

list.append(randomInt()); // random element
}

return list;

= —
=7
ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Mutators

Mutator for list: List<Integer>

int K = randomInt(®, len(list));

int action = randomChoice(ADD, DELETE, UPDATE) ;

switch (action) {
case UPDATE: list.set(k, randomInt()); // update element at k
case ADD: list.addAt(k, randomInt()); // add random element at k
case DELETE: 1list.removeAt(k); // delete k-th element

Y

Exercise: Write a mutator
HashMap<String, Integer>

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

The Fuzzing Book

= The Fuzzing Book v About this Book v © Resources v ®, Share v © Help v

. The Fuzzing Book
httpS://WWW.fu ZZI ngbOOk-Org/ Tools and Techn s for Generating Software Tests

by Andreas Zelle{ Rahul Gopinath,

About this Book

Welcome to "The Fuzzing Book"! Software has bugs, and catching bugs can involve lots of effort. This book addresses this problem by automating
software testing, specifically by generating tests automatically. Recent years have seen the development of novel techniques that lead to dramatic
improvements in test generation and software testing. They now are mature enough to be assembled in a book - even with executable code.

arcel Bhme, Gordon Fraser, and Christian Holler

from bookutils import YouTubeVideo
YouTubeVideo("w4u5gCgPlmg")

THE UNIVERSITY OF

SYDNEY Study Research Engage with us. About us News & opinion Q

Faculty of Engineering

Study engineering Schools Ourresearch Industry and community ~ News and events About

& Home People_ e G 3 S T
enerating So re Tests
.
& About Dr Rahul Goplnath < Breaking Software for Fun an
Lecturer, School of Computer Science
& Our people
Email Address
& Academic staff rahul.gopinath@sydney.edu.au J12 - Computer Science Building
The University of Sydney
We
Rahul Gopinath eosites Watc Youlube
https:/rahul.gopinath.org
@_rahulgopinath
Blographical detals - A Textbook for Paper, Screen, and Keyboard
’ el
Rahul Gopinath is a Lecturer in the School of Computer science. His main research area lies in the junction You can use this book in four ways:
between Software Engineering and Cybersecurity. His research focus is on using static and dynamic program
analysis to improve reliability, security, and maintainability of software systems. X . X
* You can read chapters in your browser. Check out the list of chapters in the menu above, or start right away with the introduction to
show more . s - MY oo

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

https://www.fuzzingbook.org/

TESTING PERFORMANCE

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

’&’)c-

Performance Testing

* Goal: Identify performance bugs. What are these?

* Unexpected bad performance on some subset of inputs
* Performance degradation over time

e Difference in performance across versions or platforms

* Not as easy as functional testing. What’s the oracle?
e Fast = good, slow = bad // but what’s the threshold?

* How to get reliable measurements?

* How to debug where the issue lies?

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

erformance Regression Testing

* Measure execution time of critical components

* Log execution times and compare over time

Job 12e96643840000

Issue 808613 - Analyze benchmark results - 2.0 hours - 2/14/2018, 9:48:34 AM

Differences found after commits 490

Re-record loading.desktop story set by

ksakamoto@chromium.org 480

Job arguments

470
benchmark loading.desktop

chart cpuTimeToFirstMeaningfulPaint / —
. 460 /

chromiu I 11-pro

statistic avg

450
story Pantip

Re-record loading.desktop story set by ksakamoto@chromium.org
target telemetry_perf_tests

tir_label warm

wrace Pantip Build Test Values
AEEEESESESSSEEEEEEEE ESEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEE
builder Mac Builder task_id 3baeadbeaa7f1710 trace Pantip_2018-02-14_11-40-
. i 07_93865.html
isolate_hash ggggg;e(;a()e;1l.‘;2b60978db8823309 bot_id build197-b4 ace Pantlp. 2018.02-14_11-40-
isolate_hash ;;gs;zgggsggg%kc{ia%emam 42_21734.html

Source: https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/speed/addressing_performance_regressions.md

R
3
=
N/
=

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Firefox

A Study of Performance Variations
in the Mozilla Firefox Web Browser

¢« C @& aosabook.org Jan Larres! Alex Potanin! Yuichi Hirose?

ES ANU [E3 Bills E3 Blogs E3 Home E3 Mail B35

! School of Engineering and Computer Science
Email: {larresjan,alex}@ecs.vuw.ac.nz

2 School of Mathematics, Statistics and Operations Research
Email: hirose@msor.vuw.ac.nz
Victoria University of Wellington, New Zealand

Talne |

While hacking on the Talos harness in the summer of 2011 to add support for new platforms and tests, we encountered the results from Jan Larres's master’s thesis, in
which he investigated the large amounts of noise that appeared in the Talos tests. He analyzed various factors including hardware, the operating system, the file
system, drivers, and Firefox that might influence the results of a Talos test. Building on that work, Stephen Lewchuk devoted his internship to trying to statistically
reduce the noise we saw in those tests.

Based on their work and interest, we began forming a plan to eliminate or reduce the noise in the Talos tests. We brought together harness hackers to work on the

harness itself, web developers to update Graph Server, and statisticians to determine the optimal way to run each test to produce predictable results with
minimal noise.

ATVIOZINE; onerorour UEW Trsta - . . - . o - . - . .
modification since its inception i.. ... CANR0t asily be attributed to cither genuine chang romatec Seets el Wikh tis ha'anoe by alerv

B T Ll L e e LI e R LT R L L P

changed hands.

In the summer of 2011, we finally began to look askance at the noise and the variation in the Talos numbers, and we began to wonder how we could make some small
modification to the system to start improving it. We had no idea we were about to open Pandora’s Box.

In this chapter, we will detail what we found as we peeled back layer after layer of this software, what problems we uncovered, and what steps we took to address
them in hopes that you might learn from both our mistakes and our successes.

’ﬁ’) &

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

o]0)
C
=
O
el
ol

* Finding bottlenecks in execution time and memory

Flame Graph

* Flame graphs are a popular visualization of resource consumption
by call stack.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Apache JMeter Dashboard by UbikLoadPack ~

data_source jmeter_influx v application JMeter_demo v transaction JR_OK~ Start/stop marker

Summary

Total Requests Failed Requests Received Bytes Sent Bytes Error Rate %

2107 Requests Failed

Total Throughput Total Errors Active Threads ~

2018-04-10 16:03:40

Threads:

Num of Errors Threads

Transactions Response Times (95th pct)

http://ijmeter.apache.org

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

http://jmeter.apache.org/

Performance-driven Design

3 - Multithreading and QueuingArchitecture Simulator

&2 View Report
Evaluation Summary
[Property [value]

* Modeling and simulation

PY M h Scenario Scenariol
Number of users S
e-gn q ueu I ng t eory Transaction Generation Rate 3
Actual Simulation Load
Actual Network Load 0 =0
No, of System Transactions Generated {5T1=24, ST2=24}

No. of System Transactions Completed {5T1=24, 5T2=24}

* Specify load distributions L "
and derive or test configurations

Asset
Database

Overview Acme Source | ClientServer |

m&« Problems ‘ Acme Performance Simulator View Acme Security Simulator Yiew ¥ =08

Rules - Specify Performance Properties
Structure Performance Yalues | Error Handling
Types Response Range (Seconds) System Resources
Consumed (in %) 5.0
Representations Transaction Complexity | Yery Simple Simple Average
Errors Minimum Value | 1.02 1.041 [1.06 [Mukihreaded [Queve
e Maximum Value | 1,03 | 1.0 | 1.07 Max, Threads: Queue Size:
Visuals .
e S 100
Performance —
Specify Performance Properties
1) Performance Values | Etror Handling
Error Handling
Errors Selected Parameters [value Error Handling Mechanism
Process Crash Successful system trans. (%) [99 Connect to another Thread, Log v

W

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Stress testing

* Robustness testing technique: test beyond the limits of normal
operation.

e Can apply at any level of system granularity.

e Stress tests commonly put a greater emphasis on robustness,
availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal
circumstances.

Soak testing

* Problem: A system may behave exactly as expected under
artificially limited execution conditions.

* E.g., Memory leaks may take longer to lead to failure (also motivates static/dynamic
analysis, but we’ll talk about that later).

* Soak testing: testing a system with a significant load over a
significant period of time (positive).
* Used to check reaction of a subject under test under a possible

simulated environment for a given duration and for a given
threshold.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Slides credit Christopher Meiklejohn

CHAOS ENGINEERING

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

N 4
sl

° ° ° ° ; snsgf \
Monolithic Application :co?ﬁﬁé

What kind of failures can happen
here?

PostgreSQL ML Model

How likely is that error to

happen?
Mayan EDMS
Container How do | fix it?
—
[]

Microservice

OOOOOOOOOOOOOOOOOOOOO

Microservice Application

Mayan EDMS

Remember, these calls are
messages sent on an
unreliable network.

PostgreSQL ML Model w
—

Container Container

Container

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

CRICOS PROVIDER #00120C

Failures in Microservice Architectures

1.Network may be partitioned

All of these issues
can be indistinguishable
from one another!

2.Server instance may be down

Making the calls across the network
to multiple machines makes the
probability that the system is
operating under failure much

3.Communication between services may be delayed higher.

These are the problems of
latency and partial failure.

4.Server could be overloaded and responses delayed

5.Server could run out of memory or CPU

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS
CRICOS PROVIDER #00120C

Where Do We Start?

How do we even begin to test these scenarios?

Is there any software that can be used to test these types of failures?

Let’s look at a few ways companies do this.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Game Days

Purposely injecting failures into critical systems in order to:

* |dentify flaws and “latent defects”

 |dentify subtle dependencies (which may or may not lead to a flaw/defect)
* Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Game Days

Our applications are built on and with “unreliable” components

Failure is inevitable (fraction of percent; at Google scale, “multiple times)

Goals:

* Preemptively trigger the failure, observe, and fix the error

* Script testing of previous failures and ensure system remains resilient

e Build the necessary relationships between teams before disaster strikes

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Example: Amazon GameDay

Full data center destruction (Amazon EC2 region)

No advanced notice of which data center will be taken offline

No notice ¢ Not all failures can be actually |be taken offline

performed and must be . .
Only advar simulated! ameDay will be happening

Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for detecting
errors and paging employees was located in the zone of the failure!

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Cornerstones of Resilence

1.Anticipation: know what to expect
2.Monitoring: know what to look for
3.Response: know what to do

4.Learning: know what just happened
(e.g, postmortems)

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Some Example Google Issues

Terminate network in Sao Paulo for testing:

 Hidden dependency takes down links in Mexico which would
have remained undiscovered without testing

Turn off data center to find that machines won’t come back:

e Ran out of DHCP leases (for IP address allocation) when a large
number of machines come back online unexpectedly.

Netflix: Cloud Computing

'ENGINEERING

o,

Significant deployment in Amazon Web Services in order to remain

elastic in times of high and low load (first public, 100% w/o content
delivery.)

Pushes code into production and modifies runtime configuration
hundreds of times a day

Key metric: availability

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

0
\

Chaos monkey/Simian army

* A Netflix infrastructure testing system.

e “Malicious” programs randomly trample on components, network,
datacenters, AWS instances...
* Chaos monkey was the first — disables production instances at random.

e Other monkeys include Latency Monkey, Doctor Monkey, Conformity Monkey, etc...
Fuzz testing at the infrastructure level.

* Force failure of components to make sure that the system architecture is resilient to
unplanned/random outages.

* Netflix has open-sourced their chaos monkey code.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Netflix Ul: AppBoot

What happens if the
bookmark service is down?

Bookmarks User Profiles Ratings Recommendations

=» Remote Call

. Microservice

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Graceful Degradation: Anticipating Failure BZ=
;sncmssem

Allow the system to degrade in a way it’s still usable

Fallbacks:
* Cache miss due to failure of cache;

* Go to the bookmarks service and use value at possible latency penalty

Personalized content, use a reasonable default instead:
* What happens if recommendations are unavailable?

 What happens if bookmarks are unavailable?

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Principles of Chaos Engineering

1.Build a hypothesis around steady state behavior

2.Vary real-world events
experimental events, crashes, etc.

3.Run experiments in production
control group vs. experimental group
draw conclusions, invalidate hypothesis

4.Automate experiments to run continuously

Does everything seem to
be working properly?

Are users complaining?

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Steady State Behavior

Back to quality attributes: availability!

SPS is the
primary
indicator
of the system’s
overall health.

17:30 20:15 23:00 01:45 04:30 07:15 10:00 12:45 15:00

Time

FIGURE 2. A graph of SPS ([stream] starts per second) over a 24-hour period. This
metric varies slowly and predictably throughout a day. The orange line shows the trend
for the prior week. The y-axis isn't labeled because the data is proprietary.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Mini Break in Monday Lecture

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

TESTING USABILITY

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

’59)..:.

Automating GUI/Web Testing

* This is hard
e Capture and Replay Strategy

°* mouse actions

e system events
e Test Scripts: (click on button labeled "Start" expect value X in field
Y)
* Lots of tools and frameworks

e e.g. Selenium for browsers

* (Avoid load on GUI testing by separating model from GUI)
* Beyond functional correctness?

MP 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Manual Testing

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID

User Action

System Response

Go to Main Menu

Main Menu appears

Go to Messages Menu

Message Menu appears

Select “Create new Mes-
sage”

Message Editor screen
opens

Add Recipient

Recipient is added

Select “Insert Picture”

Insert Picture Menu opens

Select Picture

Picture 1s Selected

Select “Send Message”

Message is correctly sent

* Live System?

Extra Testing System?

Check output / assertions?
Effort, Costs?
Reproducible?

* Higher Quality Feedback to Developers

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Usability: A/B testing

* Controlled randomized experiment with two variants, A and B,
which are the control and treatment.

* One group of users given A (current system); another random
group presented with B; outcomes compared.

e Often used in web or GUI-based applications, especially to test
advertising or GUIl element placement or design decisions.

Example

* A company sends an advertising email to its customer database,
varying the photograph used in the ad...

Example: group A (99% of users)

Example: group B (1%)

A/B Testing

* Requires good metrics and statistical tools to identify significant
differences.

 E.g. clicks, purchases, video plays

* Must control for confounding factors

What smells?

class Foo {
intra;rint b

boolean equals(Object other) {
Foo foo (Foo) other;
(foo null)
(foo.a this.a)
false;
(foo.b this.b)
true;
false;

int a() {
this.a():

int b() {
this.b();

=7

CRICOS PROVIDER #00120C

What smells?

int dtlsl_process_heartbeat(SSL *s)
{
unsigned char xp = &s->s3->rrec.data[0], *pl;
unsigned short hbtype;
unsigned int payload;
unsigned int padding = 16;

hbtype = *p++;
n2s(p, payload);
pl = p;

(s—>msg_callback)

s—>msg_callback(@, s—>version, TLS1_RT_HEARTBEAT,
&s->s3->rrec.data[0], s->s3->rrec.length,
s, s—->msg_callback_arg);

(hbtype == TLS1_HB_REQUEST)
{

unsigned char *buffer, xbp;
int r;

buffer = OPENSSL_malloc(1 + 2 + payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);

memcpy (bp, pl, payload);
bp += payload;

RAND_pseudo_bytes(bp, padding);

r = dtlsl_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);

CRICOS PROVIDER #00120C

Static Analysis

* Try to discover issues by analyzing source code. No need to run.

e Defects of interest may be on uncommon or difficult-to-force
execution paths for testing.

* What we really want to do is check the entire possible state
space of the program for particular properties.

Defects Static Analysis can Catch

* Defects that result from inconsistently following simple design
rules.

e Security: Buffer overruns, improperly validated input.
 Memory safety: Null dereference, uninitialized data.
Resource leaks: Memory, OS resources.
API Protocols: Device drivers; real time libraries; GUI frameworks.
Exceptions: Arithmetic/library/user-defined
Encapsulation: Accessing internal data, calling private functions.

Data races: Two threads access the same data without synchronization

Key: check compliance to simple, mechanical design rules

& github.com/marketplace?category=code-quality
Search or jump to... Pull requests Issues Marketplace Explore

Marketplace = Search results

Types Q

Apps .
Code quality

Actions
Automate your code review with style, quality, security, and test-coverage checks when you need them.

245 results filtered by Code quality x
Categories

API management CodeScene G TestQuatty &
cs i tize Modern, powerfu

Chat

CodeFactor & Restyled.io &

Code review - Automated code review for GitHub Restyle Pull Requ

Continuous integration

DeepScan &
Advanced static a
nding runtime err

Dependency management
Deployment
IDEs

Datree &

Learning cy enforcement tion for confident
r ««,‘Yﬂ‘rl t code

Localization

Mobile DeepSource & Code Inspector &
t a e Quality, Code Re:
Monitoring curit rab ore the! u evaluation made easy
Project management
Codecov & codebeat &
e

e and compare coverage

Publishing
ert on demand
Recently added ated for mobile and

Security Codacy & Better Code Hub &
Automated ¢ 3 > Be D on
Support developers ship better softw ste Code Quality

Testing Code Climate & Coveralls &

Ensure that new code
Utilities

Filters v

Verification

codelingo

verified Your Code, Your Rules -

Unverified

Your items A

Purchases
Also recommended for you

ps+//github-com/marketptace?category=code-quatity

CRICOS PROVIDER #00120C

https://github.com/marketplace?category=code-quality

package com.google.devtools.staticanalysis;
public class Test {
~ Lint Missing a Javadoc comment.
Please fix Not useful

public boolean foo() {
return getString() == "foo".toString():;

/ldepot/google3d/java/com/google/devtools/staticanalysis/Test.java

package com.gocgle.devtools.staticanalysis; package com.google.devtools.staticanalysis;

import java.util.Objects;
public class Test { public class Test {
public boolean foo() {
return Objects.equals(getString(), "foo".toString());

public boolean foo() {
return getString() =

= "foo".toString():;
} }
public String getString() {
return new String("foo");
} }
}

___f_i____1 Cancel

public String getString() {
return new String("foo");

CRICOS PROVIDER #00120C

How do they work?

unsigned char *p = &s->s3->rrec.datal[0], *pl;

Foo foo (Foo) other;

lean mie11) n2s(p, payload);

1awoT)

(foo.b this.b)

buffer = OPENSSL_malloc(1l + 2 + payload + padding);
bp = buffer;

= € or type |
*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);
memcpy (bp, pl, payload);

]
1
1
1
1
1
1
]
]
1
p
Z

CRICOS PROVIDER #00120C

Two fundamental concepts

e Abstraction.

* Elide details of a specific implementation.

* Capture semantically relevant details; ignore
* Programs as data.

* Programs are just trees/graphs!

 ...and we know lots of ways to analyze trees/graphs, right?

Defining Static Analysis

 Systematic examination of an abstraction of program state space.

* Does not execute code! (like code review)

* Abstraction: A representation of a program that is simpler to
analyze.

* Results in fewer states to explore; makes d

* Check if a particular property holds over the entire state space:
* Liveness: “something good eventually happens.”
» Safety: “this bad thing can’t ever happen.”

 Compliance with mechanical design rules.

The Bad News: Rice's Theorem

Every static analysis is necessarily incomplete or unsound or undecidable (or multiple of theSt

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

SIMPLE SYNTACTIC AND STRUCTURAL ANALYSES

Type Analysis

public void| foo() {
int a = computeSomething();

if (a_==_"5")
doMoreStuff();

Abstraction: abstract syntax tree

* Tree representation of the syntactic
structure of source code.

* Parsers convert concrete syntax into abstract syntax,
and deal with resulting ambiguities.

* Records only the semantically relevant
information.

* Abstract: doesn’t represent every detail (like Example: 5 + (2 + 3)

parentheses); these can be inferred from the
structure.

* (How to build one? Take compilers!)

Type checking

class X {
Logger logger;
public void foo() {

if (logger.inDebug()) {
logger.debug(“We have " +
conn + “connections.”);
method

} invoc.

}
}

class Logger { _
boolean inDebug() {..} logger IlnDebug

void debug(String msg) {..}

class X

method
foo

if stmt

ooco o IR

block

parameter ...

CRICOS PROVIDER #00120C

Syntactic Analysis

Find every occurrence of this pattern:

public foo() {

logger.debug(“We have ” + conn + “connections.”);

) public foo() {

if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}
}

"If \(logger\.inDebug" . -r

Abstract syntax tree walker

* Check that we don’t create strings outside of a Logger . inDebug check

* Abstraction:

* Look only for calls to Logger .debug()

* Make sure they’re all surrounded by if (Logger.inDebug())
» Systematic: Checks all the code

* Known as an Abstract Syntax Tree (AST) walker
* Treats the code as a structured tree
* |gnores control flow, variable values, and the heap
* Code style checkers work the same way

Structural Analysis

class X {

Logger logger;
public void foo() {

if (logger.inDebug()) {
logger.debug(“We have 7 +
conn + “connections.”);

}
}

}
class Logger {

boolean inDebug() {..}
void debug(String msg) {..}

}

class X

||ifStﬁW
—

method block
invocC

| inDebug . _method

CRICOS PROVIDER #00120C

Structural analysis for possible NPEs?

(foo null)

Which of these should be flagged for NPE?

Surely safe? Surely bad? Suspicious?
/ Limitations of structural analysis

(foo null) 1 (foo null)
foo.al(); 2 foo Foo();
foo.b(); 3 fo0o0.b();

B

(foo null)
foo.a();

(foo null)
foo.a();

foo Foo(); T

foo.b();

CONTROL-FLOW AND DATA-FLOW ANALYSIS

Control/Dataflow analysis

e Reason about all possible executions, via paths through a control
flow graph.
* Track information relevant to a property of interest at every program point.

* Define an abstract domain that captures only the values/states
relevant to the property of interest.

* Track the abstract state, rather than all possible concrete values,
for all possible executions (paths!) through the graph.

Control flow graphs

1. a=5+ (2 + 3)
2. if (b > 10) {

* A tree/graph-based representation of . y o v

the flow of control through the °- return &

program.
* Captures all possible execution paths.

. . . . a=5+(2+3)
* Each node is a basic block: no jumps in

or out.

* Edges represent control flow options
between nodes.

* Intra-procedural: within one function.

 cf. inter-procedural

How can CFG be used to identity
this issue?

public int foo() {
doStuff():

return 3;

doMoreStuff();
return 4;

(foo
foo.a();
foo.b();

(foo
foo.a();

foo

foo.b();

NPE analysis revisited

null)

null)

Foo();

1 (foo
2 foo
3 foo.b();

null)
Foo();

B

(foo null)
foo.a();

foo.b();

Abstract Domain for NPE Analysis

* Mapof Var -> {Null, NotNull, Unknown}

* For example:
foo -> Null
bar -> NonNull
baz -> Unknown

* Mapping tracked at every program point (before/after each CFG node). Updated
across nodes and edges.

e //let’'ssay foo -> Null and bar->Null

foo = new Foo();
// at this point, we have foo -> NotNull and bar -> Null

Data-Flow Analysis Examples

if (foo != null)

Data-Flow Analysis Examples

{foo -> Unknown}

if (foo != null)

{foo -> NOtNUll}M

foo.a()

{foo -> Null}

fo00.b()

ERROR!'!IT]

(foo null)

foo.a();

foo.b();

Data-Flow Analysis Examples

if (foo != null)

T se

foo = new Foo()

“\\\\\\\“’/’/,,/f’*

(foo null)
foo.a();

foo Foo();

foo.b();

Data-Flow Analysis Examples

{foo -> Unknown}

if (foo != null)

{foo -> NOtNull}M {foo -> Null}

foo.a() foo = new Foo()

{foo -> NotNull} 55 {foo -> NotNull}
v -> NotNull}

foo.b()

{foo -> NotNulli (fOO null)
foo.al();

2
3
4 foo Foo();
5
6

foo.b();

Data-Flow Analysis Examples

Exercise: Work this out for yourself. Is foo.b() safe?

(foo null)
foo Foo();

Data-Flow Analysis Examples

if (foo == null)
Then Else

foo = new Foo()

foo.b()

Data-Flow Analysis Examples

{foo -> Unknown}

if (foo == null)

{foo -> Null} Then Else {foo -> NotNull}

foo = new Foo()

{foo -> NotNull} {foo -> NotNull}
{foo -> NotNull}

foo.b()

{foo -> NotNull}

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Interpreting abstract states

* “Null” means “must be NULL at this point, regardless of path taken”

* “NotNull” is similar
* “Unknown” means “may be NULL or not null depending on the path taken”

Unknown must be dealt with due to Rice’s theorem

e Can make analysis smarter (at the cost of more algorithmic complexity) to reduce Unknowns, but can’t
get rid of them completely

* Whether to raise a flag on UNKNOWN access depends on usability/soundness.

* False positives if warning on UNKNOWN
* False negatives if no warning on UNKNOWN

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Sound Analysis

Complete
Analysis

Unsound
and
Incomplete
Analysis

E View PDF Download Full Issue

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Science of Computer Programming
Volurme 76, Issue 7, 1 July 2011, Pages 587-608

ELSEVIER

Formalisation and implementation of an
algorithm for bytecode verification of
@NonNull types

Chris Male 3, David J. Pearce & &, Alex Potanin &, Constantine Dymnikov =

Show more v

+ Add to Mendeley «3 Share 33 Cite

https://doi.org/10.1016/j.scico.2010.10.004 Get rights and content

linder an Flsevier nser license hen archive
&aﬁ

Examples of Data-Flow Anlayses

* Null Analysis
e Var ->{Null, NotNull, UNKNOWN}

e Zero Analysis

e Var ->{Zero, NonZero, UNKNOWN}
 Sign Analysis

e Var ->{-, +,0, UNKNOWN}
* Range Analysis

* Var->{[0,1],[1, 2], [0, 2], [2, 3], [0, 3], ..., UNKNOWN}
e Constant Propagation

* Var->{1,2,3, .., UNKNOWN}
* File Analysis

* File -> {Open, Close, UNKNOWN}
* Tons morell!!

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Data-Flow Analysis: Challenges

* Loops
* Fixed-point algorithms guarantee termination at the cost of losing information (“Unknown”)
* Functions

* Analyze them separately or analyze whole program at once

» “Context-sensitive” analyses specialize on call sites (think: duplicate function body for every
call site via inlining)

* Recursion
* Makes context-sensitive analyses explode (cf. loops)

* Object-oriented programming
* Heap memory

* Need to abstract mapping keys not just values
* Exceptions

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Static Analysis vs. Testing

* Which one to use when?
* Points in favor of Static Analysis

* Don’t need to set up run environment, etc.
* Can analyze functions/modules independently and in parallel

* Don’t need to think of (or try to generate) program inputs

* Points in favor of Testing / Dynamic Analysis

* Not deterred by complex program features

e Can easily handle external libraries, platform-specific config, etc.

* |deally no false positives

* Easier to debug when a failure is identified

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Key Points

e Describe random test-input generation strategies such as fuzz
testing

* Write generators and mutators for fuzzing different types of values

* Characterize challenges of performance testing and suggest
strategies

e Reason about failures in microservice applications

* Describe chaos engineering and how it can be applied to test
resiliency of cloud-based applications

* Describe A/B testing for usability

P 2120 / COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

Key Points

* Give a one sentence definition of static analysis. Explain what types of bugs
static analysis targets.

* Give an example of syntactic or structural static analysis.
e Construct basic control flow graphs for small examples by hand.

* Give a high-level description of dataflow analysis and cite some example
analyses.

e Explain at a high level why static analyses cannot be sound, complete, and
terminating; assess tradeoffs in analysis design.

* Characterize and choose between tools that perform static analyses.

* Contrast static analysis tools with software testing and dynamic analysis tools as
a means of catching bugs.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 11 OF 12: STATIC ANALYSIS

