Week: COMP 2120/ COMP 6120
12 of 12

OPEN SOURCE

ANU Acknowledgment of Country

Shop Search Q

3] AlATSIS Explore Family history Collection Research Education What's new About

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

S O

.
= LUGhH
" ? Ridwp" Leaflet | Rendered with MapTiler Desktop

https://aiatsis.gov.au/explore/map-indigenous-australia

". J
=
2 ANU SCHOOL OF COMPUTING | COMP 2120/COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

https://aiatsis.gov.au/explore/map-indigenous-australia

Open source development

* Open source development is an approach to software
development in which the source code of a software system is
published and volunteers are invited to participate in the
development process

* lts roots are in the Free Software Foundation (www.fsf.org), which
advocates that source code should not be proprietary but rather
should always be available for users to examine and modify as they
wish.

* Open source software extended this idea by using the Internet to
recruit a much larger population of volunteer developers. Many of
them are also users of the code.

P 2120 / COMP 6120 | WEEK 12 OF 12: OPEN SOURCE
CRICOS PROVIDER #00120C

Open source systems

* The best-known open source product is, of course, the Linux
operating system which is widely used as a server system and,
increasingly, as a desktop environment.

e Other important open source products are Java, the Apache web
server and the mySQL database management system.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE CCCCC S PROVIDER #00120C

Open source issues

* Should the product that is being developed make use of open
source components?

e Should an open source approach be used for the software’s
development?

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE CCCCC S PROVIDER #00120C

Open source business

* More and more product companies are using an open sourc
approach to development.

* Their business model is not reliant on selling a software product
but on selling support for that product.

* They believe that involving the open source community will allow
software to be developed more cheaply, more quickly and will
create a community of users for the software.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE CCCCC S PROVIDER #00120C

Open source licensing

s N

* A fundamental principle of open-source development is that
source code should be freely available, this does not mean that
anyone can do as they wish with that code.

* Legally, the developer of the code (either a company or an individual) still owns the
code. They can place restrictions on how it is used by including legally binding
conditions in an open source software license.

 Some open source developers believe that if an open source component is used to
develop a new system, then that system should also be open source.

* Others are willing to allow their code to be used without this restriction. The
developed systems may be proprietary and sold as closed source systems.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE

o |
TN o A \
Software Engineering

License models

* The GNU General Public License (GPL). This is a so-called ‘reciprocal’ license that means that if

you use open source software that is licensed under the GPL license, then you must make that
software open source.

 The GNU Lesser General Public License (LGPL) is a variant of the GPL license where you can write
components that link to open source code without having to publish the source of these
components.

* The Berkley Standard Distribution (BSD) License. This is a non-reciprocal license, which means
you are not obliged to re-publish any changes or modifications made to open source code. You
can include the code in proprietary systems that are sold.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE CRICOS PROVIDER #00120C

License management

e Establish a system for maintaining information about open-source
components that are downloaded and used.

* Be aware of the different types of licenses and understand how a
component is licensed before it is used.

e Be aware of evolution pathways for components.
* Educate people about open source.

* Have auditing systems in place.

* Participate in the open source community.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12:

9

OPEN SOURCE CCCCC S PROVIDER #00120C

“Free as in free speech.”

Open Source

aka Free Software
aka Free and Open Source Software

Open Source

CAMUNDA = GitHub

COMCAST

= B® Microsoft ,

n Open Source Initiative

ABOUT v LICENSES v MEMBERSHIP v COMMUNITY v RESOURCES v NEWSREVENTS v

0SI Corporate Sponsors & Support

The following c ies ar rously supporting the OSI. Supporter
il | Cal.com
Ee= ; @ Opentogic
Anchor 1
G] Partner
oogle | fhvs o0 5 [
1 Crowd!
DLA PIPER
Premier ! ; O'REILLY" ¢ open collective - public[EET-
LookiotheRight
!
dlii]ie & Redhat ® OSUUCELASS § ceNTRY -

cisco |

O e n S O u rC e oanv“ o .ﬂr"(“ o
DRIVEN [E Erlang 5

= Solutions loadyiew i west ng

Initiative -

12 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Free Software vs Open Source

* Free software origins (70-80s ~Stallman)

+ Cultish Political goal
» Software part of free speech

* free exchange, free modification

* proprietary software is unethical

* security, trust G N U/Ll NUX

* GNU project, Linux, GPL license
* Open source (1998 ~ O'Reilly)

* Rebranding without political legacy
* Emphasis on internet and large dev./user involvement
* Openness toward proprietary software/coexist

* (Think: Netscape becoming Mozilla)

13 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Free Software vs

Introduction

Open source doesn't just mean access to the source code. The distribution terms of open-source software must comply with the
l | following criteria:

1. Free Redistribution
* The freedom to run the program as you e L R e e e S S
wish, for any purpose (freedom 0). 2. Source Code

The program must include source code, and must allow distribution in source code as well as compiled form. Where some form of a
product is not distributed with source code, there must be a well-publicized means of obtaining the source code for no more than a

* The freedom to study how the program e e R S e R s
. . the output of a preprocessor o translator are not allowed.
works, and change it so it does your ;s berived Worke
C O m p u t I n g a S yo u W I S h (fre e d O m 1) . AC C e S S :?:hliecZ:\isg?nr:luss:;\l:’::«ernodiﬁcations and derived works, and must allow them to be distributed under the same terms as the license
to the source code is a precondition for this. 4 integrityof the authors source code

The license may restrict source-code from being distributed in modified form only if the license allows the distribution of "patch
files" with the source code for the purpose of modifying the program at build time. The license must explicitly permit distribution of

 Th e f ree d om tore d istri b ute co P ies so you e L o et ot e o

the original software.

Ca N h e | p yO LI N e |g h bO r (free d O m 2) . 5. No Discrimination Against Persons or Groups

The license must not discriminate against any person or group of persons.

* The freedom to distribute copies of your 6. No Discrimination Against Fields of Endeavor
The license must not restrict anyone from making use of the program in a specific field of endeavor. For example, it may not restrict

m O d ifi e d Ve rs i O n S to Ot h e rS (fre e d O m 3) . By the program from being used in a business, or from being used for genetic research.
dOl ng th |S you can g|ve the Whole 7. Distribution of License

The rights attached to the program must apply to all to whom the program is redistributed without the need for execution of an

community a chance to benefit from your ==

8. License Must Not Be Specific to a Product

changes. Access to the source code is a YT

program is extracted from that distribution and used or distributed within the terms of the program's license, all parties to whom

p r-e CO n d i t i O n fo r t h i S the program is redistributed should have the same rights as those that are granted in conjunction with the original software
. distribution.

9. License Must Not Restrict Other Software

The license must not place restrictions on other software that is distributed along with the licensed software. For example, the
license must not insist that all other programs distributed on the same medium must be open-source software.

10. License Must Be Technology-Neutral ==

No provision of the license may be predicated on any individual technology or style of interface.

14 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

The Cathedral and the Bazaar

15

https://www.tesla.com/blog/all-our-patent-are-belong-you

All Our Patent Are Belong To You

Elon Musk, CEO - June 12, 2014

Yesterday, there was a wall of Tesla patents in the lobby of our Palo Alto headquarters. That is no
longer the case. They have been removed, in the spirit of the open source movement, for the
advancement of electric vehicle technology.

Tesla Motors was created to accelerate the advent of sustainable transport. If we clear a path to the
creation of compelling electric vehicles, but then lay intellectual property landmines behind us to
inhibit others, we are acting in a manner contrary to that goal. Tesla will not initiate patent lawsuits
against anyone who, in good faith, wants to use our technology.

When | started out with my first company, Zip2, | thought patents were a good thing and worked
hard to obtain them. And maybe they were good long ago, but too often these days they serve
merely to stifle progress, entrench the positions of giant corporations and enrich those in the legal
profession, rather than the actual inventors. After Zip2, when | realized that receiving a patent really
just meant that you bought a lottery ticket to a lawsuit, | avoided them whenever possible.

At Tesla, however, we felt compelled to create patents out of concern that the big car companies
would copy our technology and then use their massive manufacturing, sales and marketing power
to overwhelm Tesla. We couldn’t have been more wrong. The unfortunate reality is the opposite:
electric car programs (or programs for any vehicle that doesn’t burn hydrocarbons) at the major
manufacturers are small to non-existent, constituting an average of far less than 1% of their total
vehicle sales.

At best, the large automakers are producing electric cars with limited range in limited volume. Some
produce no zero emission cars at all.

Given that annual new vehicle production is approaching 100 million per year and the global fleet is
approximately 2 billion cars, it is impossible for Tesla to build electric cars fast enough to address
the carbon crisis. By the same token, it means the market is enormous. Our true competition is not
the small trickle of non-Tesla electric cars being produced, but rather the enormous flood of gasoline
cars pouring out of the world’s factories every day.

We believe that Tesla, other companies making electric cars, and the world would all benefit from a
common, rapidly-evolving technology platform.

Technology leadership is not defined by patents, which history has repeatedly shown to be small
protection indeed against a determined competitor, but rather by the ability of a company to attract
and motivate the world’s most talented engineers. We believe that applying the open source
philosophy to our patents will strengthen rather than diminish Tesla’s position in this regard.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Tables have turned

-2

February 3, 1976

An Open Letter to Hobbyists

To me, the most critical thing in the hobby market right now
is the lack of good software courses, books and software itself.
Without good software and an owner who understands programming, a
hobby computer is wasted. Will quality software be written for the
hobby market?

Almost a year ago, Paul Allen and myself, expecting the hobby
market to expand, hired Monte Davidoff and developed Altair BASIC.
Though the initial work took only two months, the three of us have
spent most of the last year documenting, improving and adding fea-
tures to BASIC. Now we have 4K, 8K, EXTENDED, ROM and DISK BASIC.
The value of the computer time we have used exceeds $40,000.

The feedback we have gotten from the hundreds of people who
say they are using BASIC has all been positive. Two surprising
things are apparent, however. 1) Most of these "users" never bought
BASIC (less than 10% of all Altair cwncrc have bought BASIC), and
2) The amount of royalties we have received from sales to hobbyists
makes the time spent of Altair BASIC worth less than $2 an hour.

Why is this? As the majority of hobbyists must be aware, most
of you steal your software. Hardware must be paid for, but soft-
ware is something to share. Who cares if the people who worked on
it get paid?

Is this fair? One thing you don't do by stealing software is
get back at MITS for some problem you may have had. MITS doesn't
make money selling software. The. royalty paid to us, the manual,
the tape and the overhead make it a break-even operation. One thing
you do do is prevent good software from being written. Who can af-
ford to do professional work for nothing? What hobbyist can put
3-man years into programming, finding all bugs, documenting his pro-
duct and distribute for free? The fact is, no one besides us has
invested a lot of money in hobby software. We have written 6800
BASIC, and are writing 8080 APL and 6800 APL, but there is very lit-
tle incentive to make this software available to hobbyists. Most
directly, the thing you do is theft.

What about the guys who re-sell Altair BASIC, aren't they mak-
ing money on hobby software? Yes, but those who have been reported
to us may lose in the end. They are the ones who give hobbyists a
bad name, and should be kicked out of any club meeting they show up
at.

I would appreciate letters from any one who wants to pay up, or
has a suggestion or comment. Just write me at 1180 Alvarado SE, #l14,
Albuquerque, New Mexico, 87108. Nothing would please me more than
being able to hire ten programmers and deluge the hobby market with

good software. BM /jﬂﬁ

Bill Gates
General Partner, Micro-Soft

Redmond top man Satya Nadella: "Microsoft
LOVES Linux'

Open-source 'love' fairly runneth over at cloud event

—

N |,

20 Oct 2014 at 23:45, Neil McAllister

e O 0 O

17

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

UNDERSTANDING LICENSES
NOTE: IANAL (1 Am NOT A LAWYER)

19

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

CRICOS PROVIDER #00120C

=

F
= -
=

7o

idions A
ENGINEERING

 Companies will avoid certain licenses — commonly the copyleft
licenses

Why learn about licenses?

* Specific licenses may provide competitive advantages

* You may eventually want to release open source software or
become more involved in an open source project

Open Source Licenses

D

MIT License 24%
GNU General Public License (GPL) 2.0 23%
Apache License 2.0 16%
GNU General Public License (GPL) 3.0 9%
BSD License 2.0 (3-clause, New or Revised) License 6%
GNU Lessor General Public License (LGPL) 2.1 5%
Artistic License (Perl) 4%
GNU Lesser General Public License (LGPL) 3.0 2%
Microsoft Public License 2%
Eclipse Public License 2%

List from: https://www.blackducksoftware.com/resources/data/top-20-open-source-licenses

21 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

License

* Nobody should be restricted by the software they use. There are
four freedoms that every user should have:

* the freedom to use the software for any purpose,
* the freedom to change the software to suit your needs,
* the freedom to share the software with your friends and neighbors, and

* the freedom to share the changes you make.
* Code must be made available

* Any modifications must be relicensed under the same license
(copyleft)

22 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

GPL 2.0 and 3.0 — Addresses | s |

QOFTWARE @

free software problems ENGINEERING

e 2.0 - Court ruling cannot nullify the license and if a court decision
and this license contradict in distribution requirements, then the
software cannot be distributed

* 3.0 — patent grant and prevent Tivoization

* Not compatible with each other; Can’t copyleft both at the same
time — phrase: “GLP Version 3 or any later version”

=

)
= -
=

Why would projects choose one license

over another?

=

I Home l Insert Design

Cut l:] EE
53 Copy
Paste) New
- J Format Painter || sjige ~
Clipboard e} Sli

[Sides (Qutine ™ x|

Why would prajects chaose one
Beense over anoter®

*hmecass cemz cem e

Dual License Business Model

MysoL

<Orcomaaries can sy 52,000 & $10.000
amnaan = eceveacesy SINESL w2
ey

Non-Compatible Licenses

* 3um cpon et CponCfian, But when Sum
aszuist by Cracie, Oadle smpomnly £2met
Bepmjet

OpenSourcelecture.pptx - Microsoft PowerPoi...

|

Animations

[® Google 4 x ¥ M Inbox (1,6 x ¥ @) Tuesday 4 x

Drawing Tools

Slide Show Review View Format

B Grad Sche x ¥ R (6421 unre x Y {7} Licenses - x

G mozilla- ¢ X J {?} Licenses -

x

€ - C' [9 choosealicense.com/licenses/

Apache

A permissive license that also provides an express
grant of patent rights from contributors to users.

GPL

GPL is the most widely used free software license
and has a strong copyleft requirement. When
distributing derived works, the source code of the
work must be made available under the same
license.

Required

@ License and copyright
notice

@ State Changes

Permitted

® Commercial Use
@ Distribution

® Modification

@ Patent Use

® Private Use

® Sublicensing

View full Apache License 2.0 license »

GNU Affero GPL v3.0

Required
@ Disclose Source

@ License and copyright
notice

@ State Changes

Forbidden

@ Hold Liable
@ Use Trademark

GNU GPL v2.0 GNU GPL v3.0

Permitted

® Commercial Use

® Distribution
® Modification
® Patent Use
@ Private Use

Forbidden
@ Hold Liable

O

1:31PM

= e BE O al gl x

12/1/2015

9 SR E SR R b 7R Y SRERTICEN e e MEenses/]

CRICOS PROVIDER #00120C

Dual License Business Model o
QOFTWARE

'ENGINEERING
* Released as GPL which requires a company using the open source product to open |
source it’s application

* Or companies can pay $2,000 to $10,000 annually to receive a copy of MySQL with a

more business friendly license
A)

MySQolL:

25 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

a4
b

Risk: Incompatible Licenses EOFW
JENGINEERING

* Sun open sourced OpenOffice, but when Sun was acquired by:»
Oracle, Oracle temporarily stopped the project.

 Many of the community contributors banded together and created
LibreOffice

* Oracle eventually released OpenOffice to Apache

e LibreOffice changed the project license so LibreOffice can copy
changes from OpenOffice but OpenOffice cannot do the same due

to license conflicts

=

)
= -
=7

MIT License

* Must retain copyright credit
e Software is provided as is
e Authors are not liable for software

e No other restrictions

LGPL

e Software must be a library
* Similar to GPL but no copyleft requirement

_—
Wt |

ENGINEERING

BSD License

* No liability and provided as is.
* Copyright statement must be included in source and binary

* The copyright holder does not endorse any extensions without
explicit written consent

Apache License

* Apache

e Similar to GPL with a few differences

Not copyleft

Not required to distribute source code

Does not grant permission to use project’s trademark

Does not require modifications to use the same license

30 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

@

Perception:

* Anarchy

* Demagoguery
* |deology

* Altruism

* Many eyes

A REMINDER
from
YOUR FRIENDS AT MICROSOFT

DEPENDENCY MANAGEMENT & VERSIONING

CRICOS PROVIDER #00120C

Left-pad (March 22, 2016)

OBSESSIONS Q U A R T Z

RRRRRRR

internet by deleting a tiny piece of
The A Register’

IIIIII

{* SOFTWARE *}

W Sl W WA W i Ir‘

How one developer just broke Node, Babel and
thousands of projects in 11 lines of JavaScript

Code pulled from NPM — which everyone was using

B> 4 57 F = -

Left-pad (March 22, 2016)

npmjs.org tells me that left-pad is not available (404 page) #4
silkentrance opened this issue on Mar 22, 2016 - 193 comments

6 silkentrance commented on Mar 22, 2016 vee

When building projects on travis, or when searching for left-pad on npmjs.com, both will report that the package cannot be
found.

Here is an excerpt from the travis build log

npm ERR! Linux 3.13.0-40-generic

npm ERR! argv "/home/travis/.nvm/versions/node/v4.2.2/bin/node" "/home/travis/.nvm/versions/node/v4.2.2/bin/npn
npm ERR! node v4.2.2

npm ERR! npm v2.14.7

npm ERR! code E404

npm ERR! 404 Registry returned 404 for GET on https://registry.npmjs.org/left-pad
npm ERR! 404

npm ERR! 404 'left-pad' is not in the npm registry.

npm ERR! 404 You should bug the author to publish it (or use the name yourself!)
npm ERR! 404 It was specified as a dependency of 'line-numbers’

npm ERR! 404

npm ERR! 404 Note that you can also install from a

npm ERR! 404 tarball, folder, http url, or git url.

npm ERR! Please include the following file with any support request:

npm ERR! /home/travis/build/coldrye-es/pingo/npm-debug. log

make: ik [deps] Error 1

And here is the standard npmjs.com error page https://www.npmjs.com/package/left-pad
However, if | remove left-pad from my local npm cache and then reinstall it using npm it will happily install left-pad@0.0.4.

v 88 @3

34 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Left-pad (Docs)

left-pad Install

» npm i left-pad
String left pad

:
Repository

@ github.com/stevemao/left-pad
Install

Homepage

$ npm install left-pad & github.com/stevemao/left-pad#readme

+ Weekly Downloads

Usage o A—
2,962,641

const leftPad = require('left-pad') Nerzan Elcense
1.3.0 WTFPL

leftPad('foo', 5)

L/ =>N" a0 Unpacked Size Total Files
9.75 kB 10

leftPad('foobar', 6)

'/ => "foobar Issues Pull Requests
3 7

leftPad(1l, 2, '0")
Last publish
leftPad(17, 5, 0) 4 years ago

= "0n0N17"
> "00017

35 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Left-pad (Source Code)

17 lines (11 sloc) 222 Bytes

1 module.exports = leftpad;

2

3 function leftpad (str, len, ch) {
4 str = String(str);

5

6 var i = -1;

7

8 if (!'ch & ch !==0) ch = ' *;
9

10 len = len - str.length;

11

12 while (++i < len) {

13 str = ch + str;

14 }

15

16 return str;

17 }

36 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

See aISO: iSArray 5 lines (4 sloc) 133 Bytes

1 var toString = {}.toString;
2
3 module.exports = Array.isArray || function (arr) {
» 4 return toString.call(arr) === '[object Arrayl';
Isarray % i
’

» npm 1 isarray

Array#isArray for older browsers and deprecated Node.js versions.

build 'passing | downloads '227M/month

Repository
© github.com/juliangruber/isarray:
Homepage

& github.com/juliangruber/isarray

Just use Array.isArray directly, unless you need to support those older versions.

License
Usage 2.0.5 MIT
. . L. , Unpacked Size Total Files

var 1sArray = require(lsarray);

3.43kB 4
console.log(isArray([])); => true
console.log(isArray({})); => false Issues Pull Requests

4 3

37 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE I

Dependency Management

* |It’s hard
* It’s mostly a mess (everywhere)
e But it’s critical to modern software development

F.27
COFTWARE &
'ENGINEERING

What is a Dependency?

e Core of what most build systems do
* “Compile” and “Run Tests” is just a fraction of their job

 Examples: Maven, Gradle, NPM, Bazel, ...
* Foo->Bar: To build Foo, you may need to have a built version of Bar

* Dependency Scopes:

* Compile: Foo uses classes, functions, etc. defined by Bar

* Runtime: Foo uses an abstract APl whose implementation is provided by Bar (e.g. logging,
database, network or other 1/0)

» Test: Foo needs Bar only for tests (e.g. JUnit, mocks)
* Internal vs. External Dependencies

* Is Bar also built/maintained by your org or is it pulled from elsewhere using a package
manager?

39 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE I

Dependencies: Example

v mser - w Package: git (1:2.17.1-1ubuntu0.9 and others) [security

@ rovertorosal fast, scalable, distributed revision control system

A1 contributor

Other Packages Related to git

® depends # recommends B suggests + enhances |

45 lines (45 sloc

Pillow==8.3

1

2

3 PyYAML==5.
4 Whoosh==2.
5 bleach==
6
7
8
9

django-acti

django-cele

django-colo
10 django-cors:
11 django-form
12 django-math
13 django-mode
14 django-mptt:
15 django-pure:
16 django-gssti
17 django-solo:
18 django-strol
19 django-widg:
20 djangorestf
21 djangorestf
22 drf-yasg==1
23 extract-msg:
24 flanker==0.!

28 gevent==]
29 graphviz
30 gunicorn==2|
31 jsonschema=
32 mock 0.3

*

*

33 node-semver==0.8.0

34 packaging==21.0

git-man (<< 1:2.17.0-.) [not amd64, i386]
fast, scalable, distributed revision control system (manual pages)

git-man (<< 1:2.17.1-.) [amd64, i386]
git-man (>> 1:2.17.0) [not amd64, 1386

git-man (>> 1:2.17.1) [amd64, i386]

libch (>= 2.16) [not arm64, ppcédel]

GNU C Library: Shared libraries

also a virtual package provided by libc6-udeb
libc6 (>= 2.17) [arm64, ppcé4el]
libcuri3-gnutls (>= 7.16.2)

easy-to-use client-side URL transfer library (GnuTLS flavour)
liberror-perl

Perl module for error/exception handling in an OO-ish way
libexpat1 (>= 2.0.1)

XML parsing C library - runtime library
libpcre3

Old Perl 5 Compatible Regular Expression Library - runtime files
perl

Larry Wall's Practical Extraction and Report Language
Zlib1g (>= 1:1.2.0)

compression library - runtime

less
pager program similar to more

patch
Apply a diff file to an original

ssh-client
virtual package provided by openssh-client

Links for git

Ubuntu Resources:

* Bug Reports
« Ubuntu Changelog
« Copyright File

Download Source Package git:

o [git_2.17.1-1ubuntu0.9.dsc]
* [git_2.17.1.orig.tar.xz]
* [git_2.17.1-1ubuntu0.9.debian.tar.xz]

Maintainer:

* Ubuntu Developers (Mail Archive)

Please consider filing a bug or asking a question v
L before ing the mail
directly.

Original Maintainers (usually fror
Debian):

« Gerrit Pape
« Jonathan Nieder
* Anders Kaseorg

It should generally not be necessary for users to
contact the original maintainer.

External Resources:

40

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

-~
)
N~
=

Transitive Dependencies

e Should Git be able to use exports of libSSL (e.g. certificate
management) or zLib (e.g. gzip compression)?

Git

libSSL

e

[SSH-

client

ﬂ zLib

Wy |
:co?TWA
‘NGINEERING

Diamond Dependencies

* What are some problems when multiple intermediate
dependencies have the same transitive dependency?

SSH-
Client

Git

v

.

4 libSSL

libHTTP

Git

Generally, can also be across levels

Client

libHTTP

libSSSL

zLib

]

Diamond Dependencies

* What are some problems when multiple intermediate
dependencies have the same transitive dependency?

SSH-Client
176

[l

Git
2171

/4

“\

MbSSL
102

oHTTP
214

libSSL 1.1

Resolutions to the Diamond Problem

1. Duplicate it!
* Doesn’t work with static linking (e.g. C/C++), but may be doable with Java (e.g. using ClassLoader hacking or package renaming)
» Values of types defined by duplicated libraries cannot be exchanged across

2. Ban transitive dependencies; just use a global list with one version for each
* Challenge: Keeping things in sync with latest

* Challenge: Deciding which version of transitive deps to keep

3. Newest version (keep everything at latest)

* Requires ordering semantics

* Intermediate dependency may break with update to transitive
4. Oldest version (lowest denominator)

* Also requires ordering semantics

* Sacrifices new functionality
5. Oldest non-breaking version / Newest non-breaking version

* Requires faith in tests or semantic versioning contract

44 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Semantic Versioning

* Widely used convention for versioning releases
 E.g.1.2.1,3.1.0-alpha-1, 3.1.0-alpha-2, 3.1.0-beta-1, 3.1.0-rcl
* Format: {MAJOR}. {MINOR} . {PATCH}

* Each component is ordered (numerically, then lexicographically; release-aware)

e 1.2.1<1.10.1
* 3.1.0-alpha-1<3.1.0-alpha-2 < 3.1.0-beta-1 < 3.1.0-rc1 < 3.1.0

* Contracts:
* MAJOR updated to indicate breaking changes
* Same MAIJOR version => backward compatibility
* MINOR updated for additive changes
* Same MINOR version => APl compatibility (important for linking)
* PATCH updates functionality without new API

* Ninja edit; usually for bug fixes

45 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

https://semver.org/

.00 2.0.0-rc.2 20.0-rci 1.0.0 1.0.0-beta

Semantic Versioning 2.0.0

Summary

Given a version number MAJOR.MINOR.PATCH, increment the:

1. MAJOR version when you make incompatible API changes,

2. MINOR version when you add functionality in a backwards compatible manner, and

3. PATCH version when you make backwards compatible bug fixes.
Additional labels for pre-release and build metadata are available as extensions to the MAJOR.MINOR.PATCH
format.

46 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

N
e
=
=
S

Dependency Constraints

* E.g. Declare dependency on "Bar > 2.1”
e Bar2.1.0, 2.1.1, 2.2.0, 2.9.0, etc. all match

e 2.0.x does NOT match
* 3.0.x does NOT match

* Diamond dependency problem can be resolved using SAT solvers

* E.g. Foo 1.0.0 depends on “Bar >=2.1" and “Baz 1.8.x”

* Bar 2.1.0 depends on “Qux [1.6, 1.7]”
* Bar 2.1.1 depends on “Qux 1.7.0”
* Baz 1.8.0 depends on “Qux 1.5.x”
* Baz 1.8.1 depends on “Qux 1.6.x”

* Find an assignment such that all dependencies are satisfied
* Solution: Use Bar 2.1.0, Baz 1.8.1, and Qux 1.6.{latest}

47 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Semantic Versioning Contracts

 Largely trusting developers to
maintain them

CMU-313 /Mayan-EDMS Public template

* Constrained/range dependencies can o
cause unexpected build failures

v Pin jsonschema version to avoid swagger bugs
See 486a798

e Automatic validation of SemVer is

‘ rohanpadhye committed 9 days ago

h a r d Showing 3 ch. d files with 5 iti and 0

P

v ¢ 3 EEE mayan/apps/rest_api/dependencies.py @

A @e -59,6 +59,9 @@
59 59 PythonDependency (
60 60 module=__name__, name='flex', version_string='==6.14.1"
n 61 61
© Build £ 9 days ago)
Build #5: Manually run by rohanpadhye & 16m 43s 62+ PythonDependency (
63 + module=__name__, name='jsonschema', version_string='==3.2.0"
p 64 +)
© README: Add build badge ETEeR B2monthsago ... 62 65 pythonDependency(
Build #4: Commit f656b2a pushed by rohanpadhye G) 18m 12s . . .
63 66 module=__name__, name='swagger-spec-validator', version_string='==2.5.0"

64 67)

i
~
<
=

48 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Cyclic Dependencies

* A very bad thing

e Avoid at all costs

e Sometimes unavoidable or intentional

* E.g. GCCis written in C (needs a C compiler)

* E.g. Apache Maven uses the Maven build system

* E.g. JDK tested using JUnit, which requires the JDK to compile

T

A

B

~_

49

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Cyclic Dependencies

* Bootstrapping: Break cycles over time

* Assume older version exists in binary (pre-built form)

e Step 1: Build A using an older version of B

 Step 2: Build B using new (just built) version of A

» Step 3: Rebuild A using new (just built) version of B

* Now, both A and B have been built with new versions of their dependencies

 Doesn’t work if both A and B need new features of each other at the same time
(otherwise Step 1 won’t work)
* Assumes incremental dependence on new features

 How was the old version built in the first place? (it’s turtles all the way down)

* Assumption: cycles did not exist in the past
* Successfully applied in compilers (e.g. GCC is written in C)

50 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Dependency Reliability

 Availability
* Remember left-pad?

* Many orgs will mirror package repositories

* Security

* Will you let strangers execute arbitrary code on your laptop?

II)

* Think about this every time you do “pip install” or “npm install” or “apt-get updgrade”
or “brew updgrade” or whatever (esp. with sudo)
* Scary, right? Who are you trusting? Why?

* Typo squatting

* “pip install numpi”

0N
\

51 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12: OPEN SOURCE

Key points

NN
¢ i

Software Engineering

* When developing software, you should always consider the possibility of reusing existing software, either
as components, services or complete systems.

e Configuration management is the process of managing changes to an evolving software system. It is
essential when a team of people are cooperating to develop software.

* Most software development is host-target development. You use an IDE on a host machine to develop the
software, which is transferred to a target machine for execution.

* Open source development involves making the source code of a system publicly available. This means that
many people can propose changes and improvements to the software.

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 12 OF 12:
OPEN SOURCE CRICOS PROVIDER #00120C

52

Key Points F.2=

OFTWARE 'S

'ENGINEERING
* Understand the terminology “free software” and explain open |
source culture and principles.

* Express an educated opinion on the philosophical/political debate
between open source and proprietary principles.

Key Points

* Dependency management is hard.

