
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

METRICS

Week:
4 of 12

A/Prof Alex Potanin

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS2

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

• Understanding Large Systems
• Case Study: The Maintainability Index
• Case Study: Autonomous Vehicle Safety
•Measurement for Decision Making
• Understanding Your Data
•Metrics and Incentives
• Goals, Signals, Metrics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS3

Today

CRICOS PROVIDER #00120C

Understanding Large Systems

4

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS5

Context: big ole pile of code.

…do something to it.
Like: Fix a bug, implement a feature, write a test…

CRICOS PROVIDER #00120C

You cannot understand the
entire system.

6

CRICOS PROVIDER #00120C

• To develop and test a working model or set of working hypotheses
about how (some part of) a system works.
•Working model: an understanding of the pieces of the system

(components), and the way they interact (connections).
• It is common in practice to consult documentation, experts.
• Prior knowledge/experience is also useful (see: frameworks,

architectural patterns, design patterns).
• Today, we focus on individual information gathering via

observation, probes, and hypothesis testing.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS7

Goal

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS8

Software constantly changes
à Software is easy to change!

Is this wall
load-

bearing?

Guess so!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS9

Software is a big redundant mess
à there’s always something to copy

as a starting point!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS10

1. If code must run,
it must have a beginning

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS11

2. If code must run,
it must exist

CRICOS PROVIDER #00120C

Some trigger that causes code to run.
• Locally installed programs: run cmd, OS launch, I/O events, etc.

• Local applications in dev: build + run, test, deploy (e.g. docker)

•Web apps server-side: Browser sends HTTP request (GET/POST)

•Web apps client-side: Browser runs JavaScript

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS12

The Beginning: Entry Points

CRICOS PROVIDER #00120C

Helps to identify what’s knowable and what’s changeable
• Locally installed programs: run cmd, OS launch, I/O events, etc.
• Binaries (machine code) on your computer

• Local applications in dev: build + run, test, deploy (e.g. docker)
• Source code in repository (+ dependencies)

•Web apps server-side: Browser sends HTTP request (GET/POST)
• Code runs remotely (you can only observe outputs)

•Web apps client-side: Browser runs JavaScript
• Source code is downloaded and run locally (see: browser dev tools!)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS13

Code must exist. But where?

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS14

Side note on build systems

• Basically the same across languages / platforms
• Make, maven, gradle, grunt, bazel, etc.

• Goal: Source code + dependencies + config à runnables
• Common themes:
• Dependency management (repositories, versions, etc)
• Config management (platform-specific features, file/dir names, IP addresses, port

numbers, etc)
• Runnables (start, stop?, test)
• Almost always have ‘debug’ mode and help (‘-h’ or similar)
• Almost always have one or more “build” directories (= not part of source repo)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS15

Can running code be
Probed/Understood/Edited?

Transparent OpaqueTranslucent

Source code built locally Server-side apps running remotelyBinaries running locally

Open source Closed source Open source Closed source

(P+U) (P) (U) -

(P+U+E)

CRICOS PROVIDER #00120C

• NYTimes quiz: http://bit.ly/problemQuiz

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS16

Exercise Time

http://bit.ly/problemQuiz

CRICOS PROVIDER #00120C

Beware of cognitive biases.

17

CRICOS PROVIDER #00120C

• anchoring
• confirmation bias
• congruence bias: The tendency to test hypotheses exclusively through direct

testing, instead of testing possible alternative hypotheses
• conservatism (belief revision)
• curse of knowledge
• default effect
• expectation bias
• overconfidence effect
• plan continuation bias
• pro innovation bias
• recency illusion

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS18

Beware of cognitive biases

https://en.wikipedia.org/wiki/List_of_cognitive_biases

https://en.wikipedia.org/wiki/List_of_cognitive_biases

CRICOS PROVIDER #00120C

• Basic needs:
• Code/file search and navigation
• Code editing (probes)
• Execution of code, tests
• Observation of output (observation)

•Many choices here on tools! Depends on circumstance.
• grep/find/etc. Having a command on Unix tools is invaluable
• A decent IDE
• Debugger
• Test frameworks + coverage reports
• Google (or your favorite web search engine)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS19

Static (+dynamic) information gathering

At the command line: grep and find!
(Do a web search for tutorials)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS20

Static Information Gathering

• Please configure and use a
legitimate IDE.
• No favorites? We recommend VSCode and

IntelliJ IDEA.

•Why?
• “search all files”
• “jump to definition”
• “download dependency source”

• Remember: real software is too
complicated to keep in your head.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS21

Consider documentation/tutorials judiciously

• Great for discovering entry points!
• Can teach you about general

structure, architecture.
• Forward-reference to architectural

patterns!

• As you gain experience, you will
recognize more of these, and you
will immediately know something
about how the program works.
• For example, next time you work

on a mobile app…

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS22

Consider documentation/tutorials judiciously

https://medium.com/swlh/elements-of-mvc-in-react-9382de427c09

CRICOS PROVIDER #00120C

• Key principle 1: change is a useful primitive to inform mental models
about a software system.
• Key principle 2: systems almost always provide some kind of starting

point.
• Put simply:

1. Build it.
2. Run it.
3. Change it.
4. Run it again.

• Can provide information both bottom up or top down, depending on the
situation.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS23

Dynamic Information Gathering

CRICOS PROVIDER #00120C

• printf(“here”)
• Turning on automatic debug info logging
• Breakpoints
• Sophisiticated debugging tools
• Breakpoint, eval, step through / step over
• (Some tools even support remote debugging)

• Delete debugging (equivalent of `kill -9`)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS24

Probes - Observe, control or “lightly”
manipulate execution

CRICOS PROVIDER #00120C

• Confirm that you can build and run the code.
• Ideally both using the tests provided, and by hand.

• Confirm that the code you are running is the code you built.
• Confirm that you can make an externally visible change.
• How? Where? Starting points:
• Run an existing test, change it.
• Write a new test.
• Change the code, write or rerun a test that should notice the change.

•Make sure the changes persist if you want them to.
• Distinguish between source repository and build/deploy directories.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS25

Step 0: sanity check basic model +
hypotheses.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS26

Software Engineering: Principles,
practices (technical and non-technical)
for confidently building high-quality
software.

What does this mean?
How do we know?

à Measurement and
metrics are key concerns.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS27

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS28

CRICOS PROVIDER #00120C

Case Study: The Maintainability Index

29

CRICOS PROVIDER #00120C

“Maintainability Index calculates an index value between 0 and 100 that represents the
relative ease of maintaining the code. A high value means better maintainability. Color coded
ratings can be used to quickly identify trouble spots in your code. A green rating is between 20
and 100 and indicates that the code has good maintainability. A yellow rating is between 10
and 19 and indicates that the code is moderately maintainable. A red rating is a rating
between 0 and 9 and indicates low maintainability.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS30

Visual Studio (since 2007)

CRICOS PROVIDER #00120C

• Index between 0 and 100 representing the relative ease of maintaining the
code.
• Higher is better. Color coded by number:
• Green: between 20 and 100

• Yellow: between 10 and 19

• Red: between 0 and 9.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS31

Visual Studio (since 2007)

CRICOS PROVIDER #00120C

• "We noticed that as code tended toward 0 it was clearly hard to
maintain code and the difference between code at 0 and some
negative value was not useful."
• "The desire was that if the index showed red then we would be

saying with a high degree of confidence that there was an issue
with the code.”
• http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maint

ainability-index-range-and-meaning.aspx

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS32

Design rationale (from MSDN blog)

http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx
http://blogs.msdn.com/b/codeanalysis/archive/2007/11/20/maintainability-index-range-and-meaning.aspx

CRICOS PROVIDER #00120C

Maintainability Index =
MAX(0,(171 –

5.2 * log(Halstead Volume) –
0.23 * (Cyclomatic Complexity) –
16.2 * log(Lines of Code)
)*100 / 171)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS33

The Index

CRICOS PROVIDER #00120C

• 1992 Paper at the International Conference on Software
Maintenance by Paul Oman and Jack Hagemeister

• Developers rated a number of HP systems in C and Pascal
• Statistical regression analysis to find key factors among 40 metrics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS34

Origins

COM = percentage of comments

CRICOS PROVIDER #00120C

Maintainability Index =
MAX(0,(171 –

5.2 * log(Halstead Volume) –
0.23 * (Cyclomatic Complexity) –
16.2 * log(Lines of Code)
)*100 / 171)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS35

The Index

CRICOS PROVIDER #00120C

•Metric seems attractive
• Easy to compute
• Often seems to match intuition
• Parameters seem almost arbitrary, calibrated in single small study

code (few developers, unclear statistical significance)
• All metrics related to size: just measure lines of code?
• Original 1992 C/Pascal programs potentially quite different from

Java/JS/C# code

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS36

Thoughts?

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS37

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS38

CRICOS PROVIDER #00120C

Case Study: Autonomous Vehicle Safety

39

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS40

How can we judge AV software quality
(e.g. safety)?

CRICOS PROVIDER #00120C

• Amount of code executed during
testing.
• Statement coverage, line

coverage, branch coverage, etc.
• E.g. 75% branch coverage à 3/4

if-else outcomes have been
executed

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS41

Test coverage

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS42

Model Accuracy

• Train machine-learning models
on labelled data (sensor data +
ground truth).
• Compute accuracy on a separate

labelled test set.
• E.g. 90% accuracy implies that

object recognition is right for
90% of the test inputs.

CRICOS PROVIDER #00120C

• Frequency of crashes/fatalities
• Per 1000 rides, per million miles,

per month (in the news)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS43

Failure Rate

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS44

Mileage

Source: waymo.com/safety (September 2021)

CRICOS PROVIDER #00120C

Think of “pros” and “cons” for using various quality metrics to judge
AV software.
• Test coverage
• Model accuracy
• Failure rate
• Mileage
• Size of codebase
• Age of codebase
• Time of most recent change
• Frequency of code releases
• Number of contributors
• Amount of code documentation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS45

Activity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS46

STOP sign or 45 speed limit?

“Robust Physical-World Attacks on Deep Learning Models” by Kevin Eykholt et al. CVPR’18

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS47

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS48

CRICOS PROVIDER #00120C

Measurement for Decision Making

49

CRICOS PROVIDER #00120C

•Measurement is the empirical, objective assignment of numbers,
according to a rule derived from a model or theory, to attributes of
objects or events with the intent of describing them. – Craner,
Bond, “Software Engineering Metrics: What Do They Measure and
How Do We Know?”
• A quantitatively expressed reduction of uncertainty based on one

or more observations. – Hubbard, “How to Measure Anything …”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS50

What is Measurement?

CRICOS PROVIDER #00120C

• IEEE 1061 definition: “A software quality metric is a function
whose inputs are software data and whose output is a single
numerical value that can be interpreted as the degree to which the
software possesses a given attribute that affects its quality.”
•Metrics have been proposed for many quality attributes; may

define own metrics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS51

Software Quality Metrics

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS52

External attributes: Measuring Quality

McCall model has 41 metrics to measure 23 quality
criteria from 11 factors

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS53

Decomposition of Metrics

Maintainability

Correctability

Testability

Expandability

Faults count

Degree of testing

Effort

Change counts

Closure time
Isolate/fix time
Fault rate

Statement coverage
Test plan completeness

Resource prediction
Effort expenditure

Change effort
Change size
Change rate

CRICOS PROVIDER #00120C

• Easy to measure

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS54

Example: Code Complexity via
Lines of Code

> wc –l file1 file2…

LOC projects

450 Expression Evaluator

2,000 Sudoku

100,000 Apache Maven

500,000 Git

3,000,000 MySQL

15,000,000 gcc

50,000.000 Windows 10

2,000,000,000 Google (MonoRepo)

CRICOS PROVIDER #00120C

• Ignore comments and empty lines
• Ignore lines < 2 characters
• Pretty print source code first
• Count statements (logical lines of code)
• See also: cloc

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS55

Normalising Lines of Code

for (i = 0; i < 100; i += 1) printf("hello"); /* How many lines of code is this? */

/* How many lines of code is this? */

for (
i = 0;
i < 100;
i += 1

) {
printf("hello");

}

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS56

Normalisation per Language

Language Statement factor
(productivity)

Line factor

C 1 1

C++ 2.5 1

Fortran 2 0.8

Java 2.5 1.5

Perl 6 6

Smalltalk 6 6.25

Python 6 6.5

Source: “Code Complete: A Practical Handbook of Software Construction“, S. McConnell, Microsoft Press (2004)
and http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html u.a.

http://www.codinghorror.com/blog/2005/08/are-all-programming-languages-the-same.html

CRICOS PROVIDER #00120C

• Introduced by Maurice Howard
Halstead in 1977
• Halstead Volume =

number of operators/operands *
log2(number of distinct

operators/operands)
• Approximates size of elements and

vocabulary

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS57

Halstead Volume

CRICOS PROVIDER #00120C

main() {
int a, b, c, avg;
scanf("%d %d %d", &a, &b, &c);
avg = (a + b + c) / 3;
printf("avg = %d", avg);

}

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS58

Halstead Volume – Example (Do At Home)

Operators/Operands: main, (), {}, int, a, b, c, avg, scanf,
(), "…", &, a, &, b, &, c, avg, =, a, +, b, +, c, (), /, 3,

printf, (), "…", avg

CRICOS PROVIDER #00120C

• Proposed by McCabe 1976
• Based on control flow graph,

measures linearly independent
paths through a program
• ~= number of decisions
• Number of test cases needed to achieve

branch coverage

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS59

Cyclomatic Complexity

“For each module, either limit cyclomatic complexity to [X] or
provide a written explanation of why the limit was exceeded.”

– NIST Structured Testing methodology

if (c1) {
f1();

} else {
f2();

}
if (c2) {

f3();
} else {

f4();
}

CRICOS PROVIDER #00120C

• Number of Methods per Class
• Depth of Inheritance Tree
• Number of Child Classes
• Coupling between Object Classes
• Calls to Methods in Unrelated Classes

Shyam R. Chidamber, Chris F. Kemerer.
A Metrics suite for Object Oriented design.
M.I.T. Sloan School of Management E53-315. 1993.
http://uweb.txstate.edu/~mg43/CS5391/Papers/Metrics/OOMetrics.pdf

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS60

Object-Oriented Metrics (aka CK Metrics)

CRICOS PROVIDER #00120C

• Scalability
• Security
• Extensibility
• Documentation
• Performance
• Consistency
• Portability

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS61

What software qualities do we care
about? (examples)

• Installability
•Maintainability
• Functionality (e.g., data

integrity)
• Availability
• Ease of use

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS62

What process qualities do we care about?
(examples)
• On-time release
• Development speed
•Meeting efficiency
• Conformance to processes
• Time spent on rework
• Reliability of predictions
• Fairness in decision making

•Measure time, costs, actions,
resources, and quality of work
packages; compare with
predictions
• Use information from issue

trackers, communication
networks, team structures, etc…

CRICOS PROVIDER #00120C

• If X is something we care about, then X, by definition, must be
detectable.
• How could we care about things like “quality,” “risk,” “security,” or “public image” if

these things were totally undetectable, directly or indirectly?
• If we have reason to care about some unknown quantity, it is because we think it

corresponds to desirable or undesirable results in some way.

• If X is detectable, then it must be detectable in some amount.
• If you can observe a thing at all, you can observe more of it or less of it

• If we can observe it in some amount, then it must be measurable.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS63

Everything is measurable

D. Hubbard, How to Measure Anything, 2010

CRICOS PROVIDER #00120C

• Fund project?
•More testing?
• Fast enough? Secure enough?
• Code quality sufficient?
•Which feature to focus on?
• Developer bonus?
• Time and cost estimation? Predictions reliable?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS64

Measurement for Decision Making

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS65

Trend analyses

CRICOS PROVIDER #00120C

•Monitor many projects or many modules, get typical values for
metrics
• Report deviations

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS66

Benchmark-Based Metrics

CRICOS PROVIDER #00120C

• IBM in the 60’s: Would account
in “person-months”
e.g. Team of 2 working 3 months
= 6 person-months
• LoC ~ Person-months ~ $$$
• Brooks: “Adding manpower to a

late software project makes it
later.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS67

Example: Antipattern in effort estimation

CRICOS PROVIDER #00120C

•What properties do we care about, and how do we measure it?
•What is being measured? Does it (to what degree) capture the

thing you care about? What are its limitations?
• How should it be incorporated into process? Check in gate? Once a

month? Etc.
•What are potentially negative side effects or incentives?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS68

Questions to consider

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS69

Measurement is Difficult

CRICOS PROVIDER #00120C

• A known observational bias.
• People tend to look for something only where it’s easiest to do so.
• If you drop your keys at night, you’ll tend to look for it under streetlights.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS70

The streetlight effect

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS71

CRICOS PROVIDER #00120C

• Bad statistics: A basic misunderstanding of measurement theory
and what is being measured.
• Bad decisions: The incorrect use of measurement data, leading to

unintended side effects.
• Bad incentives: Disregard for the human factors, or how the

cultural change of taking measurements will affect people.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS72

What could possibly go wrong?

CRICOS PROVIDER #00120C

• In 1995, the UK Committee on Safety of Medicines issued the
following warning: "third-generation oral contraceptive pills
increased the risk of potentially life-threatening blood clots in the
legs or lungs twofold -- that is, by 100 percent”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS73

Lies, damned lies, and…

CRICOS PROVIDER #00120C

• “…of every 7,000 women who took the earlier, second-generation
oral contraceptive pills, about one had a thrombosis; this number
increased to two among women who took third-generation pills…”
• “…The absolute risk increase was only one in 7,000, whereas the

relative increase (among women who developed blood clots) was
indeed 100 percent.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS74

…statistics

CRICOS PROVIDER #00120C

• Scale: the type of data being measured.
• The scale dictates what sorts of analysis/arithmetic is legitimate or

meaningful.
• Your options are:
• Nominal: categories
• Ordinal: order, but no magnitude.
• Interval: order, magnitude, but no zero.
• Ratio: Order, magnitude, and zero.
• Absolute: special case of ratio.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS75

Measurement scales

CRICOS PROVIDER #00120C

• Entities classified with respect to a certain attribute. Categories are jointly
exhaustive and mutually exclusive.
• No implied order between categories!

• Categories can be represented by labels or numbers; however, they do not
represent a magnitude, arithmetic operation have no meaning.
• Can be compared for identity or distinction, and measurements can be obtained

by counting the frequencies in each category. Data can also be aggregated.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS76

Nominal/categorical scale

Entity Attribute Categories

Application Purpose E-commerce, CRM, Finance

Application Language Java, Python, C++, C#

Fault Source assignment, checking, algorithm, function, interface, timing

CRICOS PROVIDER #00120C

• Ordered categories: maps a measured attribute to an ordered set of values, but no
information about the magnitude of the differences between elements.

• Measurements can be represented by labels or numbers, BUT: if numbers are used, they
do not represent a magnitude.
• Honestly, try not to do that. It eliminates temptation.

• You cannot: add, subtract, perform averages, etc (arithmetic operations are out).
• You can: compare with operators (like “less than” or “greater than”), create ranks for the

purposes of rank correlations (Spearman’s coefficient, Kendall’s τ).

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS77

Ordinal scale

Entity Attribute Values

Application Complexity Very Low, Low, Average, High, Very High

Fault Severity 1 – Cosmetic, 2 – Moderate, 3 – Major, 4 – Critical

CRICOS PROVIDER #00120C

• Has order (like ordinal scale) and magnitude.
• The intervals between two consecutive integers represent equal amounts of the attribute

being measured.

• Does NOT have a zero: 0 is an arbitrary point, and doesn’t correspond to
the absence of a quantity.
• Most arithmetic (addition, subtraction) is OK, as are mean and dispersion

measurements, as are Pearson correlations. Ratios are not meaningful.
• Ex: The temperature yesterday was 64 F, and today is 32 F. Is today twice as cold as

yesterday?

• Incremental variables (quantity as of today – quantity at an earlier time)
and preferences are commonly measured in interval scales.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS78

Interval scale

CRICOS PROVIDER #00120C

• An interval scale that has a true zero that actually represents the
absence of the quantity being measured.
• All arithmetic is meaningful.
• Absolute scale is a special case, measurement simply made by

counting the number of elements in the object.
• Takes the form “number of occurrences of X in the entity.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS79

Ratio Scale

Entity Attribute Values

Project Effort Real numbers

Software Complexity Cyclomatic complexity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS80

Summary of Scales

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS81

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS82

CRICOS PROVIDER #00120C

Understanding Your Data

83

CRICOS PROVIDER #00120C

• Provide a theory (from domain knowledge, independent of data)
• Show correlation
• Demonstrate ability to predict new cases (replicate/validate)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS84

For Causation

http://xkcd.com/552/

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS85

Spurious Correlations

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS86

Confounding variables

• If you look only at the coffee consumption → cancer relationship, you can get very
misleading results

• Smoking is a confounder

Coffee
consumption

Smoking

Cancer

Associations

Causal relationship

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS87

“We found that there is a low to moderate correlation between
coverage and effectiveness when the number of test cases in the
suite is controlled for.”

CRICOS PROVIDER #00120C

• Construct validity – Are we measuring what we intended to
measure?
• Internal validity – The extent to which the measurement can be

used to explain some other characteristic of the entity being
measured
• External validity – Concerns the generalization of the findings to

contexts and environments, other than the one studied

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS88

Measurements validity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS89

Measurements reliability

CRICOS PROVIDER #00120C

• Extent to which a measurement yields similar results when applied
multiple times
• Goal is to reduce uncertainty, increase consistency
• Example: Performance
• Time, memory usage
• Cache misses, I/O operations, instruction execution count, etc.

• Law of large numbers
• Taking multiple measurements to reduce error
• Trade-off with cost

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS90

Measurements reliability

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS91

The McNamara Fallacy

CRICOS PROVIDER #00120C

•Measure whatever can
be easily measured.
• Disregard that which cannot be measured easily.
• Presume that which cannot be measured easily is not important.
• Presume that which cannot be measured easily does not exist.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS92

The McNamara Fallacy

https://chronotopeblog.com/2015/04/04/the-mcnamara-fallacy-and-the-problem-with-numbers-
in-education/

CRICOS PROVIDER #00120C

There seems to be a general misunderstanding to the effect that a
mathematical model cannot be undertaken until every constant and
functional relationship is known to high accuracy. This often leads to
the omission of admittedly highly significant factors (most of the
“intangibles” influences on decisions) because these are
unmeasured or unmeasurable. To omit such variables is equivalent
to saying that they have zero effect... Probably the only value known
to be wrong…

J. W. Forrester, Industrial Dynamics, The MIT Press, 1961

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS93

The McNamara Fallacy

CRICOS PROVIDER #00120C

• Defect density = Known bugs / line of code
• System spoilage = time to fix post-release defects /

total system development time
• Post-release vs pre-release
•What counted as defect? Severity? Relevance?
•What size metric used?
•What quality assurance mechanisms used?
• Little reference data publicly available;

typically 2-10 defects/1000 lines of code
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS94

Defect Density

CRICOS PROVIDER #00120C

• Automated measures on code repositories
• Use or collect process data
• Instrument program (e.g., in-field crash reports)
• Surveys, interviews, controlled experiments, expert judgment
• Statistical analysis of sample

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS95

Example: Measuring usability.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS96

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS97

CRICOS PROVIDER #00120C

Metrics and Incentives

98

CRICOS PROVIDER #00120C

“When a measure becomes a target, it ceases to be a good
measure.”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS99

Goodhart’s Law

http://dilbert.com/strips/comic/1995-11-13/

CRICOS PROVIDER #00120C

• Lines of code per day?
• Industry average 10-50 lines/day
• Debugging + rework ca. 50% of time

• Function/object/application points per month
• Bugs fixed?
•Milestones reached?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS100

Productivity Metrics

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS101

Stack Ranking

CRICOS PROVIDER #00120C

•What happens when developer bonuses are based on
• Lines of code per day?
• Amount of documentation written?
• Low number of reported bugs in their code?
• Low number of open bugs in their code?
• High number of fixed bugs?
• Accuracy of time estimates?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS102

Incentivizing Productivity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS103

Autonomy
Mastery
Purpose

Can extinguish intrinsic
motivation

Can diminish performance
Can crush creativity

Can crowd out good behavior
Can encourage cheating,

shortcuts, and unethical behavior
Can become addictive

Can foster short-term thinking

CRICOS PROVIDER #00120C

• Most software metrics are controversial
• Usually only plausibility arguments, rarely rigorously validated
• Cyclomatic complexity was repeatedly refuted and is still used
• “Similar to the attempt of measuring the intelligence of a person in terms of the weight or

circumference of the brain”

• Use carefully!
• Code size dominates many metrics
• Avoid claims about human factors (e.g., readability) and quality, unless

validated
• Calibrate metrics in project history and other projects
• Metrics can be gamed; you get what you measure

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS104

Warning

CRICOS PROVIDER #00120C

•Metrics tracked using tools and processes (process metrics like
time, or code metrics like defects in a bug database).
• Expert assessment or human-subject experiments (controlled

experiments, talk-aloud protocols).
•Mining software repositories, defect databases, especially for

trend analysis or defect prediction.
• Some success e.g., as reported by Microsoft Research

• Benchmarking (especially for performance).

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS105

(Some) strategies

CRICOS PROVIDER #00120C

• Set solid measurement objectives and plans.
•Make measurement part of the process.
• Gain a thorough understanding of measurement.
• Focus on cultural issues.
• Create a safe environment to collect and report true data.
• Cultivate a predisposition to change.
• Develop a complementary suite of measures.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS106

Factors in a successful
measurement program

Carol A. Dekkers and Patricia A. McQuaid,
“The Dangers of Using Software Metrics to
(Mis)Manage”, 2002.

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS107

Kaner’s questions when choosing a metric

1. What is the purpose of this measure?

2. What is the scope of this measure?

3. What attribute are you trying to measure?

4. What is the attribute’s natural scale?

5. What is the attribute’s natural variability?

6. What instrument are you using to
measure the attribute, and what reading
do you take from the instrument?

7. What is the instrument’s natural scale?

8. What is the reading’s natural variability
(normally called measurement error)?

9. What is the attribute’s relationship to the
instrument?

10. What are the natural and foreseeable
side effects of using this instrument? Cem Kaner and Walter P. Bond. “Software Engineering Metrics: What

Do They Measure and How Do We Know?” 2004

CRICOS PROVIDER #00120C

• Sommerville. Software Engineering. Edition 7/8, Sections 26.1,
27.5, and 28.3
• Hubbard. How to measure anything: Finding the value of

intangibles in business. John Wiley & Sons, 2014. Chapter 3
• Kaner and Bond. Software Engineering Metrics: What Do They

Measure and How Do We Know? METRICS 2004
• Fenton and Pfleeger. Software Metrics: A rigorous & practical

approach. Thomson Publishing 1997

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS108

Further Reading on Metrics

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS109

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS110

CRICOS PROVIDER #00120C

Goals, Signals, Metrics

111

CRICOS PROVIDER #00120C

• Collecting and analysing data on the human side of things
• As organisations grow in size linearly, communication costs grow

quadratically (see The Mythical Man-Month or even Amdahl’s Law
in Computer Architecture J)
• Could try to make each individual more productive?
• How to measure individual productivity and identify inefficiencies

without taking up too many resources?
• Google has a team of researchers dedicated to engineering

productivity

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS112

Notes on Measuring Engineering Productivity

CRICOS PROVIDER #00120C

• Building on social sciences, allows to study human side like
personal motivations, incentives, and strategies for complex tasks
•What should we measure?
• How to use metrics to track improvements and productivity?
• Case Study around the process of C++ and Java language teams

around Code Readability
• Is the time spent on the readability process worthwhile?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS113

Notes on Measuring Engineering Productivity

CRICOS PROVIDER #00120C

• Is It Even Worth Measuring?
• Triage Questions:

1. What result are you expecting, and why?
2. If the data supports your expected result, what action will be taken?
3. If we get a negative result, will appropriate action be taken?
4. Who is going to decide to take action on the result, and when would they do it?
• Reasons NOT to measure can be:
• You can’t afford to change the process/tools right now
• Any results will soon be invalidated by other factors
• The results will be used only as vanity metrics to support something you were going to do

anyway
• The only metrics available are not precise enough to measure the problem and can be

confounded by other factors

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS114

Notes on Measuring Engineering Productivity

CRICOS PROVIDER #00120C

• At Google they use Goals/Signals/Metrics (GSM) framework to
guide metrics creation:
• A goal is a desired end result. It’s phrased in terms of what you want to understand at

a high level and should not contain references to specific ways to measure it.
• A signal is how you might know that you’ve achieved the end result. Signals are things

we would like to measure, but they might not be measurable themselves.
• A metric is a proxy for a signal. It is the thing we actually can measure. It might not be

the ideal measurement, but it is something that we believe is close enough.

• GSM encourages us to select metrics based on their ability to
measure the original goals

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS115

Notes on Measuring Engineering Productivity

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS116

Goals (Capturing Productivity Trade Offs)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS117

Goals (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS118

Signals (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS119

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS120

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS121

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS122

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS123

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS124

Metrics (Readability Case Study)

CRICOS PROVIDER #00120C

• Study showed that it was overall worthwhile:
• Engineers who had achieved readability were satisfied with the process and felt they

learned from it
• Logs showed that they also had their code reviewed faster and submitted it faster,

even accounting for no longer needing as many reviewers
• Study also showed places for improvement with the process: engineers identified pain

points

• The language teams improved the tooling and process based on
the results

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS125

Case Study on Readability Outcome

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 4 OF 12: METRICS126

Poll Everywhere Time!

