
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

INSPECTION

Week:
5 of 12

A/Prof Alex Potanin

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION2

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

• Reviews and Inspections
• Quality Management in Agile
•Modern Code Reviews
• Pair and Mob Programming
• Running a Meeting
•Making Code Reliable

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION3

Today

CRICOS PROVIDER #00120C

Reviews and Inspections

4

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

Rubber Duck Debugging

5

CRICOS PROVIDER #00120C

• A group examines part or all of a process or system and its
documentation to find potential problems.
• Software or documents may be 'signed off' at a

review which signifies that progress to the next
development stage has been approved by
management.
• There are different types of review with different objectives
• Inspections for defect removal (product);
• Reviews for progress assessment (product and process);
• Quality reviews (product and standards).

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION6

Reviews and inspections

CRICOS PROVIDER #00120C

• A group of people carefully examine part or all
of a software system and its associated
documentation.
• Code, designs, specifications, test plans,

standards, etc. can all be reviewed.
• Software or documents may be 'signed off' at a

review which signifies that progress to the next
development stage has been approved by
management.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION7

Quality reviews

CRICOS PROVIDER #00120C

• Pre-review activities
• Pre-review activities are concerned with review planning and review preparation

• The review meeting
• During the review meeting, an author of the document or program being reviewed

should ‘walk through’ the document with the review team.

• Post-review activities
• These address the problems and issues that have been raised during the review

meeting.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION8

Phases in the review process

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION9

The software review process

Review
meeting

Individual
preparation

Group
preparation

Planning

Follow-up
checks

Improvement

Error
correction

 Pre-review activities Post-review activities

CRICOS PROVIDER #00120C

• The processes suggested for reviews assume that the review team
has a face-to-face meeting to discuss the software or documents
that they are reviewing.
• However, project teams are now often distributed, sometimes

across countries or continents, so it is impractical for team
members to meet face to face.
• Remote reviewing can be supported using shared documents

where each review team member can annotate the document
with their comments.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION10

Distributed reviews

CRICOS PROVIDER #00120C

• These are peer reviews where engineers examine the source of a
system with the aim of discovering anomalies and defects.
• Inspections do not require execution of a system so may be used

before implementation.
• They may be applied to any representation of the system

(requirements, design, configuration data, test data, etc.).
• They have been shown to be an effective technique for discovering

program errors.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION11

Program inspections

CRICOS PROVIDER #00120C

• Checklist of common errors should be used to
drive the inspection.
• Error checklists are programming language

dependent and reflect the characteristic errors that are likely to
arise in the language.
• In general, the 'weaker' the type checking, the larger the

checklist.
• Examples: Initialisation, Constant naming, loop

termination, array bounds, etc.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION12

Inspection checklists

CRICOS PROVIDER #00120C

Fault class Inspection check
Data faults • Are all program variables initialized before their values are used?

• Have all constants been named?
• Should the upper bound of arrays be equal to the size of the array or Size -1?
• If character strings are used, is a delimiter explicitly assigned?
• Is there any possibility of buffer overflow?

Control faults • For each conditional statement, is the condition correct?
• Is each loop certain to terminate?
• Are compound statements correctly bracketed?
• In case statements, are all possible cases accounted for?
• If a break is required after each case in case statements, has it been included?

Input/output faults • Are all input variables used?
• Are all output variables assigned a value before they are output?
• Can unexpected inputs cause corruption?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION13

An inspection checklist (a)

CRICOS PROVIDER #00120C

Fault class Inspection check
Interface faults • Do all function and method calls have the correct number of parameters?

• Do formal and actual parameter types match?
• Are the parameters in the right order?
• If components access shared memory, do they have the same model of the

shared memory structure?

Storage management faults • If a linked structure is modified, have all links been correctly reassigned?
• If dynamic storage is used, has space been allocated correctly?
• Is space explicitly deallocated after it is no longer required?

Exception management faults • Have all possible error conditions been taken into account?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION14

An inspection checklist (b)

CRICOS PROVIDER #00120C

… three experienced engineers worked for three months to find a subtle system defect that
was causing persistent customer problems. At the time they found this defect, the same
code was being inspected by a different team of five engineers. As an experiment, this team
was not told about the defect. Within two hours, this team found not only this defect, but
also 71 others! Once found, the original defect was trivial to fix.

W. S. Humphrey, A Discipline for Software Engineering . Reading, Mass.: Addison Wesley
Longman, 1995.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION15

Software Reviews

CRICOS PROVIDER #00120C

Software reviews are a process or meeting during which a work product, or set of work
products, is presented to project personnel, managers, users, customers, or other interested
parties for comment or approval. Types include code review, design review, formal
qualification review, requirements review, test readiness review.

IEEE, "IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology," 1990.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION16

Software Reviews

CRICOS PROVIDER #00120C

• To detect errors in program logic/structure or inconsistencies from one artifact to the
next.
• Programming should be a public process – exposing programs to others helps quality, both through the pressure

by peers to do things well and because peers spot flaws and bugs that an individual might not. (F. P. Brooks, The
Mythical Man-Month, Anniversary Edition : Addison-Wesley Publishing Company, 1995.)

• To make sure the intention of the artifact is clear (the more clear the better)
• To verify that the design and/or software meets its requirements
• To ensure software has been developed in a uniform manner, using agreed-upon

standards

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION17

Objectives

CRICOS PROVIDER #00120C

“Many eyes make all bugs shallow”
Standard Refrain in Open Source

“Have peers, rather than customers,
find defects”

Karl Wiegers

18 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• A walkthrough is a static analysis technique in which a designer or
programmer leads members of the development team and other
interested parties through a segment of documentation or code, and the
participants ask questions and make comments about possible errors,
violations of development standards, and other problems.
• Three roles:
• Author: The author of the material presents their work
• Moderator: The moderator handles the administrative aspects of the walkthrough, such as

determining the schedule and distributing materials, and ensures it is conducted in an
orderly manner.

• Recorder: The recorder writes down the comments made during the walkthrough. The
comments pertain to errors found, questions of style, omission, contradictions, and
suggestions for improvement and alternative approaches.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION19

Walkthroughs

CRICOS PROVIDER #00120C

• Idea popularized in 70s at IBM
• Broadly adopted in 80s, much research
• Sometimes replacing component testing

• Group of developers meets to formally review code or other artifacts
• Most effective approach to find bugs
• Typically 60-90% of bugs found with inspections

• Expensive and labor-intensive

20

Formal Inspections

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Typically 4-5 people (min 3)
• Author
• Inspector(s)
• Find faults and broader issues

• Reader
• Presents the code or document at inspection meeting

• Scribe
• Records results

•Moderator
• Manages process, facilitates, reports

21

Inspection Team and Roles

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• An inspection is a static analysis technique that relies on visual
examination of development products to detect errors, violations
of development standards, and other problems.
•Michael Fagan originated this technique and required several

participants with particular roles:
• Author: The person who created the document being inspected. As opposed to the

walkthrough, they are present at the inspection to answer questions to help others
understand the work but does not step through the work; the reader does that. The
authors listen to the input of the inspection team but should not “defend” their work.
The author does not take on any of the four roles defined on the next slide.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION22

Inspections

CRICOS PROVIDER #00120C

•Moderator: The moderator chooses the inspection team,
schedules the inspection meeting, ensures the artifact to be
reviewed is complete, and distributes the materials. In the
inspection meeting, the moderator runs the inspection and
enforces the protocols of the meeting. The moderator’s job is
mainly one of controlling interactions and keeping the group
focused on the purpose of the meeting – to discover (but not fix)
deficiencies in the document. The moderator also ensures that the
group does not drift off onto a tangent and that everyone sticks to
a schedule.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION23

Inspections

CRICOS PROVIDER #00120C

• Reader: The reader leads the inspection team through the software
element(s) in a logical and comprehensive fashion. He or she calls
attention to each part of the document in turn – paraphrasing or reading
line-by lines as appropriate. The reader paces the inspection.
• Recorder: Whenever any problem is uncovered in the document being

inspected, the recorder describes the defect in writing. After the
inspection, the recorder and moderator prepare an inspection report.
• Inspectors: The inspectors raise questions and suggest problems with the

document. Inspectors are not supposed to “attack” the author or the
document but instead they should strive to be objective and constructive.
Everyone except the author can act as an inspector. Often inspectors are
chosen to represent different viewpoints, for example requirements,
design, code, test, project management, quality management.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION24

Inspections

CRICOS PROVIDER #00120C

• Developers simply don’t believe that the reviews are worth their
time – they’ve got a deadline to meet. Instead, these same
developers spend endless hours in long, error-prone debugging
sessions, finding errors that could have been efficiently found in a
review.
• Developers might have ego problems in reviews. They might have

trouble admitting their own mistakes and don’t want a room full of
people seeing their defects. We need to develop an egoless
programming culture where we each learn from each other and
benefit from each others’ input so we can grow as software
engineers and so we can produce higher quality products.
• Some software engineers avoid inspections because they find

inspections boring.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION25

Why Inspections not as Common?

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION26

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION27

CRICOS PROVIDER #00120C

Quality Management in Agile

28

CRICOS PROVIDER #00120C

• Quality management in agile development is informal rather than
document-based.
• It relies on establishing a quality culture, where all team members

feel responsible for software quality and take actions to ensure
that quality is maintained.
• The agile community is fundamentally opposed to what it sees as

the bureaucratic overheads of standards-based approaches and
quality processes as embodied in ISO 9001.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION29

Quality management and
agile development

CRICOS PROVIDER #00120C

• Check before check-in
• Programmers are responsible for organizing their own code reviews with other team

members before the code is checked in to the build system.

• Never break the build
• Team members should not check in code that causes the system to fail. Developers

have to test their code changes against the whole system and be confident that these
work as expected.

• Fix problems when you see them
• If a programmer discovers problems or obscurities in code developed by someone else,

they can fix these directly rather than referring them back to the original developer.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION30

Shared good practice

CRICOS PROVIDER #00120C

• The review process in agile software development is usually
informal.
• In Scrum, there is a review meeting after each iteration of the

software has been completed (a sprint review), where quality
issues and problems may be discussed.
• In Extreme Programming, pair programming ensures that code is

constantly being examined and reviewed by another team
member.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION31

Reviews and agile methods

CRICOS PROVIDER #00120C

• This is an approach where 2 people are responsible for code
development and work together to achieve this.
• Code developed by an individual is therefore constantly being

examined and reviewed by another team member.
• Pair programming leads to a deep knowledge of a program, as

both programmers have to understand the program in detail to
continue development.
• This depth of knowledge is difficult to achieve in inspection

processes and pair programming can find bugs that would not be
discovered in formal inspections.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION32

Pair programming

CRICOS PROVIDER #00120C

• Pair programming is a technique that can be used to complement or as an
alternative to software reviews.
• One of the pair, called the driver, types at the computer or writes down a

design.
• The other partner, called the navigator does many jobs:
• Observe the work of the driver – looking for tactical (e.g. syntax errors, typos, calling the wrong method)

and strategic (e.g. heading down the wrong path) defects in the driver’s work.
• The navigator is the strategic, longer-range thinker of the programming pair.
• The navigator can have a more objective point of view and can better think strategically about the

direction of the work

• Both can brainstorm at any time the situation calls for it! Need to periodically
swap roles.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION33

Pair Programming

CRICOS PROVIDER #00120C

•Why pay two programmers to do the work one could do?
• Research shows that student pairs develop higher-quality code

faster with only a minimal increase in the total time spent in
coding:
• L. Williams, R. Kessler, W. Cunningham, and R. Jeffries, "Strengthening the Case for Pair-Programming," IEEE Software, vol. 17, no.

4, pp. 19-25, July/August 2000 2000.

• L. A. Williams, "The Collaborative Software Process," in Department of Computer Science Salt Lake City, UT: University of Utah,
2000.

• N. Nagappan, L. Williams, M. Ferzli, K. Yang, E. Wiebe, C. Miller, and S. Balik, "Improving the CS1 Experience with Pair
Programming," in ACM Special Interest Group Computer Science Education (SIGCSE) 2003 , Reno, 2003, pp. 359 362.

• L. Williams, E. Wiebe, K. Yang, M. Ferzli, and C. Miller, "In Support of Pair Programming in the Introductory Computer Science
Course," Computer Science Education, vol. 12, no. 3, pp. 197-212, 2002.

• L. Williams, K. Yang, E. Wiebe, M. Ferzli, and C. Miller, "Pair Programming in an Introductory Computer Science Course: Initial
Results and Recommendations," in OOPSLA Educator's Symposium , Seattle, WA, 2002, pp. 20-26.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION34

Why Pair Program?

CRICOS PROVIDER #00120C

• Increased Morale. Pair programmers are happier programmers. In
the surveys on the previous slide, 92% indicated that they enjoyed
programming more and 96% indicated they felt more confident in
their product.
• Increased Teamwork. Pair programmers get to know their

classmates much better because they work so closely together.
Classmates then seem more “approachable” when you have a
question about the class.
• Enhanced Learning. Pairs continuously learn by watching how their

partners approach a task, how they use their language capabilities,
and how they use the development.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION35

Why Pair Program?

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION36

Pair Programming Criticisms

https://www.infoq.com/articles/agile-good-hype-ugly/

CRICOS PROVIDER #00120C

•Mutual misunderstandings
• Both members of a pair may make the same mistake in understanding the system

requirements. Discussions may reinforce these errors.

• Pair reputation
• Pairs may be reluctant to look for errors because they do not want to slow down the

progress of the project.

•Working relationships
• The pair’s ability to discover defects is likely to be compromised by their close working

relationship that often leads to reluctance to criticize work partners.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION37

Pair programming weaknesses

CRICOS PROVIDER #00120C

•When a large system is being developed for an external customer,
agile approaches to quality management with minimal
documentation may be impractical.
• If the customer is a large company, it may have its own quality management processes

and may expect the software development company to report on progress in a way
that is compatible with them.

• Where there are several geographically distributed teams involved in development,
perhaps from different companies, then informal communications may be impractical.

• For long-lifetime systems, the team involved in development will change. Without
documentation, new team members may find it impossible to understand
development.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION38

Agile QM and large systems

CRICOS PROVIDER #00120C

• Configuration management is the name given to the general
process of managing a changing software system.
• The aim of configuration management is to support the system

integration process so that all developers can access the project
code and documents in a controlled way, find out what changes
have been made, and compile and link components to create a
system.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION39

Configuration management

CRICOS PROVIDER #00120C

• Version management,
• where support is provided to keep track of the different versions of software

components. Version management systems include facilities to coordinate
development by several programmers.

• System integration,
• where support is provided to help developers define what versions of components are

used to create each version of a system. This description is then used to build a system
automatically by compiling and linking the required components.

• Problem tracking,
• where support is provided to allow users to report bugs and other problems, and to

allow all developers to see who is working on these problems and when they are fixed.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION40

Configuration management activities

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION41

Configuration management
tool interaction

Component
versions

Release
management

Change
proposals

System
releases

Change
management

System
versions

Version
management

System
building

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION42

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION43

CRICOS PROVIDER #00120C

Modern Code Reviews

44

CRICOS PROVIDER #00120C

• Finding defects
• both low-level and high-level issues
• requirements/design/code issues
• security/performance/… issues
• Code improvement
• readability, formatting, commenting, consistency, dead code removal, naming
• enforce to coding standards
• Identifying alternative solutions
• Knowledge transfer
• learn about API usage, available libraries, best practices, team conventions, system design,

"tricks", …
• “developer education”, especially for junior developers

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION45

Reasons for Code Reviews

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

CRICOS PROVIDER #00120C

• Team awareness and transparency
• let others "double check" changes
• announce changes to specific developers or entire team ("FYI")
• general awareness of ongoing changes and new functionality

• Shared code ownership
• shared understanding of larger part of the code base
• openness toward critique and changes
• makes developers "less protective" of their code

46

Reasons for Code Reviews (continued)

Bacchelli, Alberto, and Christian Bird. "Expectations, outcomes, and challenges of modern code
review." Proceedings of the 2013 International Conference on Software Engineering. IEEE Press, 2013.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Rules are laws (not just suggestions or recommendations, but
strict, mandatory laws).
• The goal is to encourage “good” and discourage “bad” behaviour (subjective to each

Organisation)

• Separate style guides for each of the programming languages
• Either overarching principles like naming and formatting (Dart, R, Shell)
• Or delving into specific features and far lengthier (C++, Python, Java)
• E.g. Google disallows the use of exceptions in C++ - a feature used widely outside of Google code

• Key question: “What goal are we trying to advance?”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION47

Style Guides and Rules @ Google

CRICOS PROVIDER #00120C

• Pull their weight
• Note modern automation for formatting!

• Optimize for the reader
• E.g. https://google.github.io/styleguide/pyguide.html#211-conditional-expressions

• Be consistent
• Avoid error-prone and surprising constructs
• Concede to practicalities when necessary

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION48

Overarching Principles @ Google

https://google.github.io/styleguide/pyguide.html

CRICOS PROVIDER #00120C

• Rules to avoid dangers
• Rules to enforce best practices
• Rules to ensure consistency

https://google.github.io/styleguide/

• When adding a rule, pros, cons, and consequences are analysed to verify
that change is appropriate for the scale of Google – these are weighted
and documented and have to follow a process – decisions are made by
consensus, not voting by the committees of around 4 language experts.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION49

The Style Guide @ Google

https://google.github.io/styleguide/

CRICOS PROVIDER #00120C

• See Chapters 9 and 19 (about the Critique Tool @ Google)
• Best Practices
• Be Polite and Professional
• Write Small Changes
• Write Good Change Descriptions
• Keep Reviewers to a Minimum
• Automate Where Possible

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION50

Code Review @ Google

CRICOS PROVIDER #00120C

51

Code Review at Microsoft

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Most frequently code improvements (29%)
• 58 better coding practices
• 55 removing unused/dead code
• 52 improving readability

• Defect finding (14%)
• 65 logical issues (“uncomplicated logical errors, eg., corner cases, common configuration

values, operator precedence)
• 6 high-level issues
• 5 security issues
• 3 wrong exception handling

• Knowledge transfer
• 12 pointers to internal/external documentation etc

52

Outcomes (at Microsoft analyzing 200
reviews with 570 comments)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

53

Outcomes (Analyzing Reviews)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Low quality of code reviews
• Reviewers look for easy errors, as formatting issues
• Miss serious errors

• Understanding is the main challenge
• Understanding the reason for a change
• Understanding the code and its context
• Feedback channels to ask questions often needed

• No quality assurance on the outcome

54

Mismatch of Expectations and Outcomes

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Introduced to “force developers to write code that other
developers could understand”
• 3 Found benefits:
• checking the consistency of style and design
• ensuring adequate tests
• improving security by making sure no single developer can commit arbitrary code

without oversight

55

Code Review at Google

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

56 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

57

Reviewing relationships

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Author’s self-worth in artifacts
• CI can avoid embarrassment
• Identify defects, not alternatives; do not criticize authors
• “you didn’t initialize variable a” -> “I don’t see where variable a is initialized”

• Avoid defending code; avoid discussions of solutions/alternatives
• Reviewers should not “show off” that they are better/smarter
• Avoid style discussions if there are no guidelines
• Author decides how to resolve fault

58

Don’t forget Devs are Humans too

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

Let computers do the parts they are good at,

Let the humans focus on the parts they are
good at.

59

Code Review

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

60

Process: Checklists!

The Checklist: https://www.newyorker.com/magazine/2007/12/10/the-checklist

https://en.wikipedia.org/wiki/File:B17_-_Chino_Airshow_2014_(framed).jpg

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Are all requirements traceable back to a specific user need?
• Are any requirements included that are impossible to implement?
• Could the requirements be understood and implemented by an

independent group?
• Are security requirements specified for each function?
• Is there a glossary in which each term is defined?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION61

Personal Review Checklist

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION62

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION63

CRICOS PROVIDER #00120C

Pair and Mob Programming

64

CRICOS PROVIDER #00120C

65

Pair Programming

https://martinfowler.com/articles/on-pair-programming.html

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

66

Benefits

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

All the brilliant people working on the same thing, at the same time, in the same space, on
the same computer.
– Woody Zuill (the discoverer of Mob Programming)

67

Mob Programming

https://dev.to/albertowar/mob-programming-revisited-2fo4

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

Its not about getting the MOST out of your
Team, Its about getting the Best out of your
team

68

CRICOS PROVIDER #00120C

69

Solo Programming

http://i.imgur.com/fGlgTyg.gif

source: http://i.imgur.com/fGlgTyg.gif

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

http://i.imgur.com/fGlgTyg.gif

CRICOS PROVIDER #00120C

70

Separate Programming

http://i.imgur.com/fGlgTyg.gif

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

source: http://i.imgur.com/fGlgTyg.gif

http://i.imgur.com/fGlgTyg.gif

CRICOS PROVIDER #00120C

71

Pair Programming

http://i.imgur.com/fGlgTyg.gif

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

source: http://i.imgur.com/fGlgTyg.gif

http://i.imgur.com/fGlgTyg.gif

CRICOS PROVIDER #00120C

72

http://i.imgur.com/fGlgTyg.gif

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

source: http://i.imgur.com/fGlgTyg.gif

Pair Programming

http://i.imgur.com/fGlgTyg.gif

CRICOS PROVIDER #00120C

73

Mob Programming

http://i.imgur.com/fGlgTyg.gif

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

source: http://i.imgur.com/fGlgTyg.gif

http://i.imgur.com/fGlgTyg.gif

CRICOS PROVIDER #00120C

74

Mob Programming

http://i.imgur.com/fGlgTyg.gif

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

source: http://i.imgur.com/fGlgTyg.gif

http://i.imgur.com/fGlgTyg.gif

CRICOS PROVIDER #00120C

75 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

The Driver: “no thinking, just typing”
The Navigator: the main person programming
The Mob: Checking the navigator,
Contributing insights, Getting ready to
rotate

The Facilitator: Help guide the mob (Instructor)
76

Mob Programming Roles

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION77

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION78

CRICOS PROVIDER #00120C

Running a Meeting

79

CRICOS PROVIDER #00120C

• Ask good questions:

•“I am trying to ___, so that I can ___.
I’m running into ___.
I’ve looked at ___ and tried ___.”

80

How to get good answers

http://kwugirl.blogspot.com/2014/04/how-
to-be-better-junior-developer_25.html

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Keep a log of questions and answers (Make new mistakes! Ask new
questions!)
• Try to find answers first (timebox search)
• Keep mental model of who knows what
• Help others learn how to ask good questions too

81

Good Questions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• The Three Rules of Running a Meeting
• Set the Agenda
• Start on Time. End on Time.
• End with an Action Plan

• Give Everyone a Role
• Establish Ground Rules
• Decision, or Consensus?

82

How to run a meeting

https://www.nytimes.com/guides/business/how-to-run-an-effective-meeting

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

Control the Meeting, Not the Conversation

Let Them Speak

Make Everyone Contribute

Manage Personalities

Be Vulnerable

Make Everyone a Judge

Make Meetings Essential

Do a Meeting Audit

83

How to run a meeting

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

https://www.nytimes.com/guides/business/how-to-run-an-effective-meeting

CRICOS PROVIDER #00120C

84

https://www.atlassian.com/blog/teamwork/how-to-run-effective-meetings

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Note takers have a lot of power to steer the meeting
• Collaborative notes are even better!

• Different meeting types have different best practices
• Regular team meeting
• Decision-making meeting
• Brainstorming meeting
• Retrospective meeting
• One-on-one meeting

85

Random Advice

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION86

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION87

CRICOS PROVIDER #00120C

Making Code Reliable

88

CRICOS PROVIDER #00120C

•Creating a successful software product does not simply mean
providing useful features for users.
•You need to create a high-quality product that people want to use.
•Customers have to be confident that your product will not crash or
lose information, and users have to be able to learn to use the
software quickly and without mistakes.

89

Software quality

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

90

Software product quality attributes
Reliability

Security

MaintainabilityUsability

Figure 8.1 Product quality attributes

Responsiveness

Product quality
attributes

Availability

Resilience

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• There are three simple techniques for reliability improvement that
can be applied in any software company.
• Fault avoidance You should program in such a way that you avoid introducing faults

into your program.
• Input validation You should define the expected format for user inputs and validate

that all inputs conform to that format.
• Failure management You should implement your software so that program failures

have minimal impact on product users.

91

Programming for reliability

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

92

Underlying causes of program errors

Technology

Programmers make mistakes because
they make simple slips or they do not
completely understand how multiple
program components work together and change
the program’s state.

Figure 8.2 Underlying causes of program errors

Programming language,
libraries, database, IDE, etc.

Program

Programmers make mistakes
because they don’t properly
understand the problem or the
application domain.

Programmers make mistakes
because they use unsuitable
technology or they don’t
properly understand the
technologies used.

Problem

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

93

Software complexity

The shaded node interacts, in some ways, with
the linked nodes shown by the dotted line

Figure 8.3 Software complexity

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Complexity is related to the number of relationships between elements in a program and the type and
nature of these relationships

• The number of relationships between entities is called the coupling. The higher the coupling, the more
complex the system.

• The shaded node on the previous slide has a relatively high coupling because it has relationships with six other nodes.

• A static relationship is one that is stable and does not depend on program execution.

• Whether or not one component is part of another component is a static relationship.

• Dynamic relationships, which change over time, are more complex than static relationships.

• An example of a dynamic relationship is the ‘calls’ relationship between functions.

94 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

Program Complexity

CRICOS PROVIDER #00120C

• Reading complexity
This reflects how hard it is to read and understand the program.
• Structural complexity

This reflects the number and types of relationship between the
structures (classes, objects, methods or functions) in your program.
• Data complexity

This reflects the representations of data used and relationships between
the data elements in your program.
• Decision complexity

This reflects the complexity of the decisions in your program

95

Types of complexity

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Structural complexity
• Functions should do one thing and one thing only

• Functions should never have side-effects

• Every class should have a single responsibility

• Minimize the depth of inheritance hierarchies

• Avoid multiple inheritance

• Avoid threads (parallelism) unless absolutely necessary

• Data complexity
• Define interfaces for all abstractions

• Define abstract data types

• Avoid using floating-point numbers

• Never use data aliases

• Conditional complexity
• Avoid deeply nested conditional statements

• Avoid complex conditional expressions

96

Complexity reduction guidelines

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• You should design classes so that there is only a single reason to
change a class.
• If you adopt this approach, your classes will be smaller and more cohesive.
• They will therefore be less complex and easier to understand and change.

• The notion of ‘a single reason to change’ is, I think, quite hard to
understand. However, in a blog post, Bob Martin explains the
single responsibility principle in a much better way:
• Gather together the things that change for the same reasons.
• Separate those things that change for different reasons.

97

Ensure that every class has a single
responsibility

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

98

The DeviceInventory class

DeviceInventory

laptops
tablets
phones
device_assignment

addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

DeviceInventory

laptops
tablets
phones
device_assignment

addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment
printInventory

Figure 8.4 The DeviceInventory class

(a) (b)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• One way of making this change is to add a printInventory method, as shown in the previous
slide.

• This change breaks the single responsibility principle as it then adds an additional ‘reason to
change’ the class.

• Without the printInventory method, the reason to change the class is that there has been some
fundamental change in the inventory, such as recording who is using their personal phone for business
purposes.

• However, if you add a print method, you are associating another data type (a report) with the class.
Another reason for changing this class might then be to change the format of the printed report.

• Instead of adding a printInventory method to DeviceInventory, it is better to add a new class
to represent the printed report as shown on the next slide.

99

Adding a printInventory method

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

100

The DeviceInventory and InventoryReport
classes

DeviceInventory

laptops
tablets
phones
device_assignment

addDevice
removeDevice
assignDevice
unassignDevice
getDeviceAssignment

InventoryReport

report_data
report_format

updateData
updateFormat
print

Figure 8.5 The DeviceInventory and InventoryReport classes

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Deeply nested conditional (if) statements are used when you need
to identify which of a possible set of choices is to be made.
• For example, the function ‘agecheck’ in Program 8.1 is a short

Python function that is used to calculate an age multiplier for
insurance premiums.
• The insurance company’s data suggests that the age and experience of drivers affects

the chances of them having an accident, so premiums are adjusted to take this into
account.

• It is good practice to name constants rather than using absolute numbers, so Program
8.1 names all constants that are used.

101

Avoid deeply nested
conditional statements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

YOUNG_DRIVER_AGE_LIMIT = 25
OLDER_DRIVER_AGE = 70
ELDERLY_DRIVER_AGE = 80

YOUNG_DRIVER_PREMIUM_MULTIPLIER = 2
OLDER_DRIVER_PREMIUM_MULTIPLIER = 1.5
ELDERLY_DRIVER_PREMIUM_MULTIPLIER = 2
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER = 2
NO_MULTIPLIER = 1

YOUNG_DRIVER_EXPERIENCE = 2
OLDER_DRIVER_EXPERIENCE = 5

def agecheck (age, experience):

 # Assigns a premium multiplier depending on the
age and experience of the driver

 multiplier = NO_MULTIPLIER

 if age <= YOUNG_DRIVER_AGE_LIMIT:

 if experience <= YOUNG_DRIVER_EXPERIENCE:

 multiplier =
YOUNG_DRIVER_PREMIUM_MULTIPLIER *
YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

 else:

102 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

Deeply nested if-then-else statements
 multiplier =

YOUNG_DRIVER_PREMIUM_MULTIPLIER

 else:

 if age > OLDER_DRIVER_AGE and age <=
ELDERLY_DRIVER_AGE:

 if experience <= OLDER_DRIVER_EXPERIENCE:

 multiplier =
OLDER_DRIVER_PREMIUM_MULTIPLIER

 else:

 multiplier = NO_MULTIPLIER

 else:

 if age > ELDERLY_DRIVER_AGE:

 multiplier =
ELDERLY_DRIVER_PREMIUM_MULTIPLIER

 return multiplier

CRICOS PROVIDER #00120C

def agecheck_with_guards (age, experience):

 if age <= YOUNG_DRIVER_AGE_LIMIT and experience <= YOUNG_DRIVER_EXPERIENCE:

 return YOUNG_DRIVER_PREMIUM_MULTIPLIER * YOUNG_DRIVER_EXPERIENCE_MULTIPLIER

 if age <= YOUNG_DRIVER_AGE_LIMIT:

 return YOUNG_DRIVER_PREMIUM_MULTIPLIER

 if (age > OLDER_DRIVER_AGE and age <= ELDERLY_DRIVER_AGE) and experience <=
OLDER_DRIVER_EXPERIENCE:

 return OLDER_DRIVER_PREMIUM_MULTIPLIER

 if age > ELDERLY_DRIVER_AGE:

 return ELDERLY_DRIVER_PREMIUM_MULTIPLIER

 return NO_MULTIPLIER

103

Using guards to make a selection

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Inheritance allows the attributes and methods of a class, such as RoadVehicle, can be
inherited by sub-classes, such as Truck, Car and MotorBike.

• Inheritance appears to be an effective and efficient way of reusing code and of making
changes that affect all subclasses.

• However, inheritance increases the structural complexity of code as it increases the coupling
of subclasses. For example, next slide shows part of a 4-level inheritance hierarchy that could
be defined for staff in a hospital.

• The problem with deep inheritance is that if you want to make changes to a class, you have to
look at all of its superclasses to see where it is best to make the change.

• You also have to look at all of the related subclasses to check that the change does not have
unwanted consequences. It’s easy to make mistakes when you are doing this analysis and
introduce faults into your program.

104 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

Avoid deep inheritance hierarchies

CRICOS PROVIDER #00120C

105

Part of the inheritance hierarchy
for hospital staff

Hospital staff

Clinical staffParamedics Scientists Admin staffTechnicians Ancillary staff

Doctor PhysiotherapistNurse

Midwife Ward nurse
Nurse

manager

Figure 8.6 Part of the inheritance hierarchy for hospital staff

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Definition
• A general reusable solution to a commonly-occurring problem within a given context

in software design.

• Design patterns are object-oriented and describe solutions in
terms of objects and classes. They are not off-the-shelf solutions
that can be directly expressed as code in an object-oriented
language.
• They describe the structure of a problem solution but have to be

adapted to suit your application and the programming language
that you are using.

106

Design Patterns

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

Patterns and Pattern Languages are ways to describe best practices,
good designs, and capture experience in a way that it is possible for
others to reuse this experience.

107

Design Patterns

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Separation of concerns
• This means that each abstraction in the program (class, method, etc.) should address a

separate concern and that all aspects of that concern should be covered there. For
example, if authentication is a concern in your program, then everything to do with
authentication should be in one place, rather than distributed throughout your code.

• Separate the ‘what’ from the ‘how
• If a program component provides a particular service, you should make available only

the information that is required to use that service (the ‘what’). The implementation of
the service (‘the how’) should be of no interest to service users.

108

Programming principles

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Creational patterns

• These are concerned with class and object creation. They define ways of instantiating and
initializing objects and classes that are more abstract than the basic class and object creation
mechanisms defined in a programming language.

• Structural patterns

• These are concerned with class and object composition. Structural design patterns are a
description of how classes and objects may be combined to create larger structures.

• Behavioural patterns

• These are concerned with class and object communication. They show how objects interact by
exchanging messages, the activities in a process and how these are distributed amongst the
participating objects.

109 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

Common types of design patterns

CRICOS PROVIDER #00120C

110

Examples of Design Patterns
Table 8.2 Examples of creational, structural and behavioral design patterns

Pattern name Type Description

Adapter Structural Used to match semantically-compatible interfaces of
different classes.

Factory Creational Used to create objects when slightly different variants of the
object may be created.

Prototype Creational Used to create an object clone i.e. a new object with exactly
the same attribute values as the object being cloned.

Facade Structural Used to provide a single interface to a group of classes in
which each class implements some functionality accessed
through the interface.

Mediator Behavioural Used to reduce the number of direct interactions between
objects. All object communications are handled through
the mediator.

State Behavioural Used to implement a state machine where the behaviour
of an object when its internal state changes.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Design patterns are usually documented in the stylized way. This
includes:
• a meaningful name for the pattern and a brief description of what it does;
• a description of the problem it solves;
• a description of the solution and its implementation;
• the consequences and trade-offs of using the pattern and other issues that you should

consider.

111

Pattern Description / “Pattern Language”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• To use patterns in your design, you need to recognize that any
design problem you are facing may have an associated pattern that
can be applied.
• Tell several objects that the state of some other object has changed (Observer pattern).
• Tidy up the interfaces to a number of related objects that have often been developed

incrementally (Façade pattern).
• Provide a standard way of accessing the elements in a collection, irrespective of how

that collection is implemented (Iterator pattern).
• Allow for the possibility of extending the functionality of an existing class at run-time

(Decorator pattern).

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12:
INSPECTION

112

Design problems

CRICOS PROVIDER #00120C

• Refactoring means changing a program to reduce its complexity without
changing the external behaviour of that program.
• Refactoring makes a program more readable (so reducing the ‘reading

complexity’) and more understandable.
• It also makes it easier to change, which means that you reduce the

chances of making mistakes when you introduce new features.
• The reality of programming is that as you make changes and additions to

existing code, you inevitably increase its complexity.
• The code becomes harder to understand and change. The abstractions and operations that

you started with become more and more complex because you modify them in ways that
you did not originally anticipate.

113

Refactoring

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

114

A refactoring process

Identify code
‘smell’

Identify refactoring
strategy

Make small
improvement until
strategy completed

Run automated
code tests

Figure 8.8 A refactoring process

Start

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

•Martin Fowler, a refactoring pioneer, suggests that the starting
point for refactoring should be to identify code ‘smells’.
• Code smells are indicators in the code that there might be a

deeper problem.
• For example, very large classes may indicate that the class is trying to do too much.

This probably means that its structural complexity is high.

115

Code smells

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Large classes
Large classes may mean that the single responsibility principle is being violated. Break down large classes
into easier-to-understand, smaller classes.

• Long methods/functions
Long methods or functions may indicate that the function is doing more than one thing. Split into smaller,
more specific functions or methods.

• Duplicated code
Duplicated code may mean that when changes are needed, these have to be made everywhere the code is
duplicated. Rewrite to create a single instance of the duplicated code that is used as required

• Meaningless names
Meaningless names are a sign of programmer haste. They make the code harder to understand. Replace
with meaningful names and check for other shortcuts that the programmer may have taken.

• Unused code
This simply increases the reading complexity of the code. Delete it even if it has been commented out. If
you find you need it later, you should be able to retrieve it from the code management system.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION116

Examples of Code Smells

CRICOS PROVIDER #00120C

• Reading complexity
You can rename variable, function and class names throughout your program to
make their purpose more obvious.
• Structural complexity

You can break long classes or functions into shorter units that are likely to be
more cohesive than the original large class.
• Data complexity

You can simplify data by changing your database schema or reducing its
complexity. For example, you can merge related tables in your database to
remove duplicated data held in these tables.
• Decision complexity

You can replace a series of deeply nested if-then-else statements with guard
clauses, as I explained earlier in this chapter.

117

Examples of refactoring for complexity
reduction

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Input validation involves checking that a user’s input is in the correct
format and that its value is within the range defined by input rules.
• Input validation is critical for security and reliability. As well as inputs

from attackers that are deliberately invalid, input validation catches
accidentally invalid inputs that could crash your program or pollute your
database.
• User input errors are the most common cause of database pollution.
• You should define rules for every type of input field and you should

include code that applies these rules to check the field’s validity.
• If it does not conform to the rules, the input should be rejected.

118

Input validation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Built-in validation functions
You can use input validator functions provided by your web development
framework. For example, most frameworks include a validator function that will
check that an email address is of the correct format.
• Type coercion functions

You can use type coercion functions, such as int() in Python, that convert the input
string into the desired type. If the input is not a sequence of digits, the conversion
will fail.
• Explicit comparisons

You can define a list of allowed values and possible abbreviations and check inputs
against this list. For example, if a month is expected, you can check this against a list
of all months and recognised abbreviations.
• Regular expressions

You can use regular expressions to define a pattern that the input should match and
reject inputs that do not match that pattern.

119

Methods of implementing input validation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Regular expressions (REs) are a way of defining patterns.
• A search can be defined as a pattern and all items matching that pattern

are returned. For example, the following Unix command will list all the
JPEG files in a directory:
• ls | grep ..*\.jpg$
• A single dot means ‘match any character’ and * means zero or more

repetitions of the previous character. Therefore ..* means ‘one or more
characters’. The file prefix is .jpg and the $ character means that it must
occur at the end of a line.
• In a program on the next slide, REs are used to check the validity of

names.

120

Regular expressions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Number checking is used with numeric inputs to check that these are not
too large or small and that they are sensible values for the type of input.
• For example, if the user is expected to input their height in meters then you should expect a

value between 0.6m (a very small adult) and 2.6m (a very tall adult).

• Number checking is important for two reasons:
• If numbers are too large or too small to be represented, this may lead to unpredictable

results and numeric overflow or underflow exceptions. If these exceptions are not properly
handled, very large or very small inputs can cause a program to crash.

• The information in a database may be used by several other programs and these may make
assumptions about the numeric values stored. If the numbers are not as expected, this may
lead to unpredictable results.

121

Number checking

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• As well as checking the ranges of inputs, you may also perform checks on
these inputs to ensure that these represent sensible values.
• These protect your system from accidental input errors and may also

stop intruders who have gained access using a legitimate user’s
credentials from seriously damaging their account.
• For example, if a user is expected to enter the reading from an electricity

meter, then you should
• (a) check this is equal to or larger than the previous meter reading and

• (b) consistent with the user’s normal consumption.

122

Input range checks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Software is so complex that, irrespective of how much effort you
put into fault avoidance, you will make mistakes. You will introduce
faults into your program that will sometimes cause it to fail.
• Program failures may also be a consequence of the failure of an

external service or component that your software depends on.
•Whatever the cause, you have to plan for failure and make

provisions in your software for that failure to be as graceful as
possible.

123

Failure management

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Data failures

• The outputs of a computation are incorrect. For example, if someone’s year of birth is 1981 and
you calculate their age by subtracting 1981 from the current year, you may get an incorrect
result. Finding this kind of error relies on users reporting data anomalies that they have noticed.

• Program exceptions

• The program enters a state where normal continuation is impossible. If these exceptions are not
handled, then control is transferred to the run-time system which halts execution. For example,
if a request is made to open a file that does not exist then an IOexception has occurred.

• Timing failures

• Interacting components fail to respond on time or where the responses of concurrently-
executing components are not properly synchronized. For example, if service S1 depends on
service S2 and S2 does not respond to a request, then S1 will fail.

124 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

Failure categories

CRICOS PROVIDER #00120C

• Persistent data (i.e. data in a database or files) should not be lost
or corrupted;
• The user should be able to recover the work that they’ve done

before the failure occurred;
• Your software should not hang or crash;
• You should always ‘fail secure’ so that confidential data is not left

in a state where an attacker can gain access to it.

125

Failure effect minimisation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Exceptions are events that disrupt the normal flow of processing in
a program.
•When an exception occurs, control is automatically transferred to

exception management code.
•Most modern programming languages include a mechanism for

exception handling.
• In Python, you use **try-except** keywords to indicate exception

handling code; in Java, the equivalent keywords are **try-catch.**

126

Exception handling

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• Activity logging
• You keep a log of what the user has done and provide a way to replay that against their

data. You don’t need to keep a complete session record, simply a list of actions since
the last time the data was saved to persistent store.

• Auto-save
• You automatically save the user’s data at set intervals - say every 5 minutes. This

means that, in the event of a failure, you can restore the saved data with the loss of
only a small amount of work.

• Usually, you don’t have to save all of the data but simply save the changes that have
been made since the last explicit save.

127

Auto-save and activity logging

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

128

Auto-save and activity logging

Auto-save Command
logger

Last
saved state

Commands
executed

Crash
recovery

Figure 8.10 Auto-save and activity logging

Restored
state

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

• If your software uses external services, you have no control over these services
and the only information that you have on service failure is whatever is
provided in the service’s API.
• As services may be written in different programming languages, these errors

can’t be returned as exception types but are usually returned as a numeric
code.
• When you are calling an external service, you should always check that the

return code of the called service indicates that it has operated successfully.
• You should, also, if possible, check the validity of the result of the service call as

you cannot be certain that the external service has carried out its computation
correctly.

129

External service failure

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

CRICOS PROVIDER #00120C

def credit_checker (name, postcode, dob):

 # Assume that the function check_credit_rating calls an external
service
 # to get a person's credit rating. It takes a name, postcode (zip
code)
 # and date of birth as parameters and returns a sequence with the
database
 # information (name, postcode, date of birth) plus a credit score
between 0 and
 # 600. The final element in the sequence is an error_code which
may
 # be 0 (successful completion), 1 or 2.
 NAME = 0
 POSTCODE = 1
 DOB = 2
 RATING = 3
 RETURNCODE = 4
 REQUEST_FAILURE = True
 ASSERTION_ERROR = False

130 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION

Using assertions to check results from an
external service

 cr = ['', '', '', -1, 2]

 # Check credit rating simulates call to external service
 cr = check_credit_rating (name, postcode, dob)
 try:
 assert cr [NAME] == name and cr [POSTCODE] == postcode and cr
[DOB] == dob \
 and (cr [RATING] >= 0 and cr [RATING] <= 600) and \
 (cr[RETURNCODE] >= 0 and cr[RETURNCODE] <= 2)
 if cr[RETURNCODE] == 0:
 do_normal_processing (cr)
 else:
 do_exception_processing (cr, name, postcode, dob,
REQUEST_FAILURE)
 except AssertionError:
 do_exception_processing (cr, name, postcode, dob,
ASSERTION_ERROR)

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION131

Poll Everywhere Time!

