
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

DEVOPS

Week:
7 of 12

A/Prof Alex Potanin

CRICOS PROVIDER #00120C

2

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

•What is DevOps
• Code Management
• CI: Continuous Integration
• CD: Continuous Deployment
• Infrastructure as Code
•Monitoring

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS3

Today

CRICOS PROVIDER #00120C

What Is DevOps

4ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

5

What is DevOps?

Bringing together two traditionally separate groups within software organizations
- Development, typically measured on features completed, code shipped
- Operations, typically measured through stability, reliability, availability

Benefits:
- Increased Velocity: how quickly products and applications are pushed to release
- Increased Quality: successful delivery of features and products

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

6

Deployment and Evolution

Source: http://martinfowler.com/articles/microservices.html

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

7

as of 2018, reference: https://www.youtube.com/watch?v=UTKIT6STSVM

Activity
What were some of the challenges of

running a microservice architecture of this scale?

• 100s of microservices
• 1,000s of production changes per day
• 10,000s of virtual machines
• 100,000s of customer interactions per second
• 1,000,000s of metrics per minute (actually, 2 million)

• 81.5 million customers

• 10s of operations engineers
• no single engineer knows the entire application

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Netflix: Microservice Architecture

CRICOS PROVIDER #00120C

8

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

9 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

CRICOS PROVIDER #00120C

10 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

CRICOS PROVIDER #00120C

11

How do we get to DevOps?

Goals:

1. Technological: Automated process for moving code from dev to release.

Starting with check-in, build, unit test, build artifact,
integration test, load test, as moves through stage to production,
finally, with monitoring and other telemetry.

2. Cultural: Building cohesive, multidisciplinary teams.

Typically, developers are the “first responders” when things go bad in
production.
Sense of “ownership” by the developer all the way from inception to release.

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

12

What can it look like when it’s done?

reference: https://www.youtube.com/watch?v=UTKIT6STSVM

Netflix Spinnaker (open-source CI/CD fully automated pipeline):
• Takes code from code repository to production.
• Allows developers to specify required tests.
• Determines where, how code should be run in system (e.g., replication, placement.)
• Supports canary deployments, traffic management.
• Just publish the repo!

reference: Puppet State of the DevOps Report 2017

5x
lower
change
failure rate

440x
faster from
commit to deploy

46x
more frequent
deployments

44%
more time
spent on new
features and
code

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

13

What do we need to practice for DevOps?

Continuous Integration (CI)
1. Constant testing as code is checked-in/pushed to the repository (e.g., GH hooks, etc.)
2. Verify the build process works (i.e., parsing, compilation, code generation, etc.)
3. Verify unit tests pass, style checks pass, other static analysis tools.
4. Build artifacts

Continuous Delivery & Deployment (CD)
1. Moving build artifacts from test -> stage -> prod environments.

Environments always differ! (e.g., ENV, PII, data, etc.)
2. Gate code, if necessary, from advancing without manual approval.

Useful when initially transitioning applications into a modern DevOps pipeline.

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

14

CI/CD

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

Continuous Integration (CI)
1. Commit and check-in code frequently (always can squash later)
2. Commits build on previous commits (know precisely where the build breaks)
3. Automated feedback and testing on commits
4. Artifact creation (e.g., container images, WAR files, etc.)
5. Ensure code, supporting infrastructure, documentation are all versioned together

Continuous Deployment (CD)
1. Artifacts automatically shipped into test, stage, production environments
2. Prevents “manual” deployment, avoids “manual” steps, early detection of problems
3. Can be tied to a “manual” promotion technique to advance through environments
4. Multi-stage deployment with automatic rollback on failure detection

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

15

DevOps Phases

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Traditionally, separate teams were responsible for software
development, software release and software support.
• The development team passed over a ‘final’ version of the

software to a release team. This team then built a release version,
tested this and prepared release documentation before releasing
the software to customers.
• A third team was responsible for providing customer support.
• The original development team were sometimes also responsible for implementing

software changes.
• Alternatively, the software may have been maintained by a separate ‘maintenance

team’.

16

Software Support

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

17

Development, release and support

Development

Tested software
ready for release

Release

Deployed software
ready for use

Support

Problem and bug
reports

Figure 10.1 Development, release and support

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• There are inevitable delays and overheads in the traditional support model.

• To speed up the release and support processes, an alternative approach called
DevOps (Development + Operations) has been developed.

• Three factors led to the development and widespread adoption of DevOps:

• Agile software engineering reduced the development time for software, but the traditional
release process introduced a bottleneck between development and deployment.

• Amazon re-engineered their software around services and introduced an approach in which a
service was developed and supported by the same team. Amazon’s claim that this led to
significant improvements in reliability was widely publicized.

• It became possible to release software as a service, running on a public or private cloud.
Software products did not have to be released to users on physical media or downloads.

18 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

DevOps

CRICOS PROVIDER #00120C

19

DevOps

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Everyone is responsible for everything
All team members have joint responsibility for developing, delivering and
supporting the software.
• Everything that can be automated should be automated

All activities involved in testing, deployment and support should be
automated if it is possible to do so. There should be minimal manual
involvement in deploying software.
• Measure first, change later

DevOps should be driven by a measurement program where you collect
data about the system and its operation. You then use the collected data
to inform decisions about changing DevOps processes and tools.

20

DevOps principles

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Faster deployment
Software can be deployed to production more quickly because communication
delays between the people involved in the process are dramatically reduced.
• Reduced risk

The increment of functionality in each release is small so there is less chance of
feature interactions and other changes causing system failures and outages.
• Faster repair

DevOps teams work together to get the software up and running again as soon
as possible. There is no need to discover which team were responsible for the
problem and to wait for them to fix it.
• More productive teams

DevOps teams are happier and more productive than the teams involved in the
separate activities. Because team members are happier, they are less likely to
leave to find jobs elsewhere.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS21

Benefits of DevOps

CRICOS PROVIDER #00120C

22

What do we need to practice for DevOps?

Infrastructure as Code
1. Required resources (e.g., cloud services, access policies, etc.) are created by code.

No UI provisioning, no manual steps (avoid: easy to forget, time consuming!)
2. “Immutable Infrastructure”

No update-in-place (e.g., SSH to server.)
Replace with new instances, decommission old instances.

3. Nothing to prod without it being in code, checked-in, versioned along side code!

Observability (Monitoring, Logging, Tracing, Metrics)
1. Be able to know how your application is running in production
2. Track and analyze low-level metrics on performance, resource allocation
3. Capture high-level metrics on application behavior

1. What’s “normal”?
2. What’s abnormal? reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

23

Exercise: DevOps Pipeline
ChoicesDevelop

Test

Deploy

Monitor

Build

Automate

Choices

Check in

Peer review Run integration tests Run penetration testsRun unit tests Deploy to prod Record errors

Require Manual
approval to advanceStyle check

Build container
imagesCompilation Run load tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

24

A Typical DevOps Pipeline

Develop Build Test Deploy Monitor

Check in

Peer review

Run integration
tests

Run penetration
testsRun unit tests

Deploy to prod Record errors

Require Manual
approval to

advance

Style check

Build container
images

Compilation Run load tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• After you have adopted DevOps, you should try to continuously improve
your DevOps process to achieve faster deployment of better-quality
software.
• There are four types of software development measurement:
• Process measurement You collect and analyse data about your development, testing and

deployment processes.
• Service measurement You collect and analyse data about the software’s performance,

reliability and acceptability to customers.
• Usage measurement You collect and analyse data about how customers use your product.
• Business success measurement You collect and analyse data about how your product

contributes to the overall success of the business.

25

DevOps Measurement

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• As far as possible, the DevOps principle of automating everything
should be applied to software measurement.
• You should instrument your software to collect data about itself

and you should use a monitoring system to collect data about your
software’s performance and availability.
• Some process measurements can also be automated.
• However, there are problems in process measurement because people are involved.

They work in different ways, may record information differently and are affected by
outside influences that affect the way they work.

26

Automating Measurement

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

27

Metrics used in the DevOps scorecard
Figure 10.15 Metrics used in the DevOps scorecard

Deployment
frequency

Change
volume

DevOps
metrics

Lead time from
development to deployment

Percentage of
failed deployments

Mean time to
recovery

Number of
customer complaints

Availability

Performance

Percentage increase
in customer numbers

Process metrics

Service metrics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Payal Chakravarty from IBM suggests a practical approach to
DevOps measurement based around a metrics scorecard with 9
metrics:
• These are relevant to software that is delivered as a cloud service. They include

process metrics and service metrics
• For the process metrics, you would like to see decreases in the number of failed

deployments, the mean time to recovery after a service failure and the lead time from
development to deployment.

• You would hope to see increases in the deployment frequency and the number of lines
of changed code that are shipped.

• For the service metrics, availability and performance should be stable or improving,
the number of customer complaints should be decreasing, and the number of new
customers should be increasing.

28

Metrics scorecard

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

29

Metrics Trends (via Logging or Similar)

Weeks

Availability

Deployment
frequency

Number of
customer
complaints

Figure 10.16 Metrics trends

1 2 3 4 5

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Executing
software

Log 2

Log 1

Log 3

Log
analyser

Metrics
dashboard

Figure 10.17 Logging and analysis

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS30

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS31

CRICOS PROVIDER #00120C

Code Management

32ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• During the development of a software product, the development team will
probably create tens of thousands of lines of code and automated tests.
• These will be organized into hundreds of files. Dozens of libraries may be used,

and several, different programs may be involved in creating and running the
code.
• Code management is a set of software-supported practices that is used to

manage an evolving codebase.
• You need code management to ensure that changes made by different

developers do not interfere with each other, and to create different product
versions.
• Code management tools make it easy to create an executable product from its

source code files and to run automated tests on that product.

33

Code management

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Alice and Bob worked for a company called FinanceMadeSimple and were team members
involved in developing a personal finance product. Alice discovered a bug in a module called
TaxReturnPreparation. The bug was that a tax return was reported as filed but, sometimes, it
was not actually sent to the tax office. She edited the module to fix the bug. Bob was working
on the user interface for the system and was also working on TaxReturnPreparation.
Unfortunately, he took a copy before Alice had fixed the bug and, after making his changes, he
saved the module. This overwrote Alice’s changes but she was not aware of this.

• The product tests did not reveal the bug as it was an intermittent failure that depended on the
sections of the tax return form that had been completed. The product was launched with the
bug. For most users, everything worked OK. However, for a small number of users, their tax
returns were not filed and they were fined by the revenue service. The subsequent
investigation showed the software company was negligent. This was widely publicised and, as
well as a fine from the tax authorities, users lost confidence in the software. Many switched
to a rival product. FinanceMadeSimple failed and both Bob and Alice lost their jobs.

34 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

A code management problem

CRICOS PROVIDER #00120C

• Source code management, combined with automated system
building, is essential for professional software engineering.
• In companies that use DevOps, a modern code management

system is a fundamental requirement for ‘automating everything’.
• Not only does it store the project code that is ultimately deployed,

it also stores all other information that is used in DevOps
processes.
• DevOps automation and measurement tools all interact with the

code management system

35

Code management and DevOps

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

36

Code management and DevOps

Branching and merging

Save and
retrieve
versions

DevOps automation

Continuous
integration

Code management system

Continuous
deployment

Continuous
delivery

Infrastructure
as code

DevOps measurement

Report
generation

Data
analysis

Data
collection

Figure 10.3 Code management and DevOps

Code
repository

Transfer code to/from developer’s filestore

Recover
version
information

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Code management systems provide a set of features that support
four general areas:
• Code transfer Developers take code into their personal file store to work on it then

return it to the shared code management system.
• Version storage and retrieval Files may be stored in several different versions and

specific versions of these files can be retrieved.
• Merging and branching Parallel development branches may be created for concurrent

working. Changes made by developers in different branches may be merged.
• Version information Information about the different versions maintained in the system

may be stored and retrieved

37

Code management fundamentals

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• All source code management systems have the general form shown on
an earlier slide: with a shared repository and a set of features to manage
the files in that repository:
• All source code files and file versions are stored in the repository, as are other artefacts such

as configuration files, build scripts, shared libraries and versions of tools used.
• The repository includes a database of information about the stored files such as version

information, information about who has changed the files, what changes were made at
what times, and so on.

• Files can be transferred to and from the repository and information
about the different versions of files and their relationships may be
updated.
• Specific versions of files and information about these versions can always be retrieved from

the repository.

38

Code repository

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Version and release identification
Managed versions of a code file are uniquely identified when they are submitted to the system and can be
retrieved using their identifier and other file attributes.

• Change history recording
The reasons why changes to a code file have been made are recorded and maintained.

• Independent development
Several developers can work on the same code file at the same time. When this is submitted to the code
management system, a new version is created so that files are never overwritten by later changes.

• Project support
All of the files associated with a project may be checked out at the same time. There is no need to check out files
one at a time.

• Storage management
The code management system includes efficient storage mechanisms so that it doesn’t keep multiple copies of
files that have only small differences.

39 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Features of code management systems

CRICOS PROVIDER #00120C

• In 2005, Linus Torvalds, the developer of Linux, revolutionised
source code management by developing a distributed version
control system (DVCS) called Git to manage the code of the Linux
kernel.
• This was geared to supporting large-scale open source

development. It took advantage of the fact that storage costs had
fallen to such an extent that most users did not have to be
concerned with local storage management.
• Instead of only keeping the copies of the files that users are

working on, Git maintains a clone of the repository on every user’s
computer

40

Git

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

41

Repository cloning in Git
Shared Git repository

Master branch

F1 F2 F3 F4 F5 F6
F7 F8 F9 F10 F11
F12 F13 F14 F15
F16 F17 F18 F19
F20 F21 F22 F23
F24 F25 F26 F27

Commit and branch information

Branch 1

Branch 2

F7 F9 F21

F2 F3

Clone

Master branch

F1 F2 F3 F4 F5 F6
F7 F8 F9 F10 F11
F12 F13 F14 F15
F16 F17 F18 F19
F20 F21 F22 F23
F24 F25 F26 F27

Commit and branch information

Figure 10.5 Repository cloning in Git

Alice’s repository

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Resilience

• Everyone working on a project has their own copy of the repository. If the shared repository is
damaged or subjected to a cyberattack, work can continue, and the clones can be used to restore
the shared repository. People can work offline if they don’t have a network connection.

• Speed

• Committing changes to the repository is a fast, local operation and does not need data to be
transferred over the network.

• Flexibility

• Local experimentation is much simpler. Developers can safely experiment and try different
approaches without exposing these to other project members. With a centralized system, this
may only be possible by working outside the code management system.

42 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Benefits of distributed code management

CRICOS PROVIDER #00120C

43

Git repositories

© Ian Sommerville 2018:DevOps and Code Management

Figure 10.6 Git repositories

11

Github

Figure 10.6 Git repositories

RP1 RP2

RP3 RP4

Project 1 Project 2

Project 3 Project 4

RP1a

RP1b RP1d

RP1c RP2p

RP2r

RP2a

RP3a

RP3b RP3f

RP3c RP4j RP4k

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Branching and merging are fundamental ideas that are supported by all code management systems.

• A branch is an independent, stand-alone version that is created when a developer wishes to change a file.

• The changes made by developers in their own branches may be merged to create a new shared branch.

• The repository ensures that branch files that have been changed cannot overwrite repository files without a
merge operation.

• If Alice or Bob make mistakes on the branch they are working on, they can easily revert to the master file.

• If they commit changes, while working, they can revert to earlier versions of the work they have done. When they have
finished and tested their code, they can then replace the master file by merging the work they have done with the
master branch

44 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Branching and merging

CRICOS PROVIDER #00120C

45

Branching and merging

Merge

Figure 10.7 Branching and merging

Alice

Bob

Feature experiment branch

Bug fix branch

Master branch

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• By using DevOps with automated support, you can dramatically reduce
the time and costs for integration, deployment and delivery.
• Everything that can be, should be automated is a fundamental principle

of DevOps.
• As well as reducing the costs and time required for integration,

deployment and delivery, process automation also makes these
processes more reliable and reproducible.
• Automation information is encoded in scripts and system models that

can be checked, reviewed, versioned and stored in the project
repository.

46

DevOps automation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Continuous integration
Each time a developer commits a change to the project’s master branch, an
executable version of the system is built and tested.
• Continuous delivery

A simulation of the product’s operating environment is created and the
executable software version is tested.
• Continuous deployment

A new release of the system is made available to users every time a change is
made to the master branch of the software.
• Infrastructure as code

Machine-readable models of the infrastructure (network, servers, routers, etc.)
on which the product executes are used by configuration management tools to
build the software’s execution platform. The software to be installed, such as
compilers and libraries and a DBMS, are included in the infrastructure model.

47

Aspects of DevOps automation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS48

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS49

CRICOS PROVIDER #00120C

CI: Continuous Integration

50ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• System integration (system building) is the process of gathering all of the elements required in a working
system, moving them into the right directories, and putting them together to create an operational system.

• Typical activities that are part of the system integration process include:

• Installing database software and setting up the database with the appropriate schema.

• Loading test data into the database.

• Compiling the files that make up the product.

• Linking the compiled code with the libraries and other components used.

• Checking that external services used are operational.

• Deleting old configuration files and moving configuration files to the correct locations.

• Running a set of system tests to check that the integration has been successful.

51 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

System integration

CRICOS PROVIDER #00120C

• Continuous integration simply means that an integrated version of the
system is created and tested every time a change is pushed to the
system’s shared repository.
• On completion of the push operation, the repository sends a message to

an integration server to build a new version of the product
• The advantage of continuous integration compared to less frequent

integration is that it is faster to find and fix bugs in the system.
• If you make a small change and some system tests then fail, the problem

almost certainly lies in the new code that you have pushed to the project
repo.
• You can focus on this code to find the bug that’s causing the problem.

52

Continuous Integration (CI)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

53

Continuous Integration (CI)

GET
COMPILE

AND BUILD TEST

Executable
system

Figure 10.9 Continuous integration

Source code files
from code management

Libraries Configuration
files

Database
files

Executable
tests

Deployable
system

Trigger
from repo

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• In a continuous integration environment, developers have to make sure
that they don’t ‘break the build’.
• Breaking the build means pushing code to the project repository which,

when integrated, causes some of the system tests to fail.
• If this happens to you, your priority should be to discover and fix the

problem so that normal development can continue.
• To avoid breaking the build, you should always adopt an ‘integrate twice’

approach to system integration.
• You should integrate and test on your own computer before pushing code to the project

repository to trigger the integration server

54

Breaking the build

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

55

Local integration

Make changes
to code

Commit changes
to local repo

Pull changes
to master branch

Merge master
with local repo

Compile and
build system

Test
system

Executable
system

Test failure

Push code
to project repo

Test
success

Executable
tests

Figure 10.10 Local integration

From project repo

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Continuous integration is only effective if the integration process is fast
and developers do not have to wait for the results of their tests of the
integrated system.
• However, some activities in the build process, such as populating a

database or compiling hundreds of system files, are inherently slow.
• It is therefore essential to have an automated build process that

minimizes the time spent on these activities.
• Fast system building is achieved using a process of incremental building,

where only those parts of the system that have been changed are rebuilt

56

System building

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Running a set of system tests depends on the
existence of executable object code for both the
program being tested and the system tests.
• In turn, these depend on the source code for

the system and the tests that are compiled to
create the object code.
• Figure on the right shows the dependencies

involved in creating the object code for a source
code files called Mycode.
• An automated build system uses the

specification of dependencies to work out what
needs to be done. It uses the file modification
timestamp to decide if a source code file has
been changed.

57

Dependencies

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Mycode (compiled)

Mycode (source)

Lib 2

Figure 10.12 File dependencies

Classdef (compiled)Lib 2

CRICOS PROVIDER #00120C

• Group Processes
• Continuous Integration
• Code Review
• Pair/Mob Programming

• Individual Processes
• Asking Questions
• How to run a meeting

58

Process Roundup

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

State of Code Review 2017

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS59

CRICOS PROVIDER #00120C

60

History of CI

(1999) Extreme Programming (XP) rule: “Integrate Often”

(2000) Martin Fowler posts “Continuous Integration” blog

(2001) First CI tool

(2005) Hudson/Jenkins

(2011) Travis CI

(2019) GitHub Actions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

61

CI/CD Pipeline overview

Code Edit Tests Run

Code MergedCode
Deployed

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

62

Github Flow

Working Dir
Staging Area
Local Repo

Remote
Master

Master
featureName

featureName

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

https://docs.github.com/en/get-started/quickstart/github-flow

https://medium.com/burdaforward/state-of-ci-cd-and-the-dreaded-git-flow-fce92d04fb07

CRICOS PROVIDER #00120C

Create Pull Request
GitHub tells Travis CI build is mergeable

It builds and passes tests
Travis updates PR
PR is merged

63

Sample CI Workflow

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

https://docs.github.com/en/actions/migrating-to-github-actions/migrating-from-travis-ci-to-github-actions

CRICOS PROVIDER #00120C

64

Example CI/CD Pipeline

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

“My favorite way of thinking about build time is basically, you have
tea time, lunch time, or bedtime…”

65

CI Research

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

66

DevOps: More Resources

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

CI helps us catch bugs earlier
CI makes us less worried about breaking our builds
CI lets us spend less time debugging

“[CI] does have a pretty big impact on [catching bugs]. It allows us to find issues even
before they get into our main repo, ... rather than letting bugs go unnoticed, for months,
and letting users catch them.”

67

Developers say:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Do developers on projects with CI give (more/similar/less) value to
automated tests?

68

Developers report:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Do developers on projects with CI give (more/similar/less) value to
automated tests?
Do projects with CI have (higher/similar/lower) test quality?

69

Developers report:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Do developers on projects with CI give (more/similar/less) value to
automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?

70

Developers report:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Do developers on projects with CI give (more/similar/less) value to
automated tests?
Do projects with CI have (higher/similar/lower) test quality?
Do projects with CI have (higher/similar/lower) code quality?
Are developers on projects with CI (more/similar/less) productive?

71

Developers report:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

72

Challenge: Flaky Tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

OBSERVATION

Most of the benefits of CI come
from running tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS73

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS74

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS75

CRICOS PROVIDER #00120C

CD: Continuous Deployment

76ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Continuous integration means creating an executable version of a software system whenever a change is
made to the repository. The CI tool builds the system and runs tests on your development computer or
project integration server.

• However, the real environment in which software runs will inevitably be different from your development
system.

• When your software runs in its real, operational environment bugs may be revealed that did not show up in
the test environment.

• Continuous delivery means that, after making changes to a system, you ensure that the changed system is
ready for delivery to customers.

• This means that you have to test it in a production environment to make sure that environmental factors do
not cause system failures or slow down its performance.

77 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Continuous Delivery
and Deployment (CD)

CRICOS PROVIDER #00120C

78

Continuous Delivery
and Deployment (CD)

Continuous delivery

Tested
system

Configure
 test server

Install system
on test server

Run acceptance
tests

Install software on
production servers

Switch operation to
new software

Continuous deployment

All tests pass

Figure 10.13 Continuous delivery and deployment

Required
software

Test
set

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• After initial integration testing, a staged test environment is created.
• This is a replica of the actual production environment in which the system will

run.
• The system acceptance tests, which include functionality, load and performance

tests, are then run to check that the software works as expected. If all of these
tests pass, the changed software is installed on the production servers.
• To deploy the system, you then momentarily stop all new requests for service

and leave the older version to process the outstanding transactions.
• Once these have been completed, you switch to the new version of the system

and restart processing.

79

The deployment pipeline

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Reduced costs
If you use continuous deployment, you have no option but to invest in a completely automated deployment pipeline.
Manual deployment is a time-consuming and error-prone process. Setting up an automated system is expensive and time-
consuming but you can recover these costs quickly if you make regular updates to your product.

• Faster problem solving
If a problem occurs, it will probably only affect a small part of the system and it will be obvious what the source of that
problem is. If you bundle many changes into a single release, finding and fixing problems is more difficult.

• Faster customer feedback
You can deploy new features when they are ready for customer use. You can ask them for feedback on these features and
use this feedback to identify improvements that you need to make.

• A/B Testing and Canary Deployments
This is an option if you have a large customer base and use several servers for deployment. You can deploy a new version
of the software on some servers and leave the older version running on others. You then use the load balancer to divert
some customers to the new version while others use the older version. You can then measure and assess how new
features are used to see if they do what you expect.

80 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Benefits of Continuous Deployment (CD)

CRICOS PROVIDER #00120C

• Build code and run smoke test (Microsoft 1995)

• Benefits

• it minimizes integration risk

• It reduces the risk of low quality

• it supports easier defect diagnosis

• it improves morale

Nightly Build

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Commits flow out to rings, de-flight if issue

• For example:

• Ring 0 => Team

• Ring 1 => Dogfood

• Ring 2 => Beta

• Ring 3 => Many

• Ring 4 => All
• Windows 10 Insiders Program

• Dev Channel (weekly builds of Windows 10)

• Beta Channel (dev + validated updates by Microsoft)

• Release Preview Channel (highest quality, validated updates)

82

Ring Deployment: Microsoft

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

If deployment requires on-prem deployment, say a web browser
• There are four channels: Nightly, Alpha, Beta, Release Candidate
• Code flows every 2 weeks to next channel, unless fast tracked by

release engineer.
• Involve corporate customer specific testing in testing (Practice also

used by IBM, Redhat)
• same for Windows Edge browser Insiders Program:
• Canary: nightly builds
• Dev: weekly builds
• Beta: 6 weeks

83

Rapid Release/Mozilla

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

84

“Big bang” deployments

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Chuck Rossi at Facebook: “Get your s*** in, fix it in production”

85

Fast to Deploy, Slow to Release

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

CRICOS PROVIDER #00120C

• Early: Integrate as soon as possible. Find bugs early. Code can run
in production about 6 months before being publicly announced.
• Often: Reduce friction. Try things out. See what works. Push small

changes just to gather metrics, feasibility testing. Large changes
just slow down the team. Do dark launches, to see what
performance is in production, can scale up and down. "Shadow
infrastructure" is too expensive, just do in production.
• Incremental: Deploy in increments. Contain risk. Pinpoint issues.

86

Dark Launches at Instagram

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Release is cut Sunday 6pm
• Stabilize until Tuesday, canaries, release. Tuesday push is 12,000 diffs.

• Cherry pick: Push 3 times a day (Wed-Fri) 300-700 cherry picks / day.

87

Facebook process (until 2016)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

reference: https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

CRICOS PROVIDER #00120C

88

Facebook quasi-continuous release

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

89

Rolling deployments

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

90

Red/Black (Blue/Green) deployments

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

91

Canary deployments

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

92

Feature Flags

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS93

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS94

CRICOS PROVIDER #00120C

Infrastructure as Code

95ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• In an enterprise environment, there are usually many different physical or
virtual servers (web servers, database servers, file servers, etc.) that do different
things. These have different configurations and run different software packages.
• It is therefore difficult to keep track of the software installed on each machine.
• The idea of infrastructure as code was proposed as a way to address this

problem. Rather than manually updating the software on a company’s servers,
the process can be automated using a model of the infrastructure written in a
machine-processable language.
• Configuration Management (CM) tools such as Puppet can automatically install

software and services on servers according to the infrastructure definition

96

Infrastructure as Code

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS97

Infrastructure as Code (Puppet)

https://phoenixnap.com/blog/what-is-puppet

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS98

Infrastructure as Code (Ansible)

https://phoenixnap.com/blog/ansible-vs-terraform-vs-puppet

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS99

Infrastructure as Code (Terraform)

https://phoenixnap.com/blog/ansible-vs-terraform-vs-puppet

CRICOS PROVIDER #00120C

• Defining your infrastructure as code and using a configuration
management system solves two key problems of continuous
deployment.
• Your testing environment must be exactly the same as your deployment environment.

If you change the deployment environment, you have to mirror those changes in your
testing environment.

• When you change a service, you have to be able to roll that change out to all of your
servers quickly and reliably. If there is a bug in your changed code that affects the
system’s reliability, you have to be able to seamlessly roll back to the older system.

• The business benefits of defining your infrastructure as code are
lower costs of system management and lower risks of unexpected
problems arising when infrastructure changes are implemented.

100

Benefits of infrastructure as code

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Visibility
Your infrastructure is defined as a stand-alone model that can be read, discussed, understood and
reviewed by the whole DevOps team.

• Reproducibility
Using a configuration management tool means that the installation tasks will always be run in the
same sequence so that the same environment is always created. You are not reliant on people
remembering the order that they need to do things.

• Reliability
The complexity of managing a complex infrastructure means that system administrators often make
simple mistakes, especially when the same changes have to be made to several servers. Automating
the process avoids these mistakes.

• Recovery
Like any other code, your infrastructure model can be versioned and stored in a code management
system. If infrastructure changes cause problems you can easily revert to an older version and
reinstall the environment that you know works.

101 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Characteristics of infrastructure as code

CRICOS PROVIDER #00120C

• A container provides a stand-alone execution environment running on top of an operating system such as
Linux.

• The software installed in a Docker container is specified using a Dockerfile, which is, essentially, a definition
of your software infrastructure as code.

• You build an executable container image by processing the Dockerfile.

• Using containers makes it very simple to provide identical execution environments.

• For each type of server that you use, you define the environment that you need and build an image for execution. You
can run an application container as a test system or as an operational system; there is no distinction between them.

• When you update your software, you rerun the image creation process to create a new image that includes the
modified software. You can then start these images alongside the existing system and divert service requests to them.

102 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Containers

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS103

Poll Everywhere Time!

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS104

CRICOS PROVIDER #00120C

Monitoring

105ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

106

What is Observability?

“As a philosophy, observability is our ability as
developers to know and discover what is going on in

our systems. In practice, it means adding telemetry to
our systems in order to measure change and track

workflows.”

The New Stack, “What is observability?” 28 Feb 2020
https://thenewstack.io/what-is-observability/

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

107

Observability: Dashboards

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

1. What’s happening now?

2. What does “normal” behavior look like?

3. What does it look like when something’s gone (or is going) wrong?

4. Can I correlate events to changes in the actual graphs?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

108

Observability: Dashboard Example

https://datadog-prod.imgix.net/img/blog/monitoring-kubernetes-with-datadog/kubernetes-dashboard.png?fit=max

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

109

Observability: Defining “Normal”

reference: https://www.youtube.com/watch?v=vq4QZ4_YDok

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

110

Observability:
When things aren’t “Normal”

reference: https://www.youtube.com/watch?v=qyzymLlj9ag

Automatic
rollback on high

variance!

This is starting to sound awfully like a
quality attribute….

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS111

Poll Everywhere Time!

