
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

MICROSERVICES

Week:
8 of 12

A/Prof Alex Potanin

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

2 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

•Monolithic vs Service-Oriented
•Microservices
•Microservice Design Example
• RESTful Services
•Machine Learning Microservices

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES3

Today

CRICOS PROVIDER #00120C

4

Monolithic vs Service-Oriented

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

5 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Facebook on Oct 4, 2021

Source: https://blog.cloudflare.com/october-2021-facebook-outage/

6 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Facebook on Oct 4, 2021

Source: https://blog.cloudflare.com/october-2021-facebook-outage/

Some interesting insights about the dependency web of the Web:
https://www.synergylabs.org/yuvraj/docs/Kashaf_IMC2020_WebDep.pdf

7 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Monolithic styles

Source: https://www.seobility.net (CC BY-SA 4.0)

8 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Monolithic styles: MVC Pattern

9 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

What are the consequences of this architecture? On:

• Scalability

• Reliability

• Performance

• Development

• Maintainability

• Evolution

• Testability

• Ownership

• Data Consistency

Monoliths

10 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Web Browsers

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

11 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Browser: A multi-threaded process

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

12 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Multi-process browser with IPC

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

13 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Browser Architectures

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

14 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

15 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Service-based browser architecture

Source: https://developers.google.com/web/updates/2018/09/inside-browser-part1 (CC BY 4.0)

16 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

https://developers.google.com/web/updates/2018/09/inside-browser-part1

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES17

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES18

CRICOS PROVIDER #00120C

19

Microservices

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Hipster Shop User Interface

https://github.com/GoogleCloudPlatform/microservices-demo

20 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Hipster Shop Microservice Architecture

https://github.com/GoogleCloudPlatform/microservices-demo

21 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Netflix

22 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

(as of 2016)

Bookmarks

Recommendations

My List

Metrics

AppBoot

23 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Netflix Microservices

(as of 2016)

https://www.youtube.com/watch?v=CZ3wIuvmHeM
24 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

https://www.youtube.com/watch?v=CZ3wIuvmHeM

CRICOS PROVIDER #00120C

Who uses Microservices?

25 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• A software service is a software component that can be accessed from
remote computers over the Internet. Given an input, a service produces
a corresponding output, without side effects.
• The service is accessed through its published interface and all details of the service

implementation are hidden.
• Services do not maintain any internal state. State information is either stored in a database

or is maintained by the service requestor.
• When a service request is made, the state information may be included

as part of the request and the updated state information is returned as
part of the service result.
• As there is no local state, services can be dynamically reallocated from

one virtual server to another and replicated across several servers.

Software services

26 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• After various experiments in the 1990s with service-oriented
computing, the idea of ‘big’ Web Services emerged in the early
2000s.
• These were based on XML-based protocols and standards such as

SOAP for service interaction and WSDL for interface description.
•Most software services don’t need the generality that’s inherent in

the design of web service protocols.
• Consequently, modern service-oriented systems, use simpler,

‘lighter weight’ service-interaction protocols that have lower
overheads and, consequently, faster execution.

Modern web services

27 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES28

https://martinfowler.com/articles/microservices.html

CRICOS PROVIDER #00120C

•Microservices are small-scale, stateless, services that have a single
responsibility. They are combined to create applications.
• They are completely independent with their own database and UI

management code.
• Software products that use microservices have a microservices

architecture.
• If you need to create cloud-based software products that are

adaptable, scalable and resilient then it is recommended that you
design them around a microservices architecture.

Microservices

29 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

What are the consequences of this architecture? On:

• Scalability

• Reliability

• Performance

• Development

• Maintainability

• Evolution

• Testability

• Ownership

• Data Consistency

Microservices

30 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Scalability

Source: http://martinfowler.com/articles/microservices.html

31 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Team Organization (Conway’s Law)

Source: http://martinfowler.com/articles/microservices.html

“Products” not “Projects”

32 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Data Management and Consistency

Source: http://martinfowler.com/articles/microservices.html

33 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Deployment and Evolution

Source: http://martinfowler.com/articles/microservices.html

34 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Building applications as suite of small and easy to replace services
• fine grained, one functionality per service

(sometimes 3-5 classes)
• composable
• easy to develop, test, and understand
• fast (re)start, fault isolation
• modelled around business domain

• Interplay of different systems and languages
• Easily deployable and replicable
• Embrace automation, embrace faults
• Highly observable

Microservices

35 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• HTTP/REST/JSON/GRPC/etc. communication
• Independent development and deployment
• Self-contained services (e.g., each with own database)
• multiple instances behind load-balancer

• Streamline deployment

Technical Considerations

36 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Service: self-contained functionality
• Remote invocation, language-independent interface
• Dynamic lookup possible
• Often used to wrap

legacy systems

Service Oriented Architectures
(SOA)

Service
Registry

Service
Requestor

Service
Providerbind

call

publishfind

37 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Service: self-contained functionality
• Language-independent interface
• Dynamic lookup

Service Oriented Architectures
(SOA) Microservice Architecture

Kubernetes

Service A
(Container)

Service B
(Containers)

HTTP/GRPC

Runs and
Assigns IP

DNS
Lookup

38 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Microservices overhead

39 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Complexities of distributed systems
• network latency, faults, inconsistencies
• testing challenges

• Resource overhead, RPCs
• Requires more thoughtful design (avoid ”chatty” APIs, be more coarse-grained)_

• Shifting complexities to the network
• Operational complexity
• Frequently adopted by breaking down monolithic application
• HTTP/REST/JSON communication
• Schemas?

Microservice challenges

40 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Are they really “new”?

• Do microservices solve problems, or push them down the line?

• What are the impacts of the added flexibility?

• Beware of the cult (HackerNews-driven development?)

• “If you can’t build a well-structured monolith, what makes you think microservices is the answer?” – Simon
Brown

• Leads to more API design decisions

Discussion of Microservices

41 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Instead of writing minimal services, write just functions

• No state, rely completely on cloud storage or other cloud services

• Pay-per-invocation billing with elastic scalability

• Drawback: more ways things can fail, state is expensive

• Examples:
AWS lambda, CloudFlare workers, Azure Functions

• What might this be good for?

• (New in 2019/20) Stateful Functions:
Azure Durable Entities, CloudFlare Durable Objects

Serverless (Functions-as-a-Service)

42 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES43

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES44

CRICOS PROVIDER #00120C

45

Microservice Design Example

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• System authentication

• User registration, where users provide information about their identity, security information, mobile (cell) phone number and email address.

• Authentication using UID/password.

• Two-factor authentication using code sent to mobile phone.

• User information management e.g. change password or mobile phone number.

• Reset forgotten password.

• Each of these features could be implemented as a separate service that uses a central shared database to hold
authentication information.

• However, these features are too large to be microservices. To identify the microservices that might be used in the
authentication system, you need to break down the coarse-grain features into more detailed functions.

46 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

A microservice example

CRICOS PROVIDER #00120C

Functional breakdown of authentication
features User registration

Setup new login id

Setup new password

Setup password recovery information

Setup two-factor authentication

Confirm registration

Authenticate using UID/password

Get login id

Get password

Check credentials

Confirm authentication

Figure 6.1 Functional breakdown of authentication features

47 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Authentication microservices

UID
management

Password
management

User info
management

UID data

Password data

User data

Authentication

Figure 6.2 Authentication microservices

48 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Self-contained
Microservices do not have external dependencies. They manage their own data and
implement their own user interface.

• Lightweight
Microservices communicate using lightweight protocols, so that service communication
overheads are low.

• Implementation-independent
Microservices may be implemented using different programming languages and may use
different technologies (e.g. different types of database) in their implementation.

• Independently deployable
Each microservice runs in its own process and is independently deployable, using automated
systems.

• Business-oriented
Microservices should implement business capabilities and needs, rather than simply provide a
technical service.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES49

Characteristics of microservices

CRICOS PROVIDER #00120C

•Microservices communicate by exchanging messages.
• A message that is sent between services includes some

administrative information, a service request and the data
required to deliver the requested service.
• Services return a response to service request messages.
• An authentication service may send a message to a login service that includes the

name input by the user.
• The response may be a token associated with a valid user name or might be an error

saying that there is no registered user.

Microservice communication

50 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• A well-designed microservice should have high cohesion and low
coupling.
• Cohesion is a measure of the number of relationships that parts of a component have

with each other. High cohesion means that all of the parts that are needed to deliver
the component’s functionality are included in the component.

• Coupling is a measure of the number of relationships that one component has with
other components in the system. Low coupling means that components do not have
many relationships with other components.

• Each microservice should have a single responsibility i.e. it should
do one thing only and it should do it well.
• However, ‘one thing only’ is difficult to define in a way that’s applicable to all services.
• Responsibility does not always mean a single, functional activity.

Microservice characteristics

51 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Password management functionality
Figure 6.3 Password management functionality

User functions

Create password

Change password

Check password

Recover password

Supporting functions

Check password validity

Delete password

Backup password database

Recover password database

Check database integrity

Repair password DB

52 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Microservice support code

Microservice X

 Service functionality

 Message
management

 UI
implementation

 Failure
management

 Data consistency
management

Figure 6.4 Microservice support code

53 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• A microservices architecture is an architectural style – a tried and
tested way of implementing a logical software architecture.
• This architectural style addresses two problems with monolithic

applications
• The whole system has to be rebuilt, re-tested and re-deployed when any change is

made. This can be a slow process as changes to one part of the system can adversely
affect other components.

• As the demand on the system increases, the whole system has to be scaled, even if the
demand is localized to a small number of system components that implement the most
popular system functions.

Microservices architecture

54 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

•Microservices are self-contained and run in separate processes.
• In cloud-based systems, each microservice may be deployed in its

own container. This means a microservice can be stopped and
restarted without affecting other parts of the system.
• If the demand on a service increases, service replicas can be

quickly created and deployed. These do not require a more
powerful server so ‘scaling-out’ is, typically, much cheaper than
’scaling up’.

Benefits of microservices architecture

55 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Imagine that you are developing a photo printing service for
mobile devices. Users can upload photos to your server from their
phone or specify photos from their Instagram account that they
would like to be printed. Prints can be made at different sizes and
on different media.
• Users can chose print size and print medium. For example, they

may decide to print a picture onto a mug or a T-shirt. The prints or
other media are prepared and then posted to their home. They
pay for prints either using a payment service such as Android or
Apple Pay or by registering a credit card with the printing service
provider.

A photo printing system for mobile

56 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

A microservices architecture for a photo
printing system

Mobile
app API gateway

Authentication

Figure 6.5 A microservices architecture for a photo printing system

SERVICES

Registration

Upload

Payment

Printing

Despatch

57 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Microservices architecture - key design
questions

What are the microservices that
make up the system?

How should microservices
communicate with each other?

How should the microservices
in the system be coordinated?

How should service failure be
detected, reported and managed?

How should data be
distributed and shared?

Microservices
architecture

design

Figure 6.6 Microservices architecture - key design questions

58 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Balance fine-grain functionality and system performance

• Single-function services mean that changes are limited to fewer services but require service communications to implement user
functionality. This slows down a system because of the need for each service to bundle and unbundle messages sent from other
services.

• Follow the ‘common closure principle’

• Elements of a system that are likely to be changed at the same time should be located within the same service. Most new and
changed requirements should therefore only affect a single service.

• Associate services with business capabilities

• A business capability is a discrete area of business functionality that is the responsibility of an individual or a group. You should
identify the services that are required to support each business capability.

• Design services so that they only have access to the data that they need

• If there is an overlap between the data used by different services, you need a mechanism to propagate data changes to all services
using the same data.

59 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

Decomposition guidelines

CRICOS PROVIDER #00120C

• Services communicate by exchanging messages that include
information about the originator of the message, as well as the
data that is the input to or output from the request.
•When you are designing a microservices architecture, you have to

establish a standard for communications that all microservices
should follow. Some of the key decisions that you have to make
are
• should service interaction be synchronous or asynchronous?
• should services communicate directly or via message broker middleware?
• what protocol should be used for messages exchanged between services?

Service communications

60 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Synchronous and asynchronous micro-
service interaction

Service A

Figure 6.7 Synchronous and asynchronous microservice interaction

Calls
Returns

Requests (B)

Synchronous - A waits for B

Asynchronous - A and B execute concurrently

Queue B Queue A

Requests (A)

Service B

Service A

Processing Waiting Processing

Processing Processing

Processing Processing

ProcessingProcessing

Service B

61 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• In a synchronous interaction, service A issues a request to service B.
Service A then suspends processing while B is processing the request.
• It waits until service B has returned the required information before

continuing execution.
• In an asynchronous interaction, service A issues the request that is

queued for processing by service B. A then continues processing without
waiting for B to finish its computations.
• Sometime later, service B completes the earlier request from service A

and queues the result to be retrieved by A.
• Service A, therefore, has to check its queue periodically to see if a result

is available.

Synchronous and asynchronous
interaction

62 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Direct and indirect service communication
Figure 6.8 Direct and indirect service communication

Direct communication - A and B send messages to each other

Indirect communication - A and B communicate through a message broker

Message broker

Service A Service B

Service A Service B

63 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Direct service communication requires that interacting services
know each other’s address.
• The services interact by sending requests directly to these

addresses.
• Indirect communication involves naming the service that is

required and sending that request to a message broker
(sometimes called a message bus).
• The message broker is then responsible for finding the service that

can fulfil the service request.

Direct and indirect service communication

64 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• You should isolate data within each system service with as little
data sharing as possible.
• If data sharing is unavoidable, you should design microservices so

that most sharing is ‘read-only’, with a minimal number of services
responsible for data updates.
• If services are replicated in your system, you must include a

mechanism that can keep the database copies used by replica
services consistent.

Microservice data design

65 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• An ACID (Atomicity, Consistency, Isolation, Durability) transaction bundles a set of data updates into a single
unit so that either all updates are completed or none of them are. ACID transactions are impractical in a
microservices architecture.

• The databases used by different microservices or microservice replicas need not be completely consistent
all of the time.

• Dependent data inconsistency

• The actions or failures of one service can cause the data managed by another service to become inconsistent.

• Replica inconsistency

• There are several replicas of the same service that are executing concurrently. These all have their own database copy
and each updates its own copy of the service data. You need a way of making these databases ‘eventually consistent’
so that all replicas are working on the same data.

66 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

Inconsistency management

CRICOS PROVIDER #00120C

• Eventual consistency is a situation where the system guarantees
that the databases will eventually become consistent.
• You can implement eventual consistency by maintaining a

transaction log.
•When a database change is made, this is recorded on a ‘pending

updates’ log.
• Other service instances look at this log, update their own database

and indicate that they have made the change.

Eventual consistency

67 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Using a pending transaction log

Pending transactions log

A1/DB update 1

A1/DB update 2

A2/DB update 1

Figure 6.9 Using a pending transactions log

Service A1
Database A

Service A2
Database A

68 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

•Most user sessions involve a series of interactions in which
operations have to be carried out in a specific order.
• This is called a workflow.
• An authentication workflow for UID/password authentication shows the steps involved

in authenticating a user.
• In this example, the user is allowed 3 login attempts before the system indicates that

the login has failed.

Service coordination

69 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Authentication workflow
End

Retry
login

Get login

Start

End

Check
login

Get
password

Check
password

Indicate
failure

login OK

login invalid

password OK

password
invalid

attempts > 3

attempts = 1
authfail = F

authfail=T

Figure 6.10 Authentication workflow

authfail = F
Increment
attempts

attempts <= 3

authfail = T

authfail=F

70 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Orchestration and choreography

Authentication
controller

Service orchestration Service choreography

Figure 6.11 Orchestration and choreography

Authentication eventsLogin
service

Password
service

Login
service

Password
service

71 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Internal service failure
These are conditions that are detected by the service and can be reported to
the service client in an error message. An example of this type of failure is a
service that takes a URL as an input and discovers that this is an invalid link.
• External service failure

These failures have an external cause, which affects the availability of a service.
Failure may cause the service to become unresponsive and actions have to be
taken to restart the service.
• Service performance failure

The performance of the service degrades to an unacceptable level. This may be
due to a heavy load or an internal problem with the service. External service
monitoring can be used to detect performance failures and unresponsive
services.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES72

Failure types in a microservices system

CRICOS PROVIDER #00120C

• A timeout is a counter that this associated with the service requests and starts
running when the request is made.
• Once the counter reaches some predefined value, such as 10 seconds, the

calling service assumes that the service request has failed and acts accordingly.
• The problem with the timeout approach is that every service call to a ‘failed

service’ is delayed by the timeout value so the whole system slows down.
• Instead of using timeouts explicitly when a service call is made, he suggests

using a circuit breaker. Like an electrical circuit breaker, this immediately denies
access to a failed service without the delays associated with timeouts.

Timeouts and circuit breakers

73 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Using a circuit breaker to cope with
service failure

Circuit breaker

Check S2
availability

retries>3

retries<=3

timeout ok

timeout fail

S2 available

S2 unavailable

Figure 6.12 Using a circuit breaker to cope with service failure

Service S1 Service S2

Set timeout Route service
request

Respond S2
unavailable

Set S2
unavailable

Route service
response

Increment
retries

Check
timeout

74 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES75

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES76

CRICOS PROVIDER #00120C

77

RESTful Services

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• The REST (REpresentational State Transfer) architectural style is
based on the idea of transferring representations of digital
resources from a server to a client.
• You can think of a resource as any chunk of data such as credit card details, an

individual’s medical record, a magazine or newspaper, a library catalogue, and so on.
• Resources are accessed via their unique URI and RESTful services operate on these

resources.

• This is the fundamental approach used in the web where the
resource is a page to be displayed in the user’s browser.
• An HTML representation is generated by the server in response to an HTTP GET

request and is transferred to the client for display by a browser or a special-purpose
app.

RESTful services

78 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Use HTTP verbs
The basic methods defined in the HTTP protocol (GET, PUT, POST, DELETE) must
be used to access the operations made available by the service.
• Stateless services

Services must never maintain internal state. As I have already explained,
microservices are stateless so fit with this principle.
• URI addressable

All resources must have a URI, with a hierarchical structure, that is used to
access sub-resources.
• Use XML or JSON

Resources should normally be represented in JSON or XML or both. Other
representations, such as audio and video representations, may be used if
appropriate.

RESTful service principles

79 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Create
Implemented using HTTP POST, which creates the resource with the given URI. If the resource
has already been created, an error is returned.

• Read
Implemented using HTTP GET, which reads the resource and returns its value. GET operations
should never update a resource so that successive GET operations with no intervening PUT
operations always return the same value.

• Update
Implemented using HTTP PUT, which modifies an existing resource. PUT should not be used for
resource creation.

• Delete
Implemented using HTTP DELETE, which makes the resource inaccessible using the specified
URI. The resource may or may not be physically deleted.

80 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

RESTful service operations

CRICOS PROVIDER #00120C

• Imagine a system that maintains information about incidents, such as traffic delays, roadworks
and accidents on a national road network. This system can be accessed via a browser using the
URL:

• https://trafficinfo.net/incidents/ (not a real link!)

• Users can query the system to discover incidents on the roads on which they are planning to
travel.

• When implemented as a RESTful web service, you need to design the resource structure so
that incidents are organized hierarchically.

• For example, incidents may be recorded according to the road identifier (e.g. A90), the location (e.g.
stonehaven), the carriageway direction (e.g. north) and an incident number (e.g. 1). Therefore, each
incident can be accessed using its URI:

• https://trafficinfo.net/incidents/A90/stonehaven/north/1 (not a real link!)

81 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

Road information system

CRICOS PROVIDER #00120C

• Incident ID: A90N17061714391
• Date: 17 June 2017
• Time reported: 1439
• Severity: Significant
• Description: Broken-down bus on north carriageway. One lane

closed. Expect delays of up to 30 minutes

Incident description

82 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Retrieve
• Returns information about a reported incident or incidents. Accessed using the GET

verb.

• Add
• Adds information about a new incident. Accessed using the POST verb.

• Update
• Updates the information about a reported incident. Accessed using the PUT verb.

• Delete
• Deletes an incident. The DELETE verb is used when an incident has been cleared.

Service operations

83 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

HTTP request and response processing

HTTP
request

HTTP
response

Service actions

Microservice

Figure 6.13 HTTP request and response processing

Request
processing

Response
generation

84 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

HTTP request and response message
organization

 [Request header]

 [Request body]

REQUEST

[HTTP verb] [URI] [HTTP version]

Figure 6.14 HTTP request and response message organisation

 [Response header]

 [Response body]

RESPONSE

[Response code][HTTP version]

85 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

JSON
{
id: “A90N17061714391”,
“date”: “20170617”,
“time”: “1437”,
“road_id”: “A90”,
“place”: “Stonehaven”,
“direction”: “north”,
“severity”: “significant”,
“description”: “Broken-down bus on north carriageway.
One lane closed. Expect delays of up to 30 minutes.”
}

86 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

XML and JSON descriptions

CRICOS PROVIDER #00120C

XML
<id>
A90N17061714391
</id>
<date>
20170617
</date>
<time>
1437
</time>
…
<description>Broken-down bus on north carriageway. One
lane closed. Expect delays of up to 30 minutes.
</description>

87 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

XML and JSON descriptions

CRICOS PROVIDER #00120C

A GET request and the associated
response REQUEST

GET HTTP/1.1

...
Content-Length: 461
Content-Type: text/json

RESPONSE

HTTP/1.1

Figure 6.15 A GET request and the associated response

200incidents/A90/stonehaven/

Host: trafficinfo.net
...
Accept: text/json, text/xml, text/plain
Content-Length: 0

{
 “number”: “A90N17061714391”,
 “date”: “20170617”,
 “time”: “1437”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “north”,
 “severity”: “significant”,
 “description”: “Broken-down bus on north
 carriageway. One lane closed. Expect delays
of up to 30 minutes.”
}
{
 “number”: “A90S17061713001”,
 “date”: “20170617”,
 “time”: “1300”,
 “road_id”: “A90”,
 “place”: “Stonehaven”,
 “direction”: “south”,
 “severity”: “minor”,
 “description”: “Grass cutting on verge. Minor
delays”
}

88 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• After a system has been developed and delivered, it has to be deployed on servers, monitored for problems
and updated as new versions become available.

• When a system is composed of tens or even hundreds of microservices, deployment of the system is more
complex than for monolithic systems.

• The service development teams decide which programming language, database, libraries and other
support software should be used to implement their service. Consequently, there is no ‘standard’
deployment configuration for all services.

• It is now normal practice for microservice development teams to be responsible for deployment and service
management as well as software development and to use continuous deployment.

• Continuous deployment means that as soon as a change to a service has been made and validated, the
modified service is redeployed.

89 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

Service deployment

CRICOS PROVIDER #00120C

• Continuous deployment depends on automation so that as soon as a change is committed, a
series of automated activities is triggered to test the software.

• If the software ‘passes’ these tests, it then enters another automation pipeline that packages
and deploys the software.

• The deployment of a new service version starts with the programmer committing the code
changes to a code management system such as Git.

• This triggers a set of automated tests that run using the modified service. If all service tests run
successfully, a new version of the system that incorporates the changed service is created.

• Another set of automated system tests are then executed. If these run successfully, the service
is ready for deployment.

90 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

Deployment automation

CRICOS PROVIDER #00120C

A continuous deployment pipeline

Commit change to
version manage-

ment

Triggers

pass

Reject change Reject change Reject change

Reject change

pass

pass

fail

fail

fail

Figure 6.16 A continuous deployment pipeline

Run unit tests

Containerize
service

Run integration
tests

Build test
system

Replace current
service

Deploy service
container

Run acceptance
tests

fail

pass

91 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Versioned services

API
gateway cameras

service request
for cameras service

Figure 6.17 Versioned services

current version
link

service
response

cameras service
response

monitor
 response

Service
monitor

cameras 001

cameras 002

92 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES93

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES94

CRICOS PROVIDER #00120C

95

Machine Learning Microservices

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Machine Learning in One Slide

Model

Training

Lots of labelled data
(Inputs, outputs)

(Supervised)

“Bird”

Input

Output

Input

“Bird”

Output

96 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

“It is easy. You just chip away the stone that doesn’t look like
David.” –(probably not) Michelangelo

Traditional Software Development

97 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Observation
• Hypothesis
• Predict
• Test
• Reject or Refine Hypothesis

ML Development

98 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Black-box View of Machine Learning

Image: https://xkcd.com/1838/

99 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Microsoft’s view of Software Engineering
for ML

Source: “Software Engineering for Machine Learning: A Case Study” by Amershi et al. ICSE 2019

100 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Data discovery and management

• Customization and Reuse

• No modular development of model itself

Three Fundamental Differences:

101 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

102 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

103 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

104 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

105 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Static
• Get labeled data (data collection, cleaning and, labeling)
• Identify and extract features (feature engineering)
• Split data into training and evaluation set
• Learn model from training data (model training)
• Evaluate model on evaluation data (model evaluation)
• Repeat, revising features

• with production data
• Evaluate model on production data; monitor (model monitoring)
• Select production data for retraining (model training + evaluation)
• Update model regularly (model deployment)

Typical ML Pipeline

106 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Example Data

107 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Learning Data

108 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Identify parameters of interest that a model may learn on
• Convert data into a useful form
• Normalize data
• Include context
• Remove misleading things

Feature Engineering

109 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Features?

110 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• In OCR/translation:
• Bounding boxes for text of interest
• Character boundaries
• Line segments for each character
• GPS location of phone (to determine likely source language)

Feature Extraction

111 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Features?

112 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• In surge prediction:
• Location and time of past surges
• Events
• Number of people traveling to an area
• Typical demand curves in an area
• Demand in other areas
• Weather

Feature Extraction

113 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Removing outliers
• Normalizing data
•Missing values
• …

Data Cleaning

114 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Build a predictor that best describes an outcome for the observed
features

Learning

115 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Prediction accuracy on learned data vs
• Prediction accuracy on unseen data
• Separate learning set, not used for training

• For binary predictors: false positives vs. false negatives, precision
vs. recall
• For numeric predictors: average (relative) distance between real

and predicted value
• For ranking predictors: top-K, etc.

Evaluation

116 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Evaluation Data and Metrics?

117 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Evaluation Data and Metrics?

118 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Beyond static data sets, build telemetry
• Design challenge: identify mistakes in practice

• Use sample of live data for evaluation
• Retrain models with sampled live data regularly
•Monitor performance and intervene

Learning and Evaluating in Production

119 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Deep Neural Networks
• Decision Trees

Understanding Capabilities and Tradeoffs

120 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Accuracy
• Capabilities (e.g. classification, recommendation, clustering…)
• Amount of training data needed
• Inference latency
• Learning latency; incremental learning?
•Model size
• Explainable? Robust?
• …

ML Model Tradeoffs

121 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Where should the model live?

Glasses

Phone

Cloud

OCR
Component

Translation
Component

122 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Where should the model live?

Vehicle

Phone

Cloud

Surge
Prediction

123 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• How much data is needed as input for the model?
• How much output data is produced by the model?
• How fast/energy consuming is model execution?
•What latency is needed for the application?
• How big is the model? How often does it need to be updated?
• Cost of operating the model? (distribution + execution)
• Opportunities for telemetry?
•What happens if users are offline?

Considerations

124 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Static intelligence in the product
• difficult to update

• good execution latency

• cheap operation

• offline operation

• no telemetry to evaluate and improve

• Client-side intelligence
• updates costly/slow, out of sync problems

• complexity in clients

• offline operation, low execution latency

Typical Designs

125 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Server-centric intelligence
• latency in model execution (remote calls)

• easy to update and experiment

• operation cost

• no offline operation

• Back-end cached intelligence
• precomputed common results

• fast execution, partial offline

• saves bandwidth, complicated updates

• Hybrid models

Typical Designs

126 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Coupling of ML pipeline parts
• Coupling with other parts of the system
• Ability for different developers and analysists to collaborate
• Support online experiments
• Ability to monitor

Other Considerations

127 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Responsive
• consistent, high performance

• Resilient
• maintain responsive in the face of failure, recovery, rollback

• Elastic
• scale with varying loads

Reactive Systems

128 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Message-driven, lazy computation, functional programming
• asynchronous, message passing style

• Replication, containment, supervision
• replicate and coordinate isolated components, e.g. with containers

• Data streams, “infinite data”, immutable facts
• streaming technologies, data lakes

• See “big data systems” and “cloud computing”

Common Design Strategies

129 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

•What steps to take?
•What information to collect?

Making Decisions

130 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

•Models are rarely static outside the lab
• Data drift, feedback loops, new features, new requirements
•When and how to update models?
• How to version? How to avoid mistakes?

Updating Models

131 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Server

Data Stream
(e.g. Kafka)

logsother
features
(e.g weather)

Data Lake

archival

Analytics
(OLAP)

Stream
Processing

Models

learning in nightly
batch processing

incremental
learning

• Latency and automation
vary widely

• Heavily distributedserving

132 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

133 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Update Strategy?

134 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Update Strategy?

135 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• No specification
• ML components detect patterns from data (real and

spurious)
• Predictions are often accurate, but mistakes always

possible
• Mistakes are not predicable or explainable or similar to

human mistakes
• Plan for mistakes
• Telemetry to learn about mistakes?

Mistakes will happen

136 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• System outage
•Model outage
• model tested? deployment and updates reliable? file corrupt?

•Model errors
•Model degradation
• data drift, feedback loops

How Models can Break

137 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Worst thing that can happen?
• Backup strategy? Undoable? Nontechnical compensation?

Hazard Analysis

138 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Investigating in ML

• e.g., more training data, better data, better features, better engineers

• Less forceful experience

• e.g., prompt rather than automate decisions, turn off

• Adjust learning parameters

• e.g., more frequent updates, manual adjustments

• Guardrails

• e.g., heuristics and constraints on outputs

• Override errors

• e.g., hardcode specific results

Mitigating Mistakes

139 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Mistakes?

140 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

Mistakes?

141 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

• Purpose:
• monitor operation

• monitor success (accuracy)

• improve models over time (e.g., detect new features)

• Challenges:
• too much data – sample, summarization, adjustable

• hard to measure – intended outcome not observable? proxies?

• rare events – important but hard to capture

• cost – significant investment must show benefit

• privacy – abstracting data

Telemetry

142 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 8 OF 12: MICROSERVICES143

Poll Everywhere Time!

