Week: COMP 2120/ COMP 6120
10 of 12

TESTING

ANU Acknowledgment of Country

Shop Search Q

D) AlATSlS Explore Family history Collection Research Education What's new About

- OE . E— SR E—" Sy AV A W EE——

“We acknowledge and NS s e

celebrate the First iy oo
. A T _ Tharawal
Australians on whose oo Vo= i
traditional lands we meet, i)
and pay our respect to the |ayerod Ngarigo, i
o Wangaratta | | Y uimn
elders past and present.” R
Begae | 4
o Merimbula S O
| B “Ridwel™) s
https://aiatsis.gov.au/explore/map-indigenous-australia

>

2 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

https://aiatsis.gov.au/explore/map-indigenous-australia

The Story of Google Web Server

In Google’s early days, engineer-driven testing was often assumed to be of little
importance. Teams regularly relied on smart people to get the software right. A few
systems ran large integration tests, but mostly it was the Wild West. One product in
particular seemed to suffer the worst: it was called the Google Web Server, also
known as GWS.

GWS is the web server responsible for serving Google Search queries and is as impor-
tant to Google Search as air traffic control is to an airport. Back in 2005, as the project
swelled in size and complexity, productivity had slowed dramatically. Releases were
becoming buggier, and it was taking longer and longer to push them out. Team mem-
bers had little confidence when making changes to the service, and often found out
something was wrong only when features stopped working in production. (At one
point, more than 80% of production pushes contained user-affecting bugs that had to
be rolled back.)

To address these problems, the tech lead (TL) of GWS decided to institute a policy of
engineer-driven, automated testing. As part of this policy, all new code changes were
required to include tests, and those tests would be run continuously. Within a year of
instituting this policy, the number of emergency pushes dropped by half. This drop
occurred despite the fact that the project was seeing a record number of new changes
every quarter. Even in the face of unprecedented growth and change, testing brought
renewed productivity and confidence to one of the most critical projects at Google.
Today, GWS has tens of thousands of tests, and releases almost every day with rela-
tively few customer-visible failures.

The changes in GWS marked a watershed for testing culture at Google as teams in
other parts of the company saw the benefits of testing and moved to adopt similar
tactics.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

‘ *e

S

>

Software testing

*Software testing is a process in which you execute your program using
data that simulates user inputs.

*You observe its behaviour to see whether or not your program is doing
what it is supposed to do.

* Tests pass if the behaviour is what you expect. Tests fail if the behaviour differs from that
expected.

*|f your program does what you expect, this shows that for the inputs used, the program
behaves correctly.

*|f these inputs are representative of a larger set of inputs, you can infer
that the program will behave correctly for all members of this larger input
set.

¥
*0e
~
—r
S

4 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Program bugs

* If the behaviour of the program does not match the behaviour that you
expect, then this means that there are bugs in your program that need to

be fixed.
* There are two causes of program bugs:

* Programming errors You have accidentally included faults in your program code. For
example, a common programming error is an ‘off-by-1’ error where you make a mistake with
the upper bound of a sequence and fail to process the last element in that sequence.

* Understanding errors You have misunderstood or have been unaware of some of the details
of what the program is supposed to do. For example, if your program processes data from a
file, you may not be aware that some of this data is in the wrong format, so your program
doesn’t include code to handle this.

7

5 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Types of testing

Engineering Software Products
An Introduction to Modern
Softw

* Functional testing
Test the functionality of the overall system. The goals of functional testing are to discover as many bugs as possible
in the implementation of the system and to provide convincing evidence that the system is fit for its intended
purpose.

e User testing
Test that the software product is useful to and usable by end-users. You need to show that the features of the
system help users do what they want to do with the software. You should also show that users understand how to
access the software’s features and can use these features effectively.

* Performance and load testing
Test that the software works quickly and can handle the expected load placed on the system by its users. You need
to show that the response and processing time of your system is acceptable to end-users. You also need to

demonstrate that your system can handle different loads and scales gracefully as the load on the software
increases.

* Security testing
Test that the software maintains its integrity and can protect user information from theft and damage.

6 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Functional testing

* Functional testing involves developing a large set of program tests so that,
ideally, all of a program’s code is executed at least once.

* The number of tests needed obviously depends on the size and the functionality
of the application.

* For a business-focused web application, you may have to develop thousands of
tests to convince yourself that your product is ready for release to customers.

* Functional testing is a staged activity in which you initially test individual units
of code. You integrate code units with other units to create larger units then do
more testing.

* The process continues until you have created a complete system ready for
release.

7 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Functional testing

| 5
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

star L

Unit
/ Testing \
Release Feature
testing testing
\ System /
testing

8 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Functional testing processes

L. o oy
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sor ille

e

* Unit testing
The aim of unit testing is to test program units in isolation. Tests should be designed to execute all of the
code in a unit at least once. Individual code units are tested by the programmer as they are developed.

* Feature testing
Code units are integrated to create features. Feature tests should test all aspects of a feature. All of the
programmers who contribute code units to a feature should be involved in its testing.

* System testing
Code units are integrated to create a working (perhaps incomplete) version of a system. The aim of system
testing is to check that there are no unexpected interactions between the features in the system. System
testing may also involve checking the responsiveness, reliability and security of the system. In large
companies, a dedicated testing team may be responsible for system testing. In small companies, this is
impractical, so product developers are also involved in system testing.

* Release testing
The system is packaged for release to customers and the release is tested to check that it operates as
expected. The software may be released as a cloud service or as a download to be installed on a
customer’s computer or mobile device. If DevOps is used, then the development team are responsible for
release testing otherwise a separate team has that responsibility.

o
&
= -
““I

9 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Unit testing

* As you develop a code unit, you should also develop tests for that code.

* A code unit is anything that has a clearly defined responsibility. It is usually a function or class
method but could be a module that includes a small number of other functions.

e Unit testing is based on a simple general principle:

* |If a program unit behaves as expected for a set of inputs that have some shared characteristics, it will
behave in the same way for a larger set whose members share these characteristics.

* To test a program efficiently, you should identify sets of inputs (equivalence partitions) that will
be treated in the same way in your code.

* The equivalence partitions that you identify should not just include those containing inputs
that produce the correct values. You should also identify ‘incorrectness partitions” where the
inputs are deliberately incorrect.

10 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Equivalence partitions

Partition 1, where all Partition 2, where all inputs share characteristic
inputs share characteristic C1 C2. Some inputs also share characteristic C1.

and some share characteristic
C2.

Partition 3, where all

inputs share >
characteristic C3.

Some inputs also share
characteristic C4.

Set of all possible inputs

Partition 4 where all inputs
share characteristic C4.
Some inputs also share
characteristics C3 or C5 but
not both

Partition 5 where all
inputs share characteristics
C4 and C5. None share
characteristic C3

Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

[g

11

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

A name checking function

def namecheck (s):

Checks that a name only includes alphabetic characters, - or
a single quote. Names must be between 2 and 40 characters long
quoted strings and -- are disallowed

namex = r""[a-zA-Z][a-zA-Z-'1{1,39}%"
if re.match (namex, s):
if re.search ("'.*'"", s) or re.search ("--", s):
return False
else:

return True
else:

return False

.W“
12 ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Equivalence partitions for
the name checking function

L. o oy
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

Correct names 1 mLL
The inputs only includes alphabetic characters and are between 2 and 40 characters long.

Correct names 2
The inputs only includes alphabetic characters, hyphens or apostrophes and are between 2 and 40 characters long.

Incorrect names 1
The inputs are between 2 and 40 characters long but include disallowed characters.

Incorrect names 2
The inputs include allowed characters but are either a single character or are more than 40 characters long.

Incorrect names 3
The inputs are between 2 and 40 characters long but the first character is a hyphen or an apostrophe.

Incorrect names 4
The inputs include valid characters, are between 2 and 40 characters long, but include either a double hyphen, quoted text
or both.

13

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Unit testing guidelines (1)

 Test edge cases
If your partition has upper and lower bounds (e.g. length of
strings, numbers, etc.) choose inputs at the edges of the range.

* Force errors
Choose test inputs that force the system to generate all error
messages. Choose test inputs that should generate invalid outputs.

* Fill buffers
Choose test inputs that cause all input buffers to overflow.

* Repeat yourself
Repeat the same test input or series of inputs several times.

CRICOS PROVIDER #00120C

Unit testing guidelines (2)

* Overflow and underflow
If your program does numeric calculations, choose test inputs that cause it to

calculate very large or very small numbers.

* Don’t forget null and zero
If your program uses pointers or strings, always test with null pointers and

strings. If you use sequences, test with an empty sequence. For numeric inputs,
always test with zero.

* Keep count
When dealing with lists and list transformation, keep count of the number of

elements in each list and check that these are consistent after each
transformation.

* One is different
If your program deals with sequences, always test with sequences that have a
single value.

15 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

But, remember...

The Importance of Maintainability

Imagine this scenario: Mary wants to add a simple new feature to the product and is
able to implement it quickly, perhaps requiring only a couple dozen lines of code. But
when she goes to check in her change, she gets a screen full of errors back from the
automated testing system. She spends the rest of the day going through those failures
one by one. In each case, the change introduced no actual bug, but broke some of the
assumptions that the test made about the internal structure of the code, requiring
those tests to be updated. Often, she has difficulty figuring out what the tests were
trying to do in the first place, and the hacks she adds to fix them make those tests
even more difficult to understand in the future. Ultimately, what should have been a
quick job ends up taking hours or even days of busywork, killing Mary’s productivity
and sapping her morale.

Here, testing had the opposite of its intended effect by draining productivity rather
than improving it while not meaningfully increasing the quality of the code under
test. This scenario is far too common, and Google engineers struggle with it every
day. There’s no magic bullet, but many engineers at Google have been working to
develop sets of patterns and practices to alleviate these problems, which we encourage
the rest of the company to follow.

16

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

’ﬁ»- -

Feature testing

* Features have to be tested to show that the functionality is implemented
as expected and that the functionality meets the real needs of users.

* For example, if your product has a feature that allows users to login using their Google
account, then you have to check that this registers the user correctly and informs them of

what information will be shared with Google.

* You may want to check that it gives users the option to sign up for email information about
your product.

* Normally, a feature that does several things is implemented by multiple,
interacting, program units.

* These units may be implemented by different developers and all of these
developers should be involved in the feature testing process.

_

17 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Types of feature test

e
Engineering Software Products
An Introduction to Modern
Software Engineering

* Interaction tests e
BR [o

* These test the interactions between the units that implement the feature. The developers of the units that are
combined to make up the feature may have different understandings of what is required of that feature.

* These misunderstandings will not show up in unit tests but may only come to light when the units are integrated.
* The integration may also reveal bugs in program units, which were not exposed by unit testing.

* Usefulness tests
* These test that the feature implements what users are likely to want.

* For example, the developers of a login with Google feature may have implemented an opt-out default on registration so
that users receive all emails from a company. They must expressly choose what type of emails that they don’t want.

* What might be preferred is an opt-in default so that users choose what types of email they do want to receive.

§

B

18 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

User stories for the sign-in with Google
feature

* User registration
As a user, | want to be able to login without creating a new account
so that | don’t have to remember another login id and password.

* Information sharing
As a user, | want to know what information you will share with
other companies. | want to be able to cancel my registration if |
don’t want to share this information.

* Email choice
As a user, | want to be able to choose the types of email that I'll get
from you when | register for an account.

CRICOS PROVIDER #00120C

Feature tests for sign-in with Google

roducts
dern
g

* Initial login screen
Test that the screen displaying a request for Google account credentials is correctly
displayed when a user clicks on the ‘Sign-in with Google’ link. Test that the login is
completed if the user is already logged in to Google.

* Incorrect credentials
Test that the error message and retry screen is displayed if the user inputs incorrect
Google credentials.

* Shared information
Test that the information shared with Google is displayed, along with a cancel or
confirm option. Test that the registration is cancelled if the cancel option is chosen.

* Email opt-in
Test that the user is offered a menu of options for email information and can choose
multiple items to opt-in to emails. Test that the user is not registered for any emails
if no options are selected.

20 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

System and release testing

* System testing involves testing the system as a whole, rather than
the individual system features.

 System testing should focus on four things:

 Testing to discover if there are unexpected and unwanted interactions between the
features in a system.

 Testing to discover if the system features work together effectively to support what
users really want to do with the system.

» Testing the system to make sure it operates in the expected way in the different
environments where it will be used.

 Testing the responsiveness, throughput, security and other quality attributes of the
system.

7

21 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Scenario-based testing

* The best way to systematically test a system is to start with a set of
scenarios that describe possible uses of the system and then work
through these scenarios each time a new version of the system is
created.

e Using the scenario, you identify a set of end-to-end pathways that
users might follow when using the system.

* An end-to-end pathway is a sequence of actions from starting to
use the system for the task, through to completion of the task.

CRICOS PROVIDER #00120C

Choosing a holiday destination

Andrew and Maria have a two year old son and a four month old daughter. They live in Scotland and they want to
have a holiday in the sunshine. However, they are concerned about the hassle of flying with young children. They
decide to try a family holiday planner product to help them choose a destination that is easy to get to and that fits
in with their childrens’ routines.

Maria navigates to the holiday planner website and selects the ‘find a destination’ page. This presents a screen
with a number of options. She can choose a specific destination or can choose a departure airport and find all
destinations that have direct flights from that airport. She can also input the time band that she’d prefer for flights,
holiday dates and a maximum cost per person.

Edinburgh is their closest departure airport. She chooses ‘find direct flights’. The system then presents a list of
countries that have direct flights from Edinburgh and the days when these flights operate. She selects France, Italy,
Portugal and Spain and requests further information about these flights. She then sets a filter to display flights
that leave on a Saturday or Sunday after 7.30am and arrive before 6pm.

She also sets the maximum acceptable cost for a flight. The list of flights is pruned according to the filter and is
redisplayed. Maria then clicks on the flight she wants. This opens a tab in her browser showing a booking form for

23

this flight on the airline’s website.
—

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

End-to-end pathways

User inputs departure airport and chooses to see only direct flights.
User quits.

User inputs departure airport and chooses to see all flights. User quits.

User chooses destination country and chooses to see all flights. User
quits.

User inputs departure airport and chooses to see direct flights. User
sets filter specifying departure times and prices. User quits.

User inputs departure airport and chooses to see direct flights. User

sets filter specifying departure times and prices. User selects a
displayed flight and clicks through to airline website. User returns to

holiday planner after booking flight.

24

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Release testing

* Release testing is a type of system testing where a system that’s intended for release to customers is
tested.

* The fundamental differences between release testing and system testing are:

* Release testing tests the system in its real operational environment rather than in a test environment.
Problems commonly arise with real user data, which is sometimes more complex and less reliable than test

data.

* The aim of release testing is to decide if the system is good enough to release, not to detect bugs in the
system. Therefore, some tests that ‘fail’ may be ignored if these have minimal consequences for most users.

* Preparing a system for release involves packaging that system for deployment (e.g. in a container if it
is a cloud service) and installing software and libraries that are used by your product. You must
define configuration parameters such as the name of a root directory, the database size limit per user

and so on.
o

25 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Test automation

* Automated testing is based on the idea that tests should be
executable.

* An executable test includes the input data to the unit that is being
tested, the expected result and a check that the unit returns the
expected result.

* You run the test and the test passes if the unit returns the
expected result.

* Normally, you should develop hundreds or thousands of
executable tests for a software product.

CRICOS PROVIDER #00120C

Test methods for an interest calculator

TestInterestCalculator inherits attributes and
methods from the class

TestCase in the testing framework unittest

class TestInterestCalculator (unittest.TestCase):

Define a set of unit tests where each test tests

one thing only

Tests should start with test and the name should

explain what 1is being tested

def test zeroprincipal (self):
#Arrange - set up the test parameters
p=20;r=23;n=31
result should be = 0
#Action - Call the method to be tested
interest = interest _calculator (p, r, n)
#Assert - test what should be true

self.assertEqual (result should be, interest)

def test yearly interest (self):

Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sor

#Arrange - set up the test parameters

p = 17000; r = 3; n = 365

#Action - Call the method to be tested
result should be = 270.36

interest = interest _calculator (p, r, n)
#Assert - test what should be true

self.assertEqual (result_should be, interest)

27

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

’29)
|

CRICOS PROVIDER #00120C

Automated tests

* |t is good practice to structure automated tests into three parts:

* Arrange You set up the system to run the test. This involves defining the test
parameters and, if necessary, mock objects that emulate the functionality of code that
has not yet been developed.

* Action You call the unit that is being tested with the test parameters.

* Assert You make an assertion about what should hold if the unit being tested has
executed successfully. In program on the previous slide, we use assertEquals, which
checks if its parameters are equal.

* |f you use equivalence partitions to identify test inputs, you should
have several automated tests based on correct and incorrect
inputs from each partition.

28 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING I

Executable tests tor the

namecheck function

import unittest

from RE_checker import namecheck
class TestNameCheck (unittest.TestCase):

def test_alphaname (self):

self.assertTrue (namecheck ('Sommerville'))

def test_doublequote (self):

self.assertFalse (namecheck ("Thisis'maliciouscode'"))

def test_namestartswithhyphen (self):

self.assertFalse (namecheck ('-Sommerville'))

def test_namestartswithquote (self):

self.assertFalse (namecheck ("'Reilly"))

L. o oy
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

def test _nametoolong (self): mLL

self.assertFalse (namecheck
('Thisisalongstringwithmorethend4@charactersfrombeginningtoend'))

def test_nametooshort (self):

self.assertFalse (namecheck ('S"))

def test_namewithdigit (self):

self.assertFalse (namecheck('C-3P0"))

def test_namewithdoublehyphen (self):

self.assertFalse (namecheck ('--badcode'))

’59)
|

29 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Executable tests tor the
namecheck function

def

def

def

def

def

def

test _namewithhyphen (self):
self.assertTrue (namecheck ('Washington-Wilson'))

test _namewithinvalidchar (self):
self.assertFalse (namecheck('Sommer_ville'))

test _namewithquote (self):
self.assertTrue (namecheck ("O'Reilly"))

test _namewithspaces (self):
self.assertFalse (namecheck ('Washington Wilson'))

test _shortname (self):
self.assertTrue ('Sx")

test _thiswillfail (self):
self.assertTrue (namecheck ("O Reilly"))

L. o oy
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

e

ﬁ»&
|

30

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Code to run unit tests from files

import unittest

loader = unittest.TestLoader ()

#Find the test files in the current directory

tests = loader.discover('.")

#Specify the level of information provided by the test runner

testRunner = unittest.runner.TextTestRunner (verbosity=2)
testRunner.run(tests)

31 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

The test pyramid

Increased automation
Reduced costs

System
tests

Feature tests

Unit tests

Engineering Software Products
An Introduction to Modern
Software Engineeriny

32

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Automated feature testing

» Generally, users access features through the product’s graphical user
interface (GUI).

* However, GUI-based testing is expensive to automate so it is best to
design your product so that its features can be directly accessed through
an APl and not just from the user interface.

* The feature tests can then access features directly through the API
without the need for direct user interaction through the system’s GUI.

* Accessing features through an APl has the additional benefit that it is
possible to re-implement the GUI without changing the functional
components of the software.

'
N/
33 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING =

CRICOS PROVIDER #00120C

Feature editing through an API

Feature
tests

Browser or mobile app interface

Y Y A Y
API
Y Y
Feature 1 Feature 2
Y Y
Feature 3 Feature 4

An Introduction to Modern
Software Engineering

lan Sommerville

34

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

System testing

 System testing, which should follow feature testing, involves testing the
system as a surrogate user.

* As a system tester, you go through a process of selecting items from
menus, making screen selections, inputting information from the
keyboard and so on.

* You are looking for interactions between features that cause problems,
sequences of actions that lead to system crashes and so on.

* Manual system testing, when testers have to repeat sequences of
actions, is boring and error-prone. In some cases, the timing of actions is
important and is practically impossible to repeat consistently.

* To avoid these problems, testing tools have been developed that can record a series of
actions and automatically replay these when a system is retested

= ——
=7
35 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Interaction recording and playback

Engineering Software Products
An Introduction to Modern
Software Engineering

Browser or mobile app interface

User action Interaction User action
recording session record playback
. System API

System being tested

36 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Test-driven development

 Test-driven development (TDD) is an approach to program development
that is based around the general idea that you should write an
executable test or tests for code that you are writing before you write
the code.

* |t was introduced by early users of the Extreme Programming agile
method, but it can be used with any incremental development approach.

* Test-driven development works best for the development of individual
program units and it is more difficult to apply to system testing.

* Even the strongest advocates of TDD accept that it is challenging to use
this approach when you are developing and testing systems with
graphical user interfaces.

'
N/
37 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING =

CRICOS PROVIDER #00120C

Test-driven development

| 5
Engineering Software Products
An Introduction to Modern

Start ldentlfy new Software Engl'neerin‘vg
functionality ‘

Identify partial implementation
of functionality

Write code stub that

will fail test

Functionality
o incomplete
Functionality
complete Run all
automated tests
Refactor code Implement code that
if required should cause failing test to pass
Test failure
Run all
automated tests

All tests pass

38 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Stages of test-driven development (1)

* Identify partial implementation
Break down the implementation of the functionality required into
smaller mini-units. Choose one of these mini-units for implementation.

* Write mini-unit tests
Write one or more automated tests for the mini-unit that you have
chosen for implementation. The mini-unit should pass these tests if it is
properly implemented.

 Write a code stub that will fail test
Write incomplete code that will be called to implement the mini-unit.
You know this will fail.

* Run all existing automated tests

All previous tests should pass. The test for the incomplete code should
fail.

39 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Stages of test-driven development (2)

* Implement code that should cause the failing test to pass
Write code to implement the mini-unit, which should cause it to
operate correctly

* Rerun all automated tests
If any tests fail, your code is probably incorrect. Keep working on it
until all tests pass.

* Refactor code if necessary
If all tests pass, you can move on to implementing the next mini-
unit. If you see ways of improving your code, you should do this
before the next stage of implementation.

CRICOS PROVIDER #00120C

Benefits of test-driven development

* |t is a systematic approach to testing in which tests are clearly linked to sections of the " Tt
program code. |

* This means you can be confident that your tests cover all of the code that has been developed and that
there are no untested code sections in the delivered code. In my view, this is the most significant
benefit of TDD.

* The tests act as a written specification for the program code. In principle at least, it should be
possible to understand what the program does by reading the tests.

* Debugging is simplified because, when a program failure is observed, you can immediately link
this to the last increment of code that you added to the system.

* |t is argued that TDD leads to simpler code as programmers only write code that’s necessary to
pass tests. They don’t over-engineer their code with complex features that aren’t needed.

41 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING =

Sommerville’s reasons for not using TDD

% £ i i
& L C
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

TDD discourages radical program change
| found that | was reluctant to make refactoring decisions that | knew would cause many tests to fail. |

tended to avoid radical program change for this reason.

| focused on the tests rather than the problem | was trying to solve

A basic principle of TDD is that your design should be driven by the tests you have written. | found that |
was unconsciously redefining the problem | was trying to solve to make it easier to write tests. This meant
that | sometimes didn’t implement important checks, because it was difficult to write tests in advance of
their implementation.

I spent too much time thinking about implementation details rather than the programming problem
Sometimes when programming, it is best to step back and look at the program as a whole rather than

focusing on implementation details. TDD encourages a focus on details that might cause tests to pass or fail
and discourages large-scale program revisions.

It is hard to write ‘bad data’ tests

Many problems involving dealing with messy and incomplete data. It is practically impossible to anticipate
all of the data problems that might arise and write tests for these in advance. You might argue that you
should simply reject bad data but this is sometimes impractical.

o
&
= -
““I

42

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Security testing

* Security testing aims to find vulnerabilities that may be exploited
by an attacker and to provide convincing evidence that the system
is sufficiently secure.

* The tests should demonstrate that the system can resist attacks on
its availability, attacks that try to inject malware and attacks that
try to corrupt or steal users’ data and identity.

* Comprehensive security testing requires specialist knowledge of
software vulnerabilities and approaches to testing that can find
these vulnerabilities.

CRICOS PROVIDER #00120C

Risk-based security testing

A risk-based approach to security testing involves identifying common
risks and developing tests to demonstrate that the system protects itself

from these risks.
* You may also use automated tools that scan your system to check for
known vulnerabilities, such as unused HTTP ports being left open.

* Based on the risks that have been identified, you then design tests and
checks to see if the system is vulnerable.

* [t may be possible to construct automated tests for some of these
checks, but others inevitably involve manual checking of the system’s
behaviour and its files.

44 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Examples of security risks

e Unauthorized attacker gains access to a system using authorized
credentials

* Authorized individual accesses resources that are forbidden to them
e Authentication system fails to detect unauthorized attacker
 Attacker gains access to database using SQL poisoning attack

* Improper management of HTTP session

 HTTP session cookies revealed to attacker

* Confidential data are unencrypted

* Encryption keys are leaked to potential attackers

45 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Risk analysis

* Once you have identified security risks, you then analyze them to assess
how they might arise. For example, for the first risk two slides earlier
(unauthorized attacker) there are several possibilities:

* The user has set weak passwords that can be guessed by an attacker.
* The system’s password file has been stolen and passwords discovered by attacker.
* The user has not set up two-factor authentication.

* An attacker has discovered credentials of a legitimate user through social engineering
techniques.

* You can then develop tests to check some of these possibilities.

* For example, you might run a test to check that the code that allows users to set their
passwords always checks the strength of passwords.

46 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mini Break in Monday Lecture

47

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #0012C

0C

Remember Code Reviews?

* Code reviews involve one or more people examining the code to check
for errors and anomalies and discussing issues with the developer.

* If problems are identified, it is the developer’s responsibility to change
the code to fix the problems.

* Code reviews complement testing. They are effective in finding bugs that
arise through misunderstandings and bugs that may only arise when
unusual sequences of code are executed.

* Many software companies insist that all code has to go through a
process of code review before it is integrated into the product codebase.

-
:
N —

~——,
=T

48 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Code reviews

Engineering Software Products
An Introduction to Modern
Software Engineering

Programmer Reviewer Programmer
Setup
review Check Reviewer Prepare
code to-do list
Prepare
code
_ _ Make code
Write review changes
Distribute report Programmer
code/tests
Review preparation Code checking Review Follow-up

49 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Code review activities (1)

* Setup review
The programmer contacts a reviewer and arranges a review date.

* Prepare code
The programmer collects the code and tests for review and annotates them
with information for the reviewer about the intended purpose of the code and

tests.

* Distribute code/tests
The programmer sends code and tests to the reviewer.

* Check code
The reviewer systematically checks the code and tests against their

understanding of what they are supposed to do.

* Write review report
The reviewer annotates the code and tests with a report of the issues to be
discussed at the review meeting.

50 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Code review activities (2)

* Discussion
The reviewer and programmer discuss the issues and agree on the
actions to resolve these.

* Make to-do list
The programmer documents the outcome of the review as a to-do
list and shares this with the reviewer.

* Make code changes
The programmer modifies their code and tests to address the

issues raised in the review.

51 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Part ot a checklist for :
a Python code review

Engmeerlng Software Products

Are meaningful variable and function names used? (General)
Meaningful names make a program easier to read and understand.

Have all data errors been considered and tests written for them? (General)
It is easy to write tests for the most common cases but it is equally important to check that the program won’t fail when presented
with incorrect data.

Are all exceptions explicitly handled? (General)
Unhandled exceptions may cause a system to crash.

Are default function parameters used? (Python)

Python allows default values to be set for function parameters when the function is defined. This often leads to errors when
programmers forget about or misuse them.

Are types used consistently? (Python)

Python does not have compile-time type checking so it it is possible to assign values of different types to the same variable. This is
best avoided but, if used, it should be justified.

Is the indentation level correct? (Python)
Python uses indentation rather than explicit brackets after conditional statements to indicate the code to be executed if the condition
is true or false. If the code is not properly indented in nested conditionals this may mean that incorrect code is executed.

52

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

INTRO TO QA AND TESTING (TAKE 2 ©)

53

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

What is Testing???

* What is testing?
* Execution of code on sample inputs in a controlled environment

* Principle goals:
 Validation: program meets requirements, including quality attributes.
» Defect testing: reveal failures.

* Other goals:

* Reveal bugs (main goal)

» Assess quality (hard to quantify)

* Clarify the specification, documentation
* Verify contracts

54 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

| #s
—
=

What is Testing???

e What can we test for? (Software quality attributes)
* What can we not test for?

* Why should we test? What does testing achieve?
* What does testing not achieve?

e When should we test?
* And where should we run the tests?

e What should we test?
e What CAN we test?

 How should we test?
* How many ways can you test the sort() function?

* How good are our tests?
* How to measure test quality?

55 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

WHAT CAN WE RUN (AUTOMATED) TESTS FOR?
(SOFTWARE QUALITY ATTRIBUTES)

WHAT CAN WE NOT (EASILY) TEST FOR?
(SOFTWARE QUALITY ATTRIBUTES)

Things we might try to test

* Program/system functionality:
* Execution space (white box).

* Input or requirements space (black box).

* The expected user experience (usability).
* GUI testing, A/B testing

* The expected performance envelope (performance, reliability,
robustness, integration).
 Security, robustness, fuzz, and infrastructure testing.
* Performance and reliability: soak and stress testing.
* Integration and reliability: API/protocol testing

58 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Software Errors

* Functional errors

* Performance errors
* Deadlock

e Race conditions

* Boundary errors

e Buffer overflow

* Integration errors
 Usability errors

e Robustness errors
e Load errors

QOFTWARE
ENGINEERING

* Design defects

* Versioning and configuration errors
* Hardware errors

e State management errors

* Metadata errors

* Error-handling errors

* User interface errors

* APl usage errors

59 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

WHY SHOULD WE TEST?
(WHAT DOES TESTING HELP US ACHIEVE?)

Value of Testing

 [Low bar] Ensure that our software meets requirements, is correct, etc.

* Preventing bugs or quality degradations from being accidentally introduced in
the future

* Helps uncover unexpected behaviors that can’t be identified by reading source
code

* Increased confidence in changes (“will | break the internet with this commit?”)

 Bridges the gap between a declarative view of the system (i.e., requirements)
and an imperative view (i.e., implementation) by means of redundancy.

* Tests are executable documentation; increases code maintainability
* Forces writing testable code <-> checks software design

61 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

WHAT ARE THE LIMITATIONS OF TESTING?
(WHAT DOES TESTING NOT ACHIEVE?)

Limitations of Testing

"Testing shows the presence, not the absence of bugs.”
-Edsger W. Dijkstra

 Testing doesn’t really give any formal assurances

* Writing tests is hard, time consuming

e Knowing if your tests are good enough is not obvious

* Executing tests can be expensive, especially as software
complexity and configuration space grows
* Full test suite for a single large app can take several days to run

* Halting Problem

WHEN SHOULD WE TEST?
(AND WHERE SHOULD WE RUN THE TESTS?)

65

YOU SCHEDULED THE
END OF THE TEST PHASE
AFTER THE START OF
THE PRODUCTION PHASE.

Dilbert.com DilbertCartoonist@gmail.com

WE'RE FEELING
CONFIDENT.

5-17-1]©2011 Scott Adams, Inc. Dist. by Universal Uclick

IT'S TOO BAD THAT
BEING SMART DOESN'T
COME WITH SOME SORT

OF GOOD FEELING LIKE
) THAT.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Test Driven Development (TDD)

* Tests first!

* Popular agile technique

* Write tests as specifications before code
* Never write code without a failing test

e Claims:

* Design approach toward testable design

CODE-DRIVEN TESTING REFACTORING

Think about interfaces first

Avoid unneeded code

Higher product quality

Higher test suite quality

Higher overall productivity

66 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING =

Common bar for contributions

Chromium
e Changes should include corresponding tests. Automated testing is at
the heart of how we move forward as a project. All changes should
include corresponding tests so we can ensure that there is good
coverage for code and that future changes will be less likely to regress

. , . | _
functionality. Protect your code with tests! Firefox

Testing Policy

Everything that lands in mozilla-central includes automated
tests by default. Every commit has tests that cover every
major piece of functionality and expected input conditions.
Docker
Conventions

Fork the repo and make changes on your fork in a feature branch:

« Ifit's a bugfix branch, name it XXX-something where XXX is the number of the issue
« Ifit's a feature branch, create an enhancement issue to announce your intentions, and name it XXX-
something where XXX is the number of the issue.

Submit unit tests for your changes. Go has a great test framework built in; use it! Take a look at existing tests for
inspiration. Run the full test suite on your branch before submitting a pull request.

67

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Regression testing

e Usual model:
* Introduce regression tests for bug fixes, etc.

e Compare results as code evolves
Codel + TestSet - TestResults1

* Code2 + TestSet - TestResults2
* As code evolves, compare TestResultsl with TestResults2, etc.

* Benefits:
* Ensure bug fixes remain in place and bugs do not reappear.

* Reduces reliance on specifications, as <TestSet,TestResults1> acts as one.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

68

Continuous Integration

N),
@ B &
@ = oto

REVIEW STAGING PRODUCTION

coOMMIT

X & P

{ O—0—0—- 00 1@ 1@ 1@
I BUILD UNIT |NTEGRATION
TESTS TESTS
@ CD PIPELINE
@ ClI PIPELINE
RELATED CODE

=L
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

WHAT SHOULD WE TEST?
(WHAT CAN WE TEST?)

Testing Levels

* Unit testing
* Integration testing
* System testing

72

Testing Levels
* Unit testing

* Code level, E.g. is a function implemented correctly?
* Does not require setting up a complex environment
* Integration testing

* System testing

* Usually requires some environment setup, but can abstract/mock out other components
that are not being tested (e.g. network)

* Do components interact correctly? E.g. a feature that cuts across client and server.

* Validating the whole system end-to-end (E2E)

* Requires complete deployment in a staging area, but fake data
 Testing in production
* Real data but more risks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

.

What's a good distribution of test levels? | :

HOW GOOD ARE OUR TESTS?
(HOW CAN WE MEASURE TEST QUALITY?)

Code Coverage

* Line coverage
 Statement coverage
* Branch coverage

* Instruction coverage
 Basic-block coverage
e Edge coverage

e Path coverage

Code Coverage

LCOV - code coverage report

Current view: top level - test Hit Total Coverage
Test: coverage.info Lines: 6092 7293 83.5%
Date: 2018-02-07 13:06:43 Functions: 481 518 92.9 %

41\ - DOLMESHINUSL LI LISHESIIVLA, SIESHIUUL)) i W)

= e o0 / 1 goto fail;
__________________ Filename Line Coverage ¢ R
H else
asnl_string_table_test.c [— _ : /* DSA, ECDSA - just use the SHAl hash */
asnl tine test.c) DS L smmwmoedmcoeselon
bad_dtls_test.c | E— 97.6 % 163 /167 100 Pt
e [— 106 / : hashout.data = hashes + SSL_MDS_I DIGESI' LEN;
= 107 8 hashOut length = SSL_SHA1_DIGEST L
bio enc test.c | — 78.7 % 74 /94 108 / 3 f ((err = SSLFreea.l?'fer(&hashctx)) =0
——— 10_
bntest.c I — 97.7 % LEEf))l ﬁ? ; if ((ReadyHash (§SSLHashSHAL, &hashCtx)) 0)
g E H B I=
chacha_internal test.c | — 83.3 % 10/12 11 gir [l adyHas sl ashCtx
. 113 H 1f ((err = SSLHashSHAL.update(&hashCtx, &clientRandom)) != 0)
clphernane test.c —— L T A RS

critest.c [— 100.0 % 90/90 ﬁs 8 1f ((err = SSLHashSHAL.update(&hashCtx, &serverRandom)) != 0)
ct test.c | 95.5 % 212 /222 117 8 1f ((err = SSLHashSHAL.update(&hashCtx, &signedParams)) != 0)
1s 0 / 1: goto fail;
itestus o N e s, s 10
danetest.c — 75.5 % 123/163 D gt faty o naniEhesner, Shashoatil =
dhtest.c —— 84.6 % 88 /104 err = sslRawverify(ctx, i
tx->peerPubkey,
drbgtest.c [— f,aiﬂg;e;n‘j Y /* plaintext *
dtls mty test.c — 86.8 % 59/68 detarosignien, 7% plaintext U
dtlstest.c | —— 97.1 % 34/35 iern) 1 signaturelen) ;
1t (err
dtlsvilistentest.c | —— 94.9 % 37/39 sslErrorLog("SSLDecodeSignedServerkeyExchange: sslRawverify "
ecdsatest.c | 94.0 % 140/ 149 : goto faily o Tred Mt fineerr);
. : }
enginetest.c | —— 92.8 % 141/152 gf :
D . | —| - 1= ptail: .
e 100.0 % 112/112 136 1/ 1: = SsLFreeBuffer(&signedHashes) ;
fatalerrtest.c | —— 89.3 % 25/28 137 1/ 1 SSLFreeBuffer (shashCtx) ;
138 1 1 t ;
handshake_helper.c —— 84.7 % 494 /583 139 ! et
hractest..c —— 100.0 % LT —
ideatest.c | —— 100.0 % 30/30 100.0 % 4/4
igetest.c | —— 87.9 % 109/124 100.0 % 11/11
lhash_test.c | I— 78.6 % 66 /84 100.0 % 8/8
mdc2_internal_test.c ——1 81.8 % 9/11 100.0 % 2/2
mdc2test.c | —— 100.0 % 18/18 100.0 % 2/2
ocspapitest.c | —— 95.5 % 64 /67 100.0 % 4/4
packettest.c | — 100.0 % 248 /248 100.0 % 24 /24

76 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

We can measure coverage on almost P
anything TWARS

70
00F
ENG!

CORTTURR ek e ey TN T el L g LaE S, O T ApiucAEIG = T Oovamars) "
v .28 Dia sChar As Sering -

Dia sPrevihar As Oteing

Starts with Res it 13 4 comment
|52 sline » Trim(sline)
HE It Left(sline, 3] = “"Rea® Then

Ixt function
Bnd 1t

Starss with ' it £> @ comment
It Left(sline, 1) = *'* Then
Cleanlline = **
Exit Function
“End It

b cli Application - [Draw,

| Ede |

o Drawcli Application - [Drawcl5]

Conteins ' mey et 1o @ comment, 30 teat if it 13 4 comment or ia th
* dody of a striny
~It IxStrisline, * '"} > O Then

1QaoteCount = 0

rFor leewst = | To Lenisline)
| eChar = Mid(shine. loours, 1)
I we found - U0 Lot a1 aven nusber Of © Sharactess in frat [y
Beans 1t 13 the stert of @ coamant, end o3 mader sesns it 13 3 L ad

AR ™ e~

A. Zeller, Testing and Debugging Advanced course, 2010

77 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING =

Beware of coverage chasing

* Recall: issues with metrics and incentives
* Also: Numbers can be deceptive
* 100% coverage != exhaustively tested
* “Coverage is not strongly correlated with suite effectiveness”

* Based on empirical study on GitHub projects [Inozemtseva and Holmes, ICSE’14]

e Still, it’s a good low bar
* Code that is not executed has definitely not been tested

78 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Coverage of what?

 Distinguish code being tested and code being executed
* Library code >>>> Application code
* Can selectively measure coverage

 All application code >>> code being tested

* Not always easy to do this within an application

W |
COFTWARE
'ENGINEERING

Coverage = Outcome

* What's better, tests that always pass or tests that always fail?
 Tests should ideally be falsifiable. Boundary determines specification
* |[deally:

* Correct implementations should pass all tests
* Buggy code should fail at least one test
* Intuition behind mutation testing

* What if tests have bugs?

* Pass on buggy code or fail on correct code

* Even worse: flaky tests

* Pass or fail on the same test case nondeterministically

* What'’s the worst type of test?

80 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

HOW SHOULD WE TEST?

81

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CR

COS PRO

IDER #0012C

0

JUnit

Popular unit-testing framework for Java

Easy to use

Tool support available (Maven, Gradle, etc.)

Can be used as design mechanism import org.junit.jupiter.api.x;
import static org.junit.jupiter.api.Assertions.x;

import java.util.x;

public class Tester {
@Test
public void testSort() {
int[] input = {8, 16, 15, 4, 42, 23};
int[] output = {4, 8, 15, 16, 23, 42};
assertArrayEquals(sort(input), output);

}

int[] sort(int[] args) {

|l iceterTntanars in — noaw Arraul ie+f)

82 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING =

Basic Elements of a Test

* Tests usually need an input and expected output.

@Test

public void testSort() {
int[] input = {8, 16, 15, 4, 42, 23};
int[] output = {4, 8, 15, 16, 23, 42};
assertArrayEquals(sort(input), output);

}

* More generally, a test environment, a test harness, and a test
oracle

* Environment: Resources needed to execute a family of tests
* Harness: Triggers execution of a test case (aka entry point)
* Oracle: A mechanism for determining whether a test was successful

83 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

_ L : et |
Test Design principles

*ENGINEERING

* Use public APIs only

* Clearly distinguish inputs, configuration, execution, and oracle

* Be simple; avoid complex control flow such as conditionals and
loops

* Tests shouldn’t need to be frequently changed or refactored

* Definitely not as frequently as the code being tested changes

Anti-patterns

* Snoopy oracles
* Relying on implementation state instead of observable behavior
e E.g. Checking variables or fields instead of return values

Brittle tests

* Overfitting to special-case behavior instead of general principle

* E.g. hard-coding message strings instead of behavior

Slow tests
 Self-explanatory (beware of heavy environments, 1/0, and sleep())

Flaky tests

 Tests that pass or fail nondeterministically

» Often because of reliance on random inputs, timing (e.g. sleep(1000)), availability of external services
(e.g. fetching data over the network in a unit test), or dependency on order of test execution (e.g.
previous test sets up global variables in certain way)

85 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

TEST STRATEGIES

86

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Basic Unit Test for Sort

@Test

public void testSort() {
var input = Arrays.asList(1, 3, 2);
var output = Arrays.asList(1, 2, 3);
Collections.sort(input);
assertEquals(input, output);

}

* What are some interesting values to test?

* List tuples <input, output, reason>

87 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

-
o813

Black-box & Specification-Based Testing

 Test cases are often designed based on behavioral equivalence classes.

* Assumption: if test passes for one value => test will pass for all values in the equivalence
class.

 Systematic tests can be drawn from specification.

* For example: A year is a leap year if:
* the yearis divisible by 4;
* and the year is not divisible by 100;
* except when the year is divisible by 400
* Tests:
* assert isLeapYear(1945) == false
* assert isLeapYear(1944) == true
* assert isLeapYear(1900) == false
* assert isLeapYear(2000) == true

88 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Boundary-Value Testing

Aim: Test for cases that are at the “boundary” of equivalence classes in the
specification.
* Small change in input moves it from one class to another.

* Example: Testing a function divide(int a, int b)
* One boundary may beat ‘a==b’

Edge case: One of many parameters are at the boundary
* E.g.for divide: a=0, b=42 ora=42,b=0
* E.g. for sort: list contains duplicates, list is empty

Corner case: Combination of parameters are at the boundary
* E.g. for divide: a=0, b=0

89

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

White-box or Structural Testing e |

aensmssnm“
e Aim: Test for cases that exercise various program elements (e.g.
functions, lines, statements, branches)

* Key idea: If you don’t execute some code, you can’t find bugs in
that code. So, let’s execute all the code.

* Which one do you think is harder: black-box boundary-value
testing or white-box structural testing?

Coverage of the Basic Unit Test

alex@kanga TestingExamples % ./run-pytest.sh

test session starts
platform darwin -- Python 3.10.4, pytest-7.1.3, pluggy-1.0.0
rootdir: /Users/alex/Dropbox/Teaching/COMP2120/2022S2/TestingExamples
collected 8 items

bubble_sort.py
insertion_sort.py
merge_sort.py

bubble_sort.py
insertion_sort.py
merge_sort.py
tim_sort.py

alex@kanga TestingExamples %

91 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

But the basic unit test worked well
for Merge and otherSort....

Coverage = Completeness

Mutation Testing

* Ideally: at least one test should fail on the mutated program (=
catch bug).

* |If this happens, the mutant is said to be “killed”.

* |If all tests continue to pass under the mutated program, then the mutant is said to
“survive”.

* Mutation score = (mutants killed) / (total mutants). This is a better predictor of bug-
finding capability than coverage.

 Competent programmer assumption: programs are mostly correct,
except for very small errors.
¢ ShOWS that testS are fa|S|f|ab|e at the boundary Of |mp|ementat|0n (as opposed to boundary of

specification).

7

93 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mutation Testing

* Sample mutations include:
 Change ‘a+b’to‘a-b’

Change ‘if (a > b)’ to ‘if (a >=b)’ or ‘if(b > a)’

Change ‘i++’ to ‘i—’

Replace integer variables with O

Change ‘return x” to ‘return True’ (or some other constant)

Delete lines containing void method calls (e.g. ‘x.setFoo(1)’)

 ...and many more

* Over time, standard list of mutators curated by researchers
e Pitest is a popular mutation testing tool for Java (pitest.org)

94 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mutation Testing

 Nice idea but has several limitations:

1. Equivalent mutations: Modifications that do not affect program semantics (e.g.
affecting the pivot in Quicksort).

2. Needs a pretty complete test oracle: Otherwise, some genuine bugs may never be
caught. We'll come back to this point later.

3. Expensive to run. N mutants require N test executions. Program testing costs scale
quadratically (because N also grows with size).

< Comparable<T>> partition(T[] array left right) {
mid = (left + right) >>>

pivot = array

(left <= right) {

(less(array[left], pivot)) {
++left

}

(less(pivot, array[rightl])) {
--right

)

95 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

- dalins
Test Oracles 57"”‘

%ENGINEERING‘\
* Obvious in some applications (e.g. “sort()”) but more challenging |
in others (e.g. “encrypt()” or Ul-based tests)

* Lack of good oracles can limit the scalability of testing. Easy to
generate lots of input data, but not easy to validate if output (or
other program behavior) is correct.

* Fortunately, we have some tricks.

'_ :
=
L OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 10 OF 12: TESTING

»QOFTWAR .
JENGINEERING

* Intends to validate invariants that are always true of a computea

result.
» E.g. if testing a list-reversing function called ‘rev’, then we have the invariant:
‘rev(rev(list)).equals(list)’
* Key idea: Can now easily scale testing to very large data sets,
either hand-written or automatically generated, without the need

for hard-coding expected outputs completely.

@Property

Property-Based Testing

testSameLength(List<Integer> input) {
output = sort(input)

output.size() == input.size() :

’ﬁ»- -

97 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Differential Testing

If you have two implementations of the same specification, then their output should

match on all inputs.
* E.g. ‘timSort(x).equals(quickSort(x))" = should always be true
* Special case of a property test, with a free oracle.

If a differential test fails, at least one of the two implementations is wrong.

* But which one?
* If you have N > 2 implementations, run them all and compare. Majority wins (the odd one out is buggy).

Differential testing works well when testing programs that implement standard
specifications such as compilers, browsers, SQL engines, XML/JSON parsers, media
players, etc.

* Not feasible in general

98

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

7SI

Regression Testing

'ENGINEERING
 Differential testing through time (or versions, say V1 and V2). |

* Assuming V1 and V2 don’t add a new feature or fix a known bug,
then f(x) in V1 should give the same result as f(x) in V2.

* Key Idea: Assume the current version is correct. Run program on
current version and log output. Compare all future versions to that

output.

DYNAMIC ANALYSIS AND ADVANCED AUTOMATED TESTING

Puzzle:
Find x such that p1 (x) returns True

def pl(x):
if x * x - 10 == 15
return True

return False

Puzzle:
Find x such that p2 (x) returns True
def p2(x):
if X > © and x < 1000:
if ((x - 32) * 5/9 == 100):
return True

return False

Puzzle:

Find x such that p3 (x

def p3(x):
if x > 3 and x < 100:
zZ =X - 2
c =20

while z >= 2:

if z ** (x - 1) % x == 1:
c=c+1
z =2z -1

if ¢ == x - 3:
return True

return False

) returns True

FindBugs (2006 !

QQRSI),’ SERSIT,

& SN’

V(N :

18 /56 .,,4_" o
Ry M

7, Q

L § 1;;“;‘9‘ e
. 2o a8 J ™ _ | .
FindBugs FindBugs™ - Find Bugs in Java Programs

because it's easy This is the web page for FindBugs, a program which uses static analysis to look for bugs in Jav:

terms of the Lesser GNU Public License. The name FindBugs™ and the FindBugs logo are trac

Docs and Info has been downloaded more than a million times.

FindBugs 2.0

Dl:mol;iz ata The current version of FindBugs is 3.0.1.

Users and supporters
FindBugs blog FindBugs requires JRE (or JDK) 1.7.0 or later to run. However, it can analyze programs compi
Fact sheet

Manual The current version of FindBugs is 3.0.1, released on 13:05:33 EST, 06 March, 2015. We are ve
Manual(ja/ H 4<3E) FindBugs. File bug reports on our sourceforge bug tracker

FAQ

Bug descriptions Changes | Talks | Papers | Sponsors | Support

Bug descriptions(ja/ H 4<3H)

Bug descriptions(fr) .

Maing lsts FindBugs 3.0.1 Release

D and Publication:

Links

¢ A number of changes described in the changes document, including new bug patterns:
o BSHIFT WRONG ADD PRIORITY,

Downloads o CO_COMPARETO INCORRECT FLOATING,
o DC PARTIALLY CONSTRUCTED,

FindBugs Swag o DM BOXED PRIMITIVE FOR COMPARE,
o DM INVALID MIN MAX,

Development o ME MUTABLE ENUM FIELD,

Open bugs o ME ENUM FIELD SETTER,

Reporting bugs o MS MUTABLE COLLECTION,

Contributing o MS MUTABLE COLLECTION PKGPROTECT,

Dev team A RANMCE ARRAV INNNREY

105 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Security and Robustness

FUZZ TESTING

106

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CR

COS PROVIDER #00120C

’&’)

rowe TRCOS! |
Rm Dﬁgn ME ToO. 0 :
\ (R sa01 1312127
&Gis315.0037506561081020

NI Sy

15’ 33510 5 \.)DC

3360252501

Original: https://xkecd.com/1210 CC-BY-NC 2.5

‘ *e

= ——
&

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

https://xkcd.com/1210

108

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the
Reliability of

Utilities

‘COMMUNICATIONS OF THE ACM/Deccmber 1990/Vol 53, NoJ2

Communications of the ACM (1990)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

14

On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home
and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash.

2

Fuzz Testing

wO0019[a%#

I I Execute

[/dev/random

1990 study found crashes in:

adb, as, be, cb, col, diction, emacs, eqn, ftp,
indent, lex, look, m4, make, nroff, plot,
prolog, ptx, refer!, spell, style, tsort, uniq,
vgrind, vi

109

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

—
~—
N~/
>

r%wwrwﬁ .
go Tw RE :séésiéééz
‘ENCINEERING

Causes: incorrect arg validation, incorrect type casting, executing
untrusted code, etc.

Common Fuzzer-Found Bugs in C/C++

Effects: buffer-overflows, memory leak, division-by-zero, use-after-
free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

How to identify these bugs in languages like C/C++?

Automatic Oracles: Sanitizers

e Address Sanitizer (ASAN)

* LeakSanitizer (comes with ASAN)

* Thread Sanitizer (TSAN)

e Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer

Compile with “clang —fsanitize=address"

int get_element(int* a, int i) {
return af[i];

Is the access out of bounds?

int get element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);

H if (in_heap(region)) {
} IS It r]L”l? low, high = get_bounds(region);
int get_element(int* a, int i) { if ((a + i) < low || (a +i) > high) {
if (a == NULL) abort(); abort();
return a[i]; }
} }
return a[i];
}

Is this a reference to a stack-allocated variable after return?

int get_element(int* a, int i) {
if (a == NULL) abort();
region = get _allocation(a);
if (in_stack(region)) {
if (popped(region)) abort();

}
if (in_heap(region)) { ... }
return a[i];

112 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

AddressSanitizer

Asan is a memory error detector for C/C++. It finds:

» Use after free (dangling pointer dereference)

Heap buffer overflow

Stack buffer overflow

Global buffer overflow

Use after return

Use after scope
Initialization order bugs ‘
Memory leaks ’

56 hmmer_ 462ibquantum _ 471.omnetpp 483.xalancomk 444 ramd 50 s0plex 470mm average
4sBsieng 464nzedrel 4T3astar 433mic 447 deall

e
400 perbench as3poviay 482sphincd

https://github.com/google/sanitizers/wiki/AddressSanitizer

113 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Strengths and Limitations B

aeucmsmm*

e Exercise: Write down two strengths and two weaknesses of
fuzzing. Bonus: Write down one or more assumptions that fuzzing
depends on.

Strengths and Limitations

* Strengths:

e Cheap to generate inputs
* Easy to debug when a failure is identified

* Limitations:

* Randomly generated inputs don’t make sense most of the time.

* E.g. Imagine testing a browser and providing some “input” HTML randomly: dgsad51350 gsd;gj
Isdkg3125j@ !T%#(W+123sd asf j

* Unlikely to exercise interesting behavior in the web browser
e Can take a long time to find bugs. Not sure when to stop.

115 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mutation-Based Fuzzing (e.g. Radamsa)

Mutation Heuristics

= Binary input
= Bit flips, byte flips
= Change random bytes
" Insert random byte chunks
= Delete random byte chunks
= Set randomly chosen byte chunks to interesting values e.g. INT_MAX, INT_MIN, O, 1, -1,

= Other suggestions?

= Text input
" Insert random symbols or keywords from a dictionary
= Other suggestions?

117 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

American Fuzzy Lop
(https://github.com/google/AFL)

2) The afl-fuzz approach

American Fuzzy Lop is a brute-force fuzzer coupled with an exceedingly simple but rock-solid instrumentation-
guided genetic algorithm. It uses a modified form of edge coverage to effortlessly pick up subtle, local-scale
changes to program control flow.

Simplifying a bit, the overall algorithm can be summed up as:
1. Load user-supplied initial test cases into the queue,
2. Take next input file from the queue,
3. Attempt to trim the test case to the smallest size that doesn't alter the measured behavior of the program,
4. Repeatedly mutate the file using a balanced and well-researched variety of traditional fuzzing strategies,

5. If any of the generated mutations resulted in a new state transition recorded by the instrumentation, add
mutated output as a new entry in the queue.

6. Go to 2.

The discovered test cases are also periodically culled to eliminate ones that have been obsoleted by newer,
higher-coverage finds; and undergo several other instrumentation-driven effort minimization steps.

118 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Coverage-Guided Fuzzing (e.g. AFL)

Coverage-Guided Fuzzing with AFL

November 07, 2014
Pulling JPEGs out of thin air

This is an interesting demonstration of the capabilities of afl; I was actually pretty surprised that it worked!

$ mkdir in dir

$ echo 'hello' >in_dir/hello — — : — = : =
$./afl-fuzz -i in_dir -o out_dir ./jpeg-9a/djpeg [_] [_] m = ‘—i m—r | A ﬂ” ,E*j ,_1]—i ITTF l_-' ’_y WT’

= | <) | |

anRERREEwSALEY - -

O OREOCE 0RO E08 000000

ﬂﬁﬁ'ﬂhhhmﬁmﬁﬁﬁﬁﬁr—ﬂ_ﬂr—ﬂl‘ﬁl—im

o JL e M Ji J 0 - - -

http://Icamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

120 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING I

CRICOS PROVIDER #00120C

Coverage-Guided Fuzzing with AFL

The bug-o-rama trophy case

1JG jpeg?
libtiff12345
Mozilla Firefox 123 4
Adobe Flash / PCRE 123 4 567
LibreOffice 123 4
GnuTLS2
PuTTY 2
bash (post-Shellshock) X 2

pdfium 12

libarchive 123456 ..

BIND123

libjpeg-turbo 1 2
mozjpeg !
Internet Explorer 1234
sqlite 123 4=
poppler 1 2=
GnuPG1234
ntpd 2
tepdump 123456789
ffmpeg 12345
wireshark 123

QEMU 12

libpng !
PHP12345678
Apple Safari
OpenSSL1234567
freetype 12
OpenSSH12345
nginx123
JavaScriptCore 123 4
libmatroska !
ImageMagick 123456789

lems 2

http://Icamtuf.coredump.cx/afl/

121

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

http://lcamtuf.coredump.cx/afl/

ClusterFuzz @ Chromium

@ bugs chromium ~ All issues ~ Q label:ClusterFuzz -status:Duplicate

1-100 of 25423 Next » List

D ~ Pri ~ M~ Stars ¥ ReleaseBlock ~ Component ¥ Status ~ Owner v

1133812 1 - 2 - BIink>GetUserMedi Untriaged ----

1133763 1 — 1 —— - Untriaged ——

1133701 1 - 1 - Blink>JavaScript Untriaged -

1133254 1 —— 2 — ——— Untriaged —

1133124 1 — 1 - - Untriaged -

1133024 2 - 3 e Internals>Network Started dmcardle@ch

Ul>Accessibility, . . .
1132958 1 e 2 e Blink>Accessibility Assigned sin...@chromi

1132907 2 - 2 - Blink>JavaScript>GC Assigned dinfuehr@chr

122 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Can fuzzing be applied to unit testing?

* Where “inputs” are not just strings or binary files?

* Yes! Possible to randomly generate strongly typed values, data
structures, API calls, etc.

* Recall: Property-Based Testing

@Property

testSameLength(List<Integer> input) {

output = sort(input)

output.size() == input.size() :

ﬁ»é

Generators

Random List<Integer>

List list = new ArraylList();
while (randomBoolean()) {

list.append(randomInt());
}

return list;

List list = new ArraylList();

int len = randomInt();

for (int i = 0 to len) {
list.append(randomInt());

}

return list;

Exercise: Write a generator for
Creating random HashMap<String, Integer>

// randomly stop/go
// random element

// pick a random length

// random element

124

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mutators

Mutator for list: List<Integer>

int kK = randomInt (0, len(list)):

int action = randomChoice(ADD, DELETE, UPDATE) ;

switch (action) {
case UPDATE: list.set(k, randomInt()); // update element at k
case ADD: 1list.addAt(k, randomInt()); // add random element at k
case DELETE: 1list.removeAt(k); // delete k-th element

Exercise: Write a mutator
HashMap<String, Integer>

125 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING I

The Fuzzing Book

The Fuzzing Book v About this Book v Resources v ®, Share v © Help v

. The Fuzzing Book
htt pS ://WWW-fu ZZ I n g bOO k- O rg/ Tools and Techni sngenerating Software Tests

by Andreas ZelleA Rahul Gopinath,

About this Book

Welcome to "The Fuzzing Book"! Software has bugs, and catching bugs can involve lots of effort. This book addresses this problem by automating
software testing, specifically by generating tests automatically. Recent years have seen the development of novel techniques that lead to dramatic

arcel Bohme, Gordon Fraser, and Christian Holler

improvements in test generation and software testing. They now are mature enough to be assembled in a book - even with executable code.

from bookutils import YouTubeVideo
YouTubeVideo("w4u5gCgPlmg")

> | ‘THE UNIVERSITY OF
SYDNEY Study Research Engage with us About us News & opinion Q
N/
Faculty of Engineering
Study engineering Schools Ourresearch Industry and community ~ News and events About
¢ Home People_ 4 G i S T
enerating So re Tests
.
& About Dr Rahul Goplnath < Breaking Software for Fun an
" &
Lecturer, School of Computer Science
< Our people
Email Address
& Academic staff hul di J12 - Computer Science Building
The University of Sydney
.
Rahul Gopinath ebsites Watch on (38 YouTube
https:/rahul.gopinath.org
Biographical detail - A Textbook for Paper, Screen, and Keyboard
Rahul Gopinath is a Lecturer in the School of Computer science. His main research area lies in the junction You can use this book in four ways:

between Software Engineering and Cybersecurity. His research focus is on using static and dynamic program
analysis to improve reliability, security, and maintainability of software systems.

* You can read chapters in your browser. Check out the list of chapters in the menu above, or start right away with the introduction to

126 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

https://www.fuzzingbook.org/

TESTING PERFORMANCE

127

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #0012C

0C

Performance Testing

* Goal: Identify performance bugs. What are these?

* Unexpected bad performance on some subset of inputs
* Performance degradation over time

* Difference in performance across versions or platforms

* Not as easy as functional testing. What’s the oracle?
* Fast = good, slow = bad // but what'’s the threshold?
* How to get reliable measurements?
* How to debug where the issue lies?

128 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Performance Regression Testing

* Measure execution time of critical components

* Log execution times and compare over time

Job 12e96643840000

Issue 808613 - Analyze benchmark results - 2.0 hours - 2/14/2018, 9:48:34 AM

Differences found after commits 490

Re-record loading.desktop story set by

ksakamoto@chromium.org 480

Job arguments

470
benchmark loading.desktop

chart cpuTimeToFirstMeaningfulPaint / >\1
y X 460 ./4

-rel 11-pro

statistic avg

450

story Pantip

Re-record loading.desktop story set by ksakamoto@chromium.org
target telemetry_perf_tests

tir_label warm

wace Pantp Build Test Values
ASEEEEEEESEEEEEEEEEE ESEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEE
builder Mac Builder task_id 3baeadbeaa7f1710 trace Pantip_2018-02-14_11-40-
. ; 07_93865.html
isolate_hash ggggg?ﬁﬁaﬂe;bf:oe‘mdb8823309 BoLid. bulg1eTbe trace Pantip_2018-02-14_11-40-
i

Source: https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/speed/addressing_performance_regressions.md

129

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Firefox

A Study of Performance Variations A
in the Mozilla Firefox Web Browser ” ‘F

Alex Potanin! Yuichi Hirose? B @ »
! School of Engineering and Computer Science GNNRun &

Email: {larresjan,alex}Qecs.vuw.ac.nz

& C @& aosabook.org Jan Larres!

ES ANU [E3 Bills EF Blogs EJ Home E3 Mail B5

2 School of Mathematics, Statistics and Operations Research
Email: hirose@msor.vuw.ac.nz
Victoria University of Wellington, New Zealand

Talne .

wa A A

While hacking on the Talos harness in the summer of 2011 to add support for new platforms and tests, we encountered the results from Jan Larres's master’s thesis, in
which he investigated the large amounts of noise that appeared in the Talos tests. He analyzed various factors including hardware, the operating system, the file

system, drivers, and Firefox that might influence the results of a Talos test. Building on that work, Stephen Lewchuk devoted his internship to trying to statistically
reduce the noise we saw in those tests.

Based on their work and interest, we began forming a plan to eliminate or reduce the noise in the Talos tests. We brought together harness hackers to work on the

harness itself, web developers to update Graph Server, and statisticians to determine the optimal way to run each test to produce predictable results with
minimal noise.

ATVIOZINNE; ONe oTour Very mrsta " - ; I—
modification since its inception i.. ._W.c,afl.nf?.t c%s:Ly be“at,"{,lb ! tf E‘.FS..‘?PhC’ gemumne chang‘cs

changed hands.

Automated tests help with this balance by alert-
. e s et s et g

§ N I 1 Sar e g AT T A e Tl T T e e Taoade S s

In the summer of 2011, we finally began to look askance at the noise and the variation in the Talos numbers, and we began to wonder how we could make some small
modification to the system to start improving it. We had no idea we were about to open Pandora’s Box.

In this chapter, we will detail what we found as we peeled back layer after layer of this software, what problems we uncovered, and what steps we took to address
them in hopes that you might learn from both our mistakes and our successes.

’fi»- -

130 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Profiling

* Finding bottlenecks in execution time and memory

\lHNHMHlmmmI--—

Flame Graph

* Flame graphs are a popular visualization of resource consumption
by call stack.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

131

Domain-Specific Perf Testing (e.g. JMeter) |

132

Apache JMeter Dashboard by UbikLoadPack ~

n JROK~ Start/stop marker

jmeter_influx v application JMeter_demo v

Sent Bytes

Summary
Total Requests Failed Requests Received Bytes

Failed

pA| 07 Requests

Total Errors

Total Throughput

Threads

Num of Errors

Transactions Response Times (95th pct)

http://imeter.apache.org

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Error Rate %

Active Threads ~

F o S
Foundalio

QOFTW ARE
'ENGINEERING

2018-04-10 16:03:40

Threads:

http://jmeter.apache.org/

Performance-driven Design

* Modeling and simulation
* e.g. queuing theory

* Specify load distributions
and derive or test configurations

Evaluation Summary

&2 View Report - 3 - Multithreading and QueuingArchitecture Simulator

| Property [value |

Scenario Scenariol

Number of users s

Transaction Generation Rate 3

Actual Simulation Load

Actual Network Load 0 =0
No, of System Transactions Generated {5T1=24, ST2=24} 1
No. of System Transactions Completed {5T1=24, ST2=24}

Average System Transaction Comoletion Time 156938

Choose a Graph

Overview | Acme Source | ClientServer

Masks Problems ‘ Acme Performance Simulator View Acme Security Simulator Yiew ¥ =0

View Error Report

Asset
Server Database

o
Rules Specify Performance Properties
Structure Performance Values \ Error Handling
Types Response Range (Seconds) System Resources
Consumed (in %) L
Representations Transaction Complexity | Very Simple l Simple Average
e Mininum Value | 1.02 1.041 | 106 [mukithreaded [7] Queve
G Maximum Yalue 1.03 1.05 ” 1.07 Max, Threads: Queue Size:
[, E)
S 100
| e
Specify Performance Properties
0° Performance Values Error Handling |
Error Handling
Errors Selected Parameters [Value Error Handling Mechanism
Process Crash Successful system trans. (%) [99 Connect to another Thread, Log v
ent Crash ~—

133 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Stress testing

aENGINEERING?
* Robustness testing technique: test beyond the limits of normal
operation.

* Can apply at any level of system granularity.

* Stress tests commonly put a greater emphasis on robustness,
availability, and error handling under a heavy load, than on what
would be considered “correct” behavior under normal
circumstances.

Soak testing

ﬁencmsmmcf

* Problem: A system may behave exactly as expected under
artificially limited execution conditions.

* E.g., Memory leaks may take longer to lead to failure (also motivates static/dynamic
analysis, but we’ll talk about that later).

* Soak testing: testing a system with a significant load over a
significant period of time (positive).
* Used to check reaction of a subject under test under a possible

simulated environment for a given duration and for a given
threshold.

135 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Slides credit Christopher Meiklejohn

CHAOS ENGINEERING

136

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CR

ICOS PROVIDER #00120C

Monolithic Application %%@
| sncmssnmg

What kind of failures can happen
here?

PostgreSQL ML Model

How likely is that error to

happen?
Mayan EDMS
Container How do | fix it?
—

Microservice

L OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 10 OF 12: TESTING

OOOOOOOOOOOOOOOOOOOOO

Microservice Application

Mayan EDMS

Container

PostgreSQL

Container Container

Remember, these calls are
messages sent on an
unreliable network.

w

138

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

OOOOOOOOOOOOOOOOOOOOO

Failures in Microservice Architectures 5&%93 |

'ENGINEER

1.Network may be partitioned

All of these issues
can be indistinguishable
from one another!

2.Server instance may be down

Making the calls across the network
to multiple machines makes the
probability that the system is
operating under failure much

3.Communication between services may be delayed higher.

These are the problems of
latency and partial failure.

4.Server could be overloaded and responses delayed

5.Server could run out of memory or CPU

.
\

139 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Where Do We Start?

How do we even begin to test these scenarios?
Is there any software that can be used to test these types of failures?

Let’s look at a few ways companies do this.

140 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Game Days

Purposely injecting failures into critical systems in order to:

* |dentify flaws and “latent defects”

* |dentify subtle dependencies (which may or may not lead to a flaw/defect)
* Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

141 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Game Days

Our applications are built on and with “unreliable” components
Failure is inevitable (fraction of percent; at Google scale, “multiple times)

Goals:

Preemptively trigger the failure, observe, and fix the error

Script testing of previous failures and ensure system remains resilient

Build the necessary relationships between teams before disaster strikes

142 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Example: Amazon GameDay

Full data center destruction (Amazon EC2 region)

No advanced notice of which data center will be taken offline

No notice ¢ Not all failures can be actually |be taken offline

performed and must be] .
Only advar simulated! ameDay will be happening

Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for detecting
errors and paging employees was located in the zone of the failure!

143 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Cornerstones of Resilence

1.Anticipation: know what to expect

2.Monitoring: know what to look for

3.Response: know what to do

4.Learning: know what just happened
(e.g, postmortems)

144 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Some Example Google Issues

Terminate network in Sao Paulo for testing:

* Hidden dependency takes down links in Mexico which would
have remained undiscovered without testing

Turn off data center to find that machines won’t come back:

* Ran out of DHCP leases (for IP address allocation) when a large
number of machines come back online unexpectedly.

Netflix: Cloud Computing

Significant deployment in Amazon Web Services in order to remain

elastic in times of high and low load (first public, 100% w/o content
delivery.)

Pushes code into production and modifies runtime configuration
hundreds of times a day

Key metric: availability

147

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

N
=

>

3

-
7SI
(/4

. . ns GO
Chaos monkey/Simian army TR

'ENGINEE

* A Netflix infrastructure testing system.

e “Malicious” programs randomly trample on components, network,
datacenters, AWS instances...
* Chaos monkey was the first — disables production instances at random.

e Other monkeys include Latency Monkey, Doctor Monkey, Conformity Monkey, etc...
Fuzz testing at the infrastructure level.

* Force failure of components to make sure that the system architecture is resilient to
unplanned/random outages.

* Netflix has open-sourced their chaos monkey code.

= ——
=7
148 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Netflix Ul: AppBoot

What happens if the
bookmark service is down?

Bl NEIS User Profiles Ratings Recommendations

Search

=»> Remote Call
. Microservice

149 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Graceful Degradation: Anticipating Failure]| A

%Ensmssnm*cj |

Allow the system to degrade in a way it’s still usable

Fallbacks:
e Cache miss due to failure of cache;

* Go to the bookmarks service and use value at possible latency penalty

Personalized content, use a reasonable default instead:
 What happens if recommendations are unavailable?
 What happens if bookmarks are unavailable?

.W.
150 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Principles of Chaos Engineering

1.Build a hypothesis around steady state behavior

2.Vary real-world events
experimental events, crashes, etc.

3.Run experiments in production
control group vs. experimental group
draw conclusions, invalidate hypothesis

4.Automate experiments to run continuously

Does everything seem to
be working properly?

Are users complaining?

151 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

o

&
=
W

Steady State Behavior

Back to quality attributes: availability!

SPS is the
primary
indicator
of the system'’s
overall health.

17:30 20:15 23:00 01:45 04:30 07:15 10:00 1245 15:00
Time

FIGURE 2. A graph of SPS ([stream)] starts per second) over a 24-hour period. This
metric varies slowly and predictably throughout a day. The orange line shows the trend
for the prior week. The y-axis isn't labeled because the data is proprietary.

152

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mini Break in Monday Lecture

153

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #0012C

0C

TESTING USABILITY

154 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Automating GUI/Web Testing

* This is hard
e Capture and Replay Strategy

°* mouse actions

* system events

e Test Scripts: (click on button labeled "Start" expect value X in field
Y)

e Lots of tools and frameworks
e e.g. Selenium for browsers

 (Avoid load on GUI testing by separating model from GUI)
* Beyond functional correctness?

MP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING =

Manual Testing

GENERIC TEST CASE: USER SENDS MM S WITH PICTURE ATTACHED.

Step ID | User Action System Response
1 Go to Main Menu Main Menu appears
2 Go to Messages Menu Message Menu appears
3 Select “Create new Mes- | Message Editor screen
sage” opens
4 Add Recipient Recipient is added
5 Select “Insert Picture” Insert Picture Menu opens
6 Select Picture Picture 1s Selected
° 7 Select “Send Message” Message is correctly sent

Live System?

Extra Testing System?
Check output / assertions?
Effort, Costs?
Reproducible?

Higher Quality Feedback to Developers

156 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Usability: A/B testing FE |

%;'E%NGINEERIN
* Controlled randomized experiment with two variants, A and B,
which are the control and treatment.

* One group of users given A (current system); another random
group presented with B; outcomes compared.

e Often used in web or GUI-based applications, especially to test
advertising or GUI element placement or design decisions.

.
\

L OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 10 OF 12: TESTING

:go F TWA RE &

Example

'ENGINEERING
* A company sends an advertising email to its customer database,
varying the photograph used in the ad...

Example: group A (99% of users)

20 | WEEK 10 OF

0

Example: group B (1%)

A/B Testing

'ENGINEERIN
* Requires good metrics and statistical tools to identify significant |
differences.

* E.g. clicks, purchases, video plays
* Must control for confounding factors

What smells?

class Foo {
int a; vint b;

boolean equals(Object other) {

Foo foo = (Foo) other;
(foo null)

(foo.a this.a)
false;

(foo.b this.b)
true;

false;

int a() {
this=al):

int b() {
this.b();

What smells?

int dtlsl_process_heartbeat(SSL *s)
{

unsigned char xp = &s->s3->rrec.data[0], *pl;
unsigned short hbtype;

unsigned int payload;

unsigned int padding =

hbtype = xp++;
n2s(p, payload);
pl = p;

(s—>msg_callback)

s—>msg_callback(@, s—>version, TLS1_RT_HEARTBEAT,
&s—>s3->rrec.datal[0@], s—>s3->rrec.length,
s, s—>msg_callback_arg);

(hbtype == TLS1_HB_REQUEST)
{

unsigned char xbuffer, xbp;
int r;

buffer = OPENSSL_malloc(1l + 2 + payload + padding);
bp = buffer;

*bp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);

memcpy (bp, pl, payload);
bp += payload;

RAND_pseudo_bytes(bp, padding);

= dtlsl_write_bytes(s, TLS1_RT_HEARTBEAT, buffer, 3 + payload + padding);

CRICOS PROVIDER #00120C

Static Analysis

* Try to discover issues by analyzing source code. No need to run.

* Defects of interest may be on uncommon or difficult-to-force
execution paths for testing.

* What we really want to do is check the entire possible state
space of the program for particular properties.

Defects Static Analysis can Catch

* Defects that result from inconsistently following simple design
rules.
 Security: Buffer overruns, improperly validated input.
Memory safety: Null dereference, uninitialized data.
Resource leaks: Memory, OS resources.
API Protocols: Device drivers; real time libraries; GUI frameworks.
Exceptions: Arithmetic/library/user-defined
Encapsulation: Accessing internal data, calling private functions.
Data races: Two threads access the same data without synchronization

Key: check compliance to simple, mechanical design rules

& github.com/marketplace?category
h or jump to. Pull requests Issues Marketplace Explore

Marketplace = Search results

Types Q

Apps

Code quality
Actions
Automate your code review with style, quality, security, and test-coverage checks when you need them.

. 245 results filtered by ~ Code quality | x
Categories

API management CodeScene & TestQuality &

cs n ol to identify dern, powerful, test plan management

Chat

CodeFactor

Code review % Automated code

Continuous integration

Dependency management

Deployment

IDEs

Learning

Localization

Mobile Code Inspector &
terns de Quality, Co

Monitoring s vulner; s before they end up Debt evaluatios

Project management
codebeat &
ode review expert on demand.
e and web

Publishing
Recently added

Security Better Code Hub &
vie AB hmarked
Support devel sk better s J stel Code Quality

Testing Code Climate & Coveralls &
Automated code review for technical det E thatr
Utites an coverage

Filters v @ sider & Imgbot &

Automati nalyze pull request against A GitHub app that optimizes your images

Verification

codelingo Check TODO

Verified o - ’ et 8

Unverified

Your items

Purchases

CRICOS PROVIDER #0012!

https://github.com/marketplace?category=code-quality

package com.google.devtools.

public class Test {

staticanalysis;

~ Lint Missing a Javadoc comment.

Please fix

public boolean foo()
return getString()

".toString();

Not useful

/ldepot/googled/java/com/google/devtools/staticanalysis/Test.java

package com.google.devtools.staticanalysis;

public class Test {
public boolean foo() {
return getString() == "foo".toString();

}

public String getString() {
return new String("foo");

Cancel

package com.google.devtools.staticanalysis;
import java.util.Objects;

public class Test {
public boolean foo() {

return Objects.equals(getString(), "foo"

}

public String getString() {
return new String("foo");

}

.toString());

CRICOS PROVIDER #00120C

How do they work?

dnsigned char *p = &s—->s3->rrec.datal0], *pl;

Foo foo (Foo) other;

1655 A n2s(p, payload);

iawoc)

(foo.b this.b)

buffer = OPENSSL_malloc(1l + 2 + payload + padding);
bp = buffer;

= Ol 1
*xbp++ = TLS1_HB_RESPONSE;
s2n(payload, bp);

memcpy (bp, pl, payload);

1
1
]
1
1
]
1
|
1
1
Z
)

CRICOS PROVIDER #00120C

Two fundamental concepts

* Abstraction.
* Elide details of a specific implementation.

* Capture semantically relevant details; ignore

* Programs as data.
* Programs are just trees/graphs!
« ...and we know lots of ways to analyze trees/graphs, right?

Defining Static Analysis

* Systematic examination of an abstraction of program state space.

* Does not execute code! (like code review)

* Abstraction: A representation of a program that is simpler to
analyze.

e Results in fewer states to explore; makes d

* Check if a particular property holds over the entire state space:
* Liveness: “something good eventually happens.”
 Safety: “this bad thing can’t ever happen.”
e Compliance with mechanical design rules.

The Bad News: Rice's Theorem

Every static analysis is necessarily incomplete or unsound or undecidable (or multiple of theS®

"Any nontrivial property about the
language recognized by a Turing
machine is undecidable.”

Henry Gordon Rice, 1953

SIMPLE SYNTACTIC AND STRUCTURAL ANALYSES

Type Analysis

public void| foo() {
int a = computeSomething();

if (a ==."5")
doMoreStuff():;

Abstraction: abstract syntax tree

* Tree representation of the syntactic
structure of source code.

* Parsers convert concrete syntax into abstract syntax,
and deal with resulting ambiguities.

* Records only the semantically relevant
information.

» Abstract: doesn’t represent every detail (like Example: 5 + (2 + 3)
parentheses); these can be inferred from the
structure.

e (How to build one? Take compilers!)

Type checking

class X {
Logger logger;
public void foo() {

field method
logger foo

if (logger.inDebug()) { e if stmt
logger.debug(“We have 7 + L —m

conn + “connections.”); method block
o]®

} invoc.

}
)

class Logger {

boolean inDebug() {..} logger inDebug method
void debug(String msg) {..} Invac.

} 7

debug parameter ...

—

yntactic Analysis

Find every occurrence of this pattern:

public foo() {

logger.debug(“We have ” + conn + “connections.”);

}
public foo() {

if (logger.inDebug()) {
logger.debug(“We have ” + conn + “connections.”);

}
}

grep "if \(logger\.inDebug" . -r

Abstract syntax tree walker

* Check that we don’t create strings outside of a Logger . inDebug check

e Abstraction:
* Look only for calls to Logger.debug ()
* Make sure they’re all surrounded by if (Logger.inDebug())

e Systematic: Checks all the code
 Known as an Abstract Syntax Tree (AST) walker

* Treats the code as a structured tree
* |gnores control flow, variable values, and the heap
* Code style checkers work the same way

Structural Analysis

class X {
Logger logger;
public void foo() {

if (logger.inDebug()) {
logger.debug(“We have " +
conn + “connections.”);

}
}

}
class Logger {

boolean inDebug() {..}
void debug(String msg) {..}

}

class X

I if stmt
—

method block
invoc

logger inDebug . method
invNCc,

Structural analysis for possible NPEs?

(foo null)
foo.al();
foo.b();

Which of these should be]:Iagged for NPE?

Surely safe? Surely bad? Suspicious:
/ Limitations of structural analysis

(foo null) 1 (foo null)
foo.a(); 2 foo Foo();
foo.b(); 3 fo0o0.b();

B

(;gg.a()?UIl) (fOO null)

foo.al();

foo FOO(); foo.b():

foo.b();

CONTROL-FLOW AND DATA-FLOW ANALYSIS

Control/Dataflow analysis

* Reason about all possible executions, via paths through a control
flow graph.
* Track information relevant to a property of interest at every program point.

* Define an abstract domain that captures only the values/states
relevant to the property of interest.

* Track the abstract state, rather than all possible concrete values,
for all possible executions (paths!) through the graph.

Control flow graphs

A tree/graph-based representation of
the flow of control through the
program.

e Captures all possible execution paths.

* Each node is a basic block: no jumps in
or out.

* Edges represent control flow options
between nodes.

* Intra-procedural: within one function.

e cf. inter-procedural

How can CFG be used to identity
this issue?

public int foo() {
doStuff();

return 3;

doMoreStuff();
return 4:

NPE analysis revisited

(foo null) 1 (foo null)
foo.a(); 2 foo Foo();
foo.b(); 3 fo0o0.b();

B

(;gg.a()TUIl) (fOO null)

foo.al();

foo Foo(); £00.b():

foo.b();

Abstract Domain for NPE Analysis

e MapofVar -> {Null, NotNull, Unknown}

* For example:
foo -> Null
bar -> NonNull
baz -> Unknown

* Mapping tracked at every program point (before/after each CFG node). Updated
across nodes and edges.

o //let’'ssay foo -> Null and bar->Null
foo = new Foo();
// at this point, we have foo -> NotNull and bar -> Null

Data-Flow Analysis Examples

if (foo != null)

Data-Flow Analysis Examples

{foo -> Unknown}

if (foo != null)

{'FOO W

foo.a()

{foo -> Null}

foo.b()

ERROR!'!I'I']

(foo null)

foo.al();

foo.b();

Data-Flow Analysis Examples

if (foo != null)

T se

foo = new Foo()

“\\\\\\"///,,,/”

(foo null)
foo.a();

foo

Data-Flow Analysis Examples

{foo -> Unknown}

if (foo != null)

{foo M {foo -> Null}

foo.a()

foo = new Foo()

{foo -> NotNullf{\\\“~\~\,iL::¥£;;:::”?- e
. -5 NotNull}

foo.b()

{foo -> NotNulli (foo null)

foo.a();

2
3
4 foo
5
6

Data-Flow Analysis Examples

Exercise: Work this out for yourself. Is foo.b() safe?

Data-Flow Analysis Examples

if (foo == null)
Then Else

foo = new Foo()

foo.b()

(foo

foo
foo.b():

Data-Flow Analysis Examples

{foo -> Unknown}

if (foo == null)

{foo -> Null} Then Else {foo -> NotNull}

foo = new Foo()

{foo -> NotNull} {foo -> NotNull}
{foo -> NotNull}

foo.b()

{foo -> NotNull}

193

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Interpreting abstract states

* “Null” means “must be NULL at this point, regardless of path taken”

* “NotNull” is similar
* “Unknown” means “may be NULL or not null depending on the path taken”

Unknown must be dealt with due to Rice’s theorem

e Can make analysis smarter (at the cost of more algorithmic complexity) to reduce Unknowns, but can’t
get rid of them completely

* Whether to raise a flag on UNKNOWN access depends on usability/soundness.

* False positives if warning on UNKNOWN
* False negatives if no warning on UNKNOWN

194 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Sound Analysis

Complete
Analysis

Unsound
and
Incomplete
Analysis

a View PDF Download Full Issue

195

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Science of Computer Programming
Volume 76, Issue 7, 1 July 2011, Pages 587-608

ELSEVIER

Formalisation and implementation of an
algorithm for bytecode verification of’
@NonNull types

Chris Male 3, David J. Pearce & &, Alex Potanin &, Constantine Dymnikov &

Show more

+ Addto Mendeley «& Share 193 Cite

https://doi.org/10.1016/j.scic0.2010.10.004 Get rights and content
linder an Fleevier ncer licence Qhen, archive
K‘/

Examples of Data-Flow Anlayses

* Null Analysis
* Var -> {Null, NotNull, UNKNOWN}

e Zero Analysis
* Var -> {Zero, NonZero, UNKNOWN}

* Sign Analysis
* Var->{-, +, 0, UNKNOWN}
* Range Analysis
« Var->{[0, 1], [1, 2], [0, 2], [2, 3], [0, 3], ..., UNKNOWN}
* Constant Propagation
* Var->{1, 2,3, .., UNKNOWN}
* File Analysis
* File -> {Open, Close, UNKNOWN}
* Tons more!!!

196 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Data-Flow Analysis: Challenges

* Loops
* Fixed-point algorithms guarantee termination at the cost of losing information (“Unknown”)
* Functions

* Analyze them separately or analyze whole program at once

* “Context-sensitive” analyses specialize on call sites (think: duplicate function body for every
call site via inlining)

* Recursion
* Makes context-sensitive analyses explode (cf. loops)

* Object-oriented programming
* Heap memory

* Need to abstract mapping keys not just values
* Exceptions

197 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Static Analysis vs. Testing

* Which one to use when?
* Points in favor of Static Analysis

 Don’t need to set up run environment, etc.
* Can analyze functions/modules independently and in parallel
* Don’t need to think of (or try to generate) program inputs

* Points in favor of Testing / Dynamic Analysis

* Not deterred by complex program features

* Can easily handle external libraries, platform-specific config, etc.

* |deally no false positives
* Easier to debug when a failure is identified

198 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

. . tiins
Key Points 5}%;

%ENGINEERING?
* Describe random test-input generation strategies such as fuzz
testing
* Write generators and mutators for fuzzing different types of values

* Characterize challenges of performance testing and suggest
strategies

* Reason about failures in microservice applications

* Describe chaos engineering and how it can be applied to test
resiliency of cloud-based applications

» Describe A/B testing for usability

.
\

Key Points

* Give a one sentence definition of static analysis. Explain what types of bugs
static analysis targets.

* Give an example of syntactic or structural static analysis.
* Construct basic control flow graphs for small examples by hand.

* Give a high-level description of dataflow analysis and cite some example
analyses.

* Explain at a high level why static analyses cannot be sound, complete, and
terminating; assess tradeoffs in analysis design.

e Characterize and choose between tools that perform static analyses.

e Contrast static analysis tools with software testing and dynamic analysis tools as
a means of catching bugs.

-

:
_ ——
W

200 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

