
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

REQUIREMENTS

Week:
3 of 12

A/Prof Alex Potanin

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we meet,
and pay our respect to the
elders past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS2

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

CRICOS PROVIDER #00120C

• Self-Organising Teams
• Requirements
• The World and The Machine
• Quality Requirements
• Interviews
• Prototypes, Mockups, Stories
• Resolving Conflicts
• Risks

Today

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS4

CRICOS PROVIDER #00120C

Self-Organising Teams

5

CRICOS PROVIDER #00120C

Self-Organising Teams

Self-organizing
team

Figure 2.9 Self-organizing teams

coordinates the work
of the team members
by discussing tasks and
reaching a consensus on
who should do what.

limits the involvement of
engineers in external
interactions with
management and
customers.

makes its own decisions
on schedule and
deliverables.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS6

CRICOS PROVIDER #00120C

Team Size and Composition

• The ideal Scrum team size is between 5 and 8 people.
• Teams have to tackle diverse tasks and so usually require people with different skills, such as networking, user

experience, database design and so on.

• They usually involve people with different levels of experience.

• A team of 5-8 people is large enough to be diverse yet small enough to communicate informally and effectively
and to agree on the priorities of the team.

• The advantage of a self-organizing team is that it can be a cohesive team that can adapt
to change.
• Because the team rather than individuals take responsibility for the work, they can cope with people leaving

and joining the team.

• Good team communication means that team members inevitably learn something about each other’s areas

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS7

CRICOS PROVIDER #00120C

Team Coordination

• The developers of Scrum assumed that teams would be co-located. They would work in
the same room and could communicate informally.
• Daily scrums mean that the team members know what’s been done and what others are doing.

• However, the use of daily scrums as a coordination mechanism is based on two
assumptions that are not always correct:
• Scrum assumes that the team will be made up of full-time workers who share a workspace. In reality, team

members may be part-time and may work in different places. For a student project team, the team members
may take different classes at different times.

• Scrum assumes that all team members can attend a morning meeting to coordinate the work for the day.
However, some team members may work flexible hours (e.g. because of childcare responsibilities) or may work
on several projects at the same time.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS8

CRICOS PROVIDER #00120C

External Interactions

• External interactions are interactions that team members have with people outside of
the team.

• In Scrum, the idea is that developers should focus on development and only the
ScrumMaster and Product Owner should be involved in external interactions.

• The intention is that the team should be able to work on software development without
external interference or distractions.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS9

CRICOS PROVIDER #00120C

Managing External Interactions

External interactions

ScrumMaster Product owner

Figure 2.10 Managing external interactions

Product-focused
external interactions

Team-focused
external interactions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS10

CRICOS PROVIDER #00120C

Project Management

• In all but the smallest product development companies, there is a need for development
teams to report on progress to company management.

• A self-organizing team has to appoint someone to take on these responsibilities.
• Because of the need to maintain continuity of communication with people outside of the group, rotating these

activities around team members is not a viable approach.

• The developers of Scrum did not envisage that the ScrumMaster should also have project
management responsibilities.
• In many companies, however, the ScrumMaster has to take on project management responsibilities.

• They know the work going on and are in the best position to provide accurate information and project plans and
progress.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS11

CRICOS PROVIDER #00120C

Project Management Responsibilities

Project
management

Reporting

Administration

Figure 2.11 Project management responsibilities

Budget
Schedule

Risks
Problems
Progress

Finance
Compliance
Procurement

Liaison

Vacations
Absence

Work quality
Reviewing

Hiring

People

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS12

CRICOS PROVIDER #00120C

Software Products

• There are three factors that drive the design of software products
• Business and consumer needs that are not met by current products

• Dissatisfaction with existing business or consumer software products

• Changes in technology that make completely new types of product possible

• In the early stage of product development, you are trying to understand, what product
features would be useful to users, and what they like and dislike about the products that
they use.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS13

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS14

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS15

CRICOS PROVIDER #00120C

Requirements

16

CRICOS PROVIDER #00120C

Requirements say what the system will do
(and not how it will do it)

Overly simplified definition.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS17

CRICOS PROVIDER #00120C

Healthcare.gov

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS18

CRICOS PROVIDER #00120C

• The hardest single part of building a software system is deciding
precisely what to build.
• No other part of the conceptual work is as difficult as establishing

the detailed technical requirements ...
• No other part of the work so cripples the resulting system if done

wrong.
• No other part is as difficult to rectify later.

 — Fred Brooks

Fred Brooks on Requirements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS19

CRICOS PROVIDER #00120C

A 1994 survey of 8000 projects at 350 companies found: 31% of projects
canceled before completed; 9% of projects delivered on time, within
budget in large companies, 16% in small companies.

• Similar results reported since.

Causes:
1.Incomplete requirements (13.1%)

2.Lack of user involvement (12.4%)

3.Lack of resources (10.6%)

4.Unrealistic expectations (9.9%)

5.Lack of executive support (9.3%)

6.Changing requirements and specifications (8.7%)

7.Lack of planning (8.1%)

8.System no longer needed (7.5%)

A Problem That Stands the Test of Time…

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS20

CRICOS PROVIDER #00120C

Why Is This So Hard???

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS21

CRICOS PROVIDER #00120C

Communication Problem

Goal: figure out what should be
built.
Express those ideas so that the
correct thing is built.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS22

CRICOS PROVIDER #00120C

• Involved subproblems?
• Required functionality?
• Nice to have functionality?
• Expected qualities?
• How fast to deliver at what quality for what price?

Overall Problems

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS23

CRICOS PROVIDER #00120C

• Tidbinbilla needs a new ticket system to sell tickets online, have paperless
tickets (on your smart phone), assume that now only paper tickets and requires
a call (slow). I will be the Developer Company.
• I suggest to use a previously built system for buses (Transport Canberra) with

minor modifications
• Let’s say you ask for a special feature (e.g. discounts for school holidays) and I

will know exactly what tables in DB to modify and I won’t really listen to what
exactly you want
• Previously there were free tickets for people in need and you ask for something

like that (or a lottery or special payment types) but I will downplay the need:
they should just get Visa Gift Card so my system works
• You complain that it’s annoying to check that everybody is out at the end of the

day, so I recommend we can just “count this at the gate”

Tidbinbilla Demo/Exercise on What Not To Do

Denial by Prior Knowledge

Denial by Hacking

Denial by Abstraction

Denial by Vagueness

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS24

CRICOS PROVIDER #00120C

Requirements in software projects

Requirements
Document

Project estimations
(size, cost, schedules)

Project workplan

Software prototype,
mockup

Follow-up directives

Software architecture

Call for tenders,
proposal evaluation

Quality Assurance
checklists

Project contract

Software evolution
directives

Software documentation

Acceptance test data

Implementation
directives

User manual

25

CRICOS PROVIDER #00120C

• Stories: Scenarios, Use Cases, and user stories
“After the customer submits the purchase information and the payment has been
received, the order is fulfilled and shipped to the customer’s shipping address.”

• Optative statements
The system shall notify clients about their shipping status

• Domain Properties and Assumptions
Every product has a unique product code
Payments will be received after authorization

Less Simplified Definition:
Online Shopping

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS26

CRICOS PROVIDER #00120C

• Knowledge acquisition – how to capture relevant detail about a
system?
• Is the knowledge complete and consistent?

• Knowledge representation – once captured, how do we express it
most effectively?
• Express it for whom?
• Is it received consistently by different people?

• You may sometimes see a distinction between the requirements
definition and the requirements specification.

What is requirements engineering?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS27

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS28

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS29

CRICOS PROVIDER #00120C

The World and The Machine (Quality Requirements)

30

CRICOS PROVIDER #00120C

Requirements say what the system will do (and not how it will do
it).

Why not “how”?

Functional Requirements and
Implementation Bias

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS31

CRICOS PROVIDER #00120C

Environment and the Machine

Machine DomainEnvironmental Domain

Requirements
Domain Knowledge

Computers
Software Programs

Specifications

Pamela Zave & Michael Jackson, “Four Dark Corners of Requirements Engineering,”
ACM Transactions on Software Engineering and Methodology, 6(1): 1-30, 1997.

Environment Software

Input devices
(e.g. sensors)

Output devices
(e.g. actuators)

monitored
variables

input data

output resultscontrolled
variables

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS32

CRICOS PROVIDER #00120C

Actions of an ATM
customer:
withdrawal-request(a, m)
Properties of the
environment:
balance(b, p)

Actions of an ATM
machine:
withdrawal-payout(a, m)
Properties of the
machine:
expected-balance(b, p)

What other models of the
world do machines maintain?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS33

CRICOS PROVIDER #00120C

• Refinement is the act of translating requirements into
specifications (bridging the gap!)
• Requirements: desired behavior (effect on the environment) to be

realized by the proposed system.
• Assumptions or domain knowledge: existing behavior that is

unchanged by the proposed system.
• Conditions under which the system is guaranteed to operate correctly.
• How the environment will behave in response to the system’s outputs.

Domain Knowledge

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS34

CRICOS PROVIDER #00120C

• Unshared actions cannot be accurately expressed in the machine
• People can jump over gates (enter without unlocking)
• People can steal or misplace inventory

• Future requirements are also not directly implementable
• Phone system: “After all digits have been dialed, do ring-back, busy-tone or error-tone.”
• …how do you know the user is done dialing?

Some gaps must remain…

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS35

CRICOS PROVIDER #00120C

• Requirements describe what is observable at the environment-
machine interface.
• Indicative mood describes the environment (as-is)
• Optative mood to describe the environment with the machine (to-

be).

Avoiding Implementation Bias

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS36

CRICOS PROVIDER #00120C

• “The dictionary shall be stored in a hash table” vs. “the software
shall respond to requests within 5 seconds.”
• Instead of “what” vs. “how”, ask “is this requirement only a

property of the machine domain?”
• Or is there some application domain phenomenon that justifies it?

This can be subtle…

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS37

CRICOS PROVIDER #00120C

•What the machine should do
• Input
• Output
• Interface
• Response to events

• Criteria
• Completeness: All requirements are documented
• Consistency: No conflicts between requirements
• Precision: No ambiguity in requirements

Functional Requirements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS38

CRICOS PROVIDER #00120C

• Specify not the functionality of the system, but the quality with
which it delivers that functionality.
• Can be more critical than functional requirements

• Can work around missing functionality
• Low-quality system may be unusable

• Examples?

Quality/Nonfunctional Requirements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS39

CRICOS PROVIDER #00120C

•Who is going to ask for a slow, inefficient, unmaintainable system?
• A better way to think about quality requirements is as design

criteria to help choose between alternative implementations.
• Question becomes: to what extent must a product satisfy these

requirements to be acceptable?

Here’s the thing …

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS40

CRICOS PROVIDER #00120C

Quality Requirement

Quality of Service Compliance Architectural Constraint Development Constraint

Confidentiality Integrity Availability

DistributionInstallationSafety Security

Usability

PerformanceReliability MaintainabilityCost

Time Space

DeadlineVariability

Software
interoperability

Convenience

Interface

User
interaction

Device
interaction

Accuracy

Cost

Example: Selling Videos on the Web

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS41

CRICOS PROVIDER #00120C

• Requirements serve as contracts: they should be
testable/falsifiable.
• Informal goal: a general intention, such as ease of use.

• May still be helpful to developers as they convey the intentions of the system users.

• Verifiable non-functional requirement: A statement using some
measure that can be objectively tested.

Expressing Quality Requirements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS42

CRICOS PROVIDER #00120C

• Confidentiality requirement: A non-staff patron may never know which
books have been borrowed by others.
• Privacy requirement: The diary constraints of a participant may never be

disclosed to other invited participants without their consent.
• Integrity requirement: The return of book copies shall be encoded

correctly and by library staff only.
• Availability requirement: A blacklist of bad patrons shall be made

available at any time to library staff. Information about train positions
shall be available at any time to the vital station computer.

Examples

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS43

CRICOS PROVIDER #00120C

• Informal goal: “the system should be easy to use by experienced
controllers and should be organized such that user errors are
minimized.”
• Verifiable non-functional requirement: “Experienced controllers

shall be able to use all the system functions after a total of two
hours training. After this training, the average number of errors
made by experienced users shall not exceed two per day, on
average.”

Examples

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS44

CRICOS PROVIDER #00120C

Exercise: back to simple

• Let’s write some quality
requirements!
• Try to write an informal

goal, and then turn it
into a verifiable non-
functional
requirement.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS45

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS46

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS47

CRICOS PROVIDER #00120C

Interviews

48

CRICOS PROVIDER #00120C

• Identify stakeholders
• Understand the domain

• Analyze artifacts, interact with stakeholders

• Discover the real needs
• Interview stakeholders

• Explore alternatives to address needs

Typical Steps

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS49

CRICOS PROVIDER #00120C

•Who is the system for?
• Stakeholders:

• End users
• System administrators
• Engineers maintaining the system
• Business managers
• …who else?

Question

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS50

CRICOS PROVIDER #00120C

Learning goals
• Define and identify stakeholders.
• Demonstrate basic proficiency in executing effective requirements

interviews.
• Evaluate risk for a product

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS51

CRICOS PROVIDER #00120C

Interviews

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS52

CRICOS PROVIDER #00120C

Interview Follow-up

•Observations?
• Anything surprising? Unexpected?
• Confirmations of existing ideas?
• Generalizable knowledge?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS53

CRICOS PROVIDER #00120C

Interview Tradeoffs

• Strengths
• What stakeholders do, feel, prefer
• How they interact with the system
• Challenges with current systems

•Weaknesses
• Subjective, inconsistencies
• Capturing domain knowledge
• Familiarity
• Technical subtlety
• Organizational issues, such as politics
• Hinges on interviewer skill

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS54

CRICOS PROVIDER #00120C

• Identify stakeholder of interest and target information to be
gathered.
• Conduct interview.

• (structured/unstructured, individual/group)

• Record + transcribe interview
• Report important findings.
• Check validity of report with interviewee.

Interview Process

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS55

CRICOS PROVIDER #00120C

Example: Identifying Problems
What problems do you run into in your day-to-day work? Is there a standard way of
solving it, or do you have a workaround?

Why is this a problem? How do you solve the problem today? How would you ideally
like to solve the problem?

Keep asking follow-up questions (“What else is a problem for you?”, “Are there other
things that give you trouble?”) for as long as the interviewee has more problems to
describe.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS56

CRICOS PROVIDER #00120C

Example: Identifying Problems

So, as I understand it, you are experiencing the following problems/needs (describe the
interviewee’s problems and needs in your own words – often you will discover that you
do not share the same image. It is very very common to not understand each other even
if at first you think you do).
Just to confirm, have I correctly understood the problems you have with the current
solution?
Are there any other problems you’re experiencing? If so, what are they?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS57

CRICOS PROVIDER #00120C

Capturing v. Synthesizing

Engineers acquire requirements from many sources
Elicit from stakeholders
Extract from policies or other documentation
Synthesize from above + estimation and invention

Because stakeholders do not always know what they
want, engineers must…

Be faithful to stakeholder needs and expectations
Anticipate additional needs and risks
Validate that “additional needs” are necessary or desired

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS58

CRICOS PROVIDER #00120C

Interview Advice
Get basic facts about the interviewee before (role, responsibilities, …)
Review interview questions before interview
Begin concretely with specific questions, proposals; work through prototype or scenario

Relate to current system, if applicable.

Be open-minded; explore additional issues that arise naturally, but stay focused on the
system.
Contrast with current system/alternatives. Explore conflicts and priorities
Plan for follow-up questions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS59

CRICOS PROVIDER #00120C

Bonus: Guidelines for effective
interviews
Identify the right interviewee sample for full coverage of issues

different responsibilities, expertise, tasks, exposure to problems

Come prepared, to focus on right issue at right time
background study first

predesign a sequence of questions for this interviewee

Centre the interview on the interviewee’s work & concerns
Keep control over the interview
Make the interviewee feel comfortable

Start: break ice, provide motivation, ask easy questions

Consider the person too, not only the role

Do always appear as a trustworthy partner

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS60

CRICOS PROVIDER #00120C

Bonus: Guidelines for effective
interviews
Be focused, keep open-ended questions for the end

Be open-minded, flexible in case of unexpected answers

Ask why-questions without being offending

Avoid certain types of questions ...
opinion or biased
affirmative
obvious or impossible answer for this interviewee

Edit & structure interview transcripts while still fresh in mind
including personal reactions, attitudes, etc

Keep interviewee in the loop
co-review interview transcript for validation & refinement

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS61

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS62

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS63

CRICOS PROVIDER #00120C

Prototypes, Mock-ups, Stories

64

CRICOS PROVIDER #00120C

• Why? How to use?
• Stakeholders:

• don’t always know what they want or how to articulate it, or how much things cost.

• have domain knowledge, may use jargon, or may leave out “obvious” requirements
that aren’t obvious to a non-expert.

• can be hard to pin down
• Distributed, difficult to access, have hidden needs

• External to the system

• Risk: Missing or hidden stakeholders, “requirements—delay—surprise!”
• Risk: unidentified/unhandled conflicts.

Prototypes, Mock-ups, Stories

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS65

CRICOS PROVIDER #00120C

High- vs low- fidelity mockups

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS66

CRICOS PROVIDER #00120C

Storyboarding and scenarios

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS67

CRICOS PROVIDER #00120C

Story

•Who the players are
•What happens to them
• How it happens through specific episode
•Why this happens
•What if such and such an event occurs
•What could go wrong as a consequence

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS68

CRICOS PROVIDER #00120C

• Storyboards illustrate scenarios: a typical sequence of interaction among system
components that meets an implicit objective.
• Storyboards explicitly cover at least who, what, and how.

• Different types:
• Positive vs negative (should and should not happen)

• Normal vs abnormal

• As part of elicitation:
• Learn about current or proposed system by walking through real-life or hypothetical sequences

• Can ask specific questions

• Elicit the underlying objectives, generalize into models of desired behaviors.

• Identify and resolve conflicts

• Pluses: Concrete, support narrative description

• Minuses: inherently partial.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS69

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS70

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS71

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS72

CRICOS PROVIDER #00120C

Resolving Conflicts and Risks

73

CRICOS PROVIDER #00120C

Types of inconsistency
• Terminology clash: same concept named differently in different statements

• e.g. library management: “borrower” vs. “patron”
• Designation clash: same name for different concepts in different statements

• e.g. “user” for “library user” vs. “library software user”
• Structure clash: same concept structured differently in different statements

• e.g. “latest return date” as time point (e.g. Fri 5pm)
• vs. time interval (e.g. Friday)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS74

CRICOS PROVIDER #00120C

Types of inconsistency
• Strong conflict: statements not satisfiable together

• e.g. “participant constraints may not be disclosed to
anyone else” vs. “the meeting initiator should know
participant constraints”

• Weak conflict (divergence): statements not satisfiable together under some boundary
condition

• “patrons shall return borrowed copies within X weeks” vs
“patrons shall keep borrowed copies as long as needed”
contradict only if “needed>x weeks”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS75

CRICOS PROVIDER #00120C

Handling inconsistencies
• Terminology, designation, structure: Build glossary
• Weak, strong conflicts: Negotiation required
• Cause: different objectives of stakeholders => resolve outside of

requirements
• Cause: quality tradeoffs => explore preferences

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS76

CRICOS PROVIDER #00120C

Requirements Traceability

• Keep connections between requirements
•What follows from what

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS77

CRICOS PROVIDER #00120C

Requirements Prioritisation
• Cost, time, and other limits
• Dependencies among requirements
• Nice to have

• Strategies to base on value contribution

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS78

CRICOS PROVIDER #00120C

Risks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS79

CRICOS PROVIDER #00120C

What are risks?

• A risk is an uncertain factor that may result in a loss of satisfaction of a
corresponding objective

For example…

• System delivers a radiation overdose to patients
(Therac-25, Theratron-780)

• Medication administration record (MAR) knockout

• Premier Election Solutions vote-dropping “glitch”

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS80

CRICOS PROVIDER #00120C

How to assess the level of risk?
• Risks consist of multiple parts:
• Likelihood of failure
• Negative consequences or impact of failure
• Causal agent and weakness (in advanced models)

• Risk = Likelihood x Impact

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS81

CRICOS PROVIDER #00120C

Regulatory
narrowness

Incomplete
procedures

Mixed
messages

Production
pressures

Responsibility
shifting

Inadequate
training

Attention
distractions

Deferred
maintenance

Clumsy
technology

Institutional

Organisation
Profession

& Team Individual

Technical

Modified from Reason, 1999, by R.I. Crook

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS82

Swiss Cheese Model

CRICOS PROVIDER #00120C

Aviation failure impact categories
• No effect – failure has no impact on safety, aircraft operation, or

crew workload

• Minor – failure is noticeable, causing passenger inconvenience or
flight plan change

• Major – failure is significant, causing passenger discomfort and
slight workload increase

• Hazardous – high workload, serious or fatal injuries

• Catastrophic – loss of critical function to safely fly and land

DO-178b, Software Considerations in Airborne Systems and Equipment Certification, RTCA,
1992

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS83

CRICOS PROVIDER #00120C

Risk assessment matrix

MIL-STD-882E
https://www.system-safety.org/Documents/MIL-STD-882E.pdf

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS84

CRICOS PROVIDER #00120C

DECIDE Model

Detect that the action necessary

Estimate the significance of the action

Choose a desirable outcome

Identify actions needed in order to achieve the chosen option

Do the necessary action to achieve change

Evaluate the effects of the action
https://www.faa.gov/regulations_policies/handbooks_manuals/aviation/media/FAA-H-8083-
2.pdf

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS85

CRICOS PROVIDER #00120C

OODA Loop

By Patrick Edwin Moran - Own work, CC BY 3.0,
https://commons.wikimedia.org/w/index.php?curid=3904554

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS86

CRICOS PROVIDER #00120C

Summary

• Many solicitation strategies, including document analysis, interviews, and
ethnography
• Do not underestimate the challenge of interviews
• Resolving conflicts
• Using prototypes to enhance discussions and decision making
• Many documentation strategies; our focus is on user stories

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS87

CRICOS PROVIDER #00120C

• Configuration management is the name given to the general
process of managing a changing software system.
• The aim of configuration management is to support the system

integration process so that all developers can access the project
code and documents in a controlled way, find out what changes
have been made, and compile and link components to create a
system.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION88

Configuration management

CRICOS PROVIDER #00120C

• Version management,
• where support is provided to keep track of the different versions of software

components. Version management systems include facilities to coordinate
development by several programmers.

• System integration,
• where support is provided to help developers define what versions of components are

used to create each version of a system. This description is then used to build a system
automatically by compiling and linking the required components.

• Problem tracking,
• where support is provided to allow users to report bugs and other problems, and to

allow all developers to see who is working on these problems and when they are fixed.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION89

Configuration management activities

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 5 OF 12: INSPECTION90

Configuration management
tool interaction

Component
versions

Release
management

Change
proposals

System
releases

Change
management

System
versions

Version
management

System
building

CRICOS PROVIDER #00120C

Poll Everywhere Time!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS91

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS92

https://www.youtube.com/watch?v=NpnQ2oIRgB0

https://www.youtube.com/watch?v=NpnQ2oIRgB0

CRICOS PROVIDER #00120C

HISTORICAL DETOUR INTO UML (OR BACK INTO THE 1990’S)
ONLY IF TIME ALLOWS!

93

CRICOS PROVIDER #00120C

Design and implementation

• Software design and implementation is the stage in the software engineering process at
which an executable software system is developed.

• Software design and implementation activities are invariably inter-leaved.
• Software design is a creative activity in which you identify software components and their

relationships, based on a customer’s requirements.

• Implementation is the process of realizing the design as a program.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS94

CRICOS PROVIDER #00120C

Build or buy

• In a wide range of domains, it is now possible to buy commercial off-the-shelf systems
(COTS) that can be adapted and tailored to the users’ requirements.
• For example, if you want to implement a medical records system, you can buy a package that is

already used in hospitals. It can be cheaper and faster to use this approach rather than developing
a system in a conventional programming language.

• When you develop an application in this way, the design process becomes concerned
with how to use the configuration features of that system to deliver the system
requirements.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS95

CRICOS PROVIDER #00120C

An object-oriented design process

• Structured object-oriented design processes involve developing a number of different
system models.

• They require a lot of effort for development and maintenance of these models and, for
small systems, this may not be cost-effective.

• However, for large systems developed by different groups design models are an
important communication mechanism.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS96

CRICOS PROVIDER #00120C

Process stages

• There are a variety of different object-oriented design processes that depend on the
organization using the process.

• Common activities in these processes include:
• Define the context and modes of use of the system;

• Design the system architecture;

• Identify the principal system objects;

• Develop design models;

• Specify object interfaces.

• Process illustrated here using a design for a wilderness weather station.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS97

CRICOS PROVIDER #00120C

System context and interactions

• Understanding the relationships between the software that is being designed and its
external environment is essential for deciding how to provide the required system
functionality and how to structure the system to communicate with its environment.

• Understanding of the context also lets you establish the boundaries of the system.
Setting the system boundaries helps you decide what features are implemented in the
system being designed and what features are in other associated systems.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS98

CRICOS PROVIDER #00120C

Context and interaction models

• A system context model is a structural model that demonstrates the other systems in the
environment of the system being developed.

• An interaction model is a dynamic model that shows how the system interacts with its
environment as it is used.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS99

CRICOS PROVIDER #00120C

System context for the weather station

Weather
information

system
1..n1 Weather

station

Satellite

1

1

1..n

1

Control
system 11

1 1..n

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS100

CRICOS PROVIDER #00120C

Weather station use cases

Shutdown

Report
weather

Restart

Report status

Reconfigure

Weather
information

system

Control
system Powersave

Remote
control

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS101

CRICOS PROVIDER #00120C

Use case description—Report weather

System Weather station

Use case Report weather

Actors Weather information system, Weather station

Description The weather station sends a summary of the weather data that has been
collected from the instruments in the collection period to the weather
information system. The data sent are the maximum, minimum, and average
ground and air temperatures; the maximum, minimum, and average air
pressures; the maximum, minimum, and average wind speeds; the total
rainfall; and the wind direction as sampled at five-minute intervals.

Stimulus The weather information system establishes a satellite communication link
with the weather station and requests transmission of the data.

Response The summarized data is sent to the weather information system.

Comments Weather stations are usually asked to report once per hour but this frequency
may differ from one station to another and may be modified in the future.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS102

CRICOS PROVIDER #00120C

Architectural design

• Once interactions between the system and its environment have been understood, you
use this information for designing the system architecture.

• You identify the major components that make up the system and their interactions, and
then may organize the components using an architectural pattern such as a layered or
client-server model.

• The weather station is composed of independent subsystems that communicate by
broadcasting messages on a common infrastructure.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS103

CRICOS PROVIDER #00120C

High-level architecture of the weather station

«subsystem»
Data collection

«subsystem»
Communications

«subsystem»
Configuration manager

«subsystem»
Fault manager

«subsystem»
Power manager

«subsystem»
Instruments

Communication link

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS104

CRICOS PROVIDER #00120C

Architecture of data collection system

Data collection

Transmitter Receiver

WeatherData

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS105

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS106

CRICOS PROVIDER #00120C

Object class identification
• Identifying object classes is often a difficult part of object oriented design.
• There is no 'magic formula' for object identification. It relies on the skill, experience

and domain knowledge of system designers.
• Object identification is an iterative process. You are unlikely to get it right first time.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS107

CRICOS PROVIDER #00120C

Approaches to identification

• Use a grammatical approach based on a natural language description of the system.
• Base the identification on tangible things in the application domain.
• Use a behavioural approach and identify objects based on what participates in what

behaviour.
• Use a scenario-based analysis. The objects, attributes and methods in each scenario

are identified.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS108

CRICOS PROVIDER #00120C

Weather station object classes

• Object class identification in the weather station system may be based on the tangible
hardware and data in the system:
• Ground thermometer, Anemometer, Barometer

• Application domain objects that are ‘hardware’ objects related to the instruments in the system.

• Weather station
• The basic interface of the weather station to its environment. It therefore reflects the interactions identified

in the use-case model.

• Weather data
• Encapsulates the summarized data from the instruments.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS109

CRICOS PROVIDER #00120C

Weather station object classes
identifier

reportWeather ()
reportStatus ()
powerSave (instruments)
remoteControl (commands)
reconfigure (commands)
restart (instruments)
shutdown (instruments)

WeatherStation

get ()
test ()

Ground
thermometer

temperature

Anemometer

windSpeed
windDirection

get ()
test ()

Barometer

pressure
height

get ()
test ()

WeatherData

airTemperatures
groundTemperatures
windSpeeds
windDirections
pressures
rainfall

collect ()
summarize ()

gt_Ident
an_Ident bar_Ident

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS110

CRICOS PROVIDER #00120C

Design models

• Design models show the objects and object classes and relationships between these
entities.

• There are two kinds of design model:
• Structural models describe the static structure of the system in terms of object classes and

relationships.

• Dynamic models describe the dynamic interactions between objects.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS111

CRICOS PROVIDER #00120C

Examples of design models

• Subsystem models that show logical groupings of objects into coherent subsystems.
• Sequence models that show the sequence of object interactions.
• State machine models that show how individual objects change their state in response

to events.
• Other models include use-case models, aggregation models, generalisation models, etc.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS112

CRICOS PROVIDER #00120C

Subsystem models

• Shows how the design is organised into logically related groups of objects.
• In the UML, these are shown using packages - an encapsulation construct. This is a logical

model. The actual organisation of objects in the system may be different.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS113

CRICOS PROVIDER #00120C

Sequence models

• Sequence models show the sequence of object interactions that take place
• Objects are arranged horizontally across the top;
• Time is represented vertically so models are read top to bottom;
• Interactions are represented by labelled arrows, Different styles of arrow represent different types

of interaction;
• A thin rectangle in an object lifeline represents the time when the object is the controlling object

in the system.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS114

CRICOS PROVIDER #00120C

Sequence diagram describing data collection

:SatComms

request (report)

acknowledge
reportWeather ()

get (summary)

reply (report)

acknowledge

:WeatherStation :Commslink

summarize ()

:WeatherData

acknowledge

send (report)

acknowledge

Weather
information system

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS115

CRICOS PROVIDER #00120C

State diagrams

• State diagrams are used to show how objects respond to different service requests and
the state transitions triggered by these requests.

• State diagrams are useful high-level models of a system or an object’s run-time behavior.
• You don’t usually need a state diagram for all of the objects in the system. Many of the

objects in a system are relatively simple and a state model adds unnecessary detail to the
design.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS116

CRICOS PROVIDER #00120C

Weather station state diagram

transmission done

remoteControl()

reportStatus()restart()

shutdown()

test complete

weather summary
complete

clock collection
done

Operation

reportWeather()

Shutdown Running Testing

Transmitting

Collecting
Summarizing

Controlled

Configuring

reconfigure()

configuration done

powerSave()

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS117

CRICOS PROVIDER #00120C

Interface specification

• Object interfaces have to be specified so that the objects and other components can be
designed in parallel.

• Designers should avoid designing the interface representation but should hide this in the
object itself.

• Objects may have several interfaces which are viewpoints on the methods provided.
• The UML uses class diagrams for interface specification but Java may also be used.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS118

CRICOS PROVIDER #00120C

Weather Station Interfaces

«interface»
Reporting

weatherReport (WS-Ident): Wreport
statusReport (WS-Ident): Sreport

«interface»
Remote Control

startInstrument(instrument): iStatus
stopInstrument (instrument): iStatus
collectData (instrument): iStatus
provideData (instrument): string

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS119

CRICOS PROVIDER #00120C

Communication Diagram

emphasises
the structural

aspect of
interactions

Moby Dick
:Book

John Smith
:User:Library

:Catalogue

:Loan
{new}

:Librarian

1: lend(usr, itm) 1.1: match(usr)

1.2 : find(itm
)

1.2.1: match(itm)

1.3: create(usr, itm)

{field}

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS120

CRICOS PROVIDER #00120C

Sequence Diagram

emphasises
the time
aspect of

interactions

:Library :Catalogue :Book :User

:Loan
{new}

:Librarian

lend(usr, itm)
match(usr)

find(itm)

create(Item, User)

match(itm)

User

Item
Item

Loan

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS121

CRICOS PROVIDER #00120C

State Diagram

/ increment reserveCount
title reservation

/ increment reserveCount

useful for
specifying
reactive

behaviour

should be internal!

entry / reserveCount := 0

NotReserved

entry / “keep at counter”
exit / “item back on shelf”

Reserved

title reservation

reservation removed

reservation removed
[reserveCount = 1]

/ decrement reserveCount

[reserveCount > 1]
/ decrement reserveCount

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS122

CRICOS PROVIDER #00120C

State Diagram

entry / reserveCount := 0

NotReserved

entry / “keep at counter”
title reservation / increment reserveCount

reservation removed [reserveCount > 1] / decrement reserveCount
exit / “item back on shelf”

Reserved

title reservation
/ increment reserveCount

reservation removed
[reserveCount = 1]

/ decrement reserveCount

internal
transitions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 3 OF 12: REQUIREMENTS123

