
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

DEVOPS

Week:
7 of 12

A/Prof Alex Potanin

CRICOS PROVIDER #00120C

2

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we
meet, and pay our
respect to the elders
past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

•What is DevOps
• CI: Continuous Integration
• CD: Continuous Deployment
• Infrastructure as Code
•Monitoring

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS3

Today

CRICOS PROVIDER #00120C

What Is DevOps

4ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

5

What is DevOps?

Bringing together two traditionally separate groups within software organizations
- Development, typically measured on features completed, code shipped
- Operations, typically measured through stability, reliability, availability

Benefits:
- Increased Velocity: how quickly products and applications are pushed to release
- Increased Quality: successful delivery of features and products

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

6

Deployment and Evolution

Source: http://martinfowler.com/articles/microservices.html

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

7

as of 2018, reference: https://www.youtube.com/watch?v=UTKIT6STSVM

Activity
What were some of the challenges of

running a microservice architecture of this scale?

• 100s of microservices
• 1,000s of production changes per day
• 10,000s of virtual machines
• 100,000s of customer interactions per second
• 1,000,000s of metrics per minute (actually, 2 million)

• 81.5 million customers

• 10s of operations engineers
• no single engineer knows the entire application

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Netflix: Microservice Architecture

CRICOS PROVIDER #00120C

8

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

9 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

CRICOS PROVIDER #00120C

10 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

CRICOS PROVIDER #00120C

11

How do we get to DevOps?

Goals:

1. Technological: Automated process for moving code from dev to release.

Starting with check-in, build, unit test, build artifact,
integration test, load test, as moves through stage to production,
finally, with monitoring and other telemetry.

2. Cultural: Building cohesive, multidisciplinary teams.

Typically, developers are the “first responders” when things go bad in
production.
Sense of “ownership” by the developer all the way from inception to
release.

reference: https://www.youtube.com/watch?v=UbtB4sMaaNM

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

12

What can it look like when it’s done?

reference: https://www.youtube.com/watch?v=UTKIT6STSVM

Netflix Spinnaker (open-source CI/CD fully automated pipeline):
• Takes code from code repository to production.
• Allows developers to specify required tests.
• Determines where, how code should be run in system (e.g., replication, placement.)
• Supports canary deployments, traffic management.
• Just publish the repo!

reference: Puppet State of the DevOps Report 2017

5x
lower
change
failure
rate

440x
faster from
commit to
deploy

46x
more frequent
deployments

44%
more time
spent on new
features and
code

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

13

What do we need to practice for
DevOps?

Continuous Integration (CI)
1. Constant testing as code is checked-in/pushed to the repository (e.g., GH

hooks, etc.)
2. Verify the build process works (i.e., parsing, compilation, code generation, etc.)
3. Verify unit tests pass, style checks pass, other static analysis tools.
4. Build artifacts

Continuous Delivery & Deployment (CD)
1. Moving build artifacts from test -> stage -> prod environments.

Environments always differ! (e.g., ENV, PII, data, etc.)
2. Gate code, if necessary, from advancing without manual approval.

Useful when initially transitioning applications into a modern DevOps pipeline.

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

14

CI/CD

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

Continuous Integration (CI)
1. Commit and check-in code frequently (always can squash later)
2. Commits build on previous commits (know precisely where the build breaks)
3. Automated feedback and testing on commits
4. Artifact creation (e.g., container images, WAR files, etc.)
5. Ensure code, supporting infrastructure, documentation are all versioned together

Continuous Deployment (CD)
1. Artifacts automatically shipped into test, stage, production environments
2. Prevents “manual” deployment, avoids “manual” steps, early detection of problems
3. Can be tied to a “manual” promotion technique to advance through environments
4. Multi-stage deployment with automatic rollback on failure detection

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

15

DevOps Phases

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Traditionally, separate teams were responsible for software
development, software release and software support.
• The development team passed over a ‘final’ version of the

software to a release team. This team then built a release
version, tested this and prepared release documentation before
releasing the software to customers.
• A third team was responsible for providing customer support.
• The original development team were sometimes also responsible for

implementing software changes.
• Alternatively, the software may have been maintained by a separate ‘maintenance

team’.

16

Software Support

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

17

Development, release and support

Development

Tested software
ready for release

Release

Deployed software
ready for use

Support

Problem and bug
reports

Figure 10.1 Development, release and support

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• There are inevitable delays and overheads in the traditional support model.

• To speed up the release and support processes, an alternative approach called
DevOps (Development + Operations) has been developed.

• Three factors led to the development and widespread adoption of DevOps:

• Agile software engineering reduced the development time for software, but the traditional
release process introduced a bottleneck between development and deployment.

• Amazon re-engineered their software around services and introduced an approach in
which a service was developed and supported by the same team. Amazon’s claim that this
led to significant improvements in reliability was widely publicized.

• It became possible to release software as a service, running on a public or private cloud.
Software products did not have to be released to users on physical media or downloads.

18 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

DevOps

CRICOS PROVIDER #00120C

19

DevOps

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Everyone is responsible for everything
All team members have joint responsibility for developing,
delivering and supporting the software.
• Everything that can be automated should be automated

All activities involved in testing, deployment and support should
be automated if it is possible to do so. There should be minimal
manual involvement in deploying software.
• Measure first, change later

DevOps should be driven by a measurement program where you
collect data about the system and its operation. You then use
the collected data to inform decisions about changing DevOps
processes and tools.

20

DevOps principles

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Faster deployment
Software can be deployed to production more quickly because communication
delays between the people involved in the process are dramatically reduced.

• Reduced risk
The increment of functionality in each release is small so there is less chance of
feature interactions and other changes causing system failures and outages.

• Faster repair
DevOps teams work together to get the software up and running again as soon as
possible. There is no need to discover which team were responsible for the
problem and to wait for them to fix it.

• More productive teams
DevOps teams are happier and more productive than the teams involved in the
separate activities. Because team members are happier, they are less likely to
leave to find jobs elsewhere.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS21

Benefits of DevOps

CRICOS PROVIDER #00120C

22

What do we need to practice for
DevOps?

Infrastructure as Code
1. Required resources (e.g., cloud services, access policies, etc.) are created

by code.
No UI provisioning, no manual steps (avoid: easy to forget, time
consuming!)

2. “Immutable Infrastructure”
No update-in-place (e.g., SSH to server.)
Replace with new instances, decommission old instances.

3. Nothing to prod without it being in code, checked-in, versioned along side
code!

Observability (Monitoring, Logging, Tracing, Metrics)
1. Be able to know how your application is running in production
2. Track and analyze low-level metrics on performance, resource allocation
3. Capture high-level metrics on application behavior

1. What’s “normal”?
2. What’s abnormal?

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

23

Exercise: DevOps Pipeline
ChoicesDevelop

Test

Deploy

Monitor

Build

Automat
e

Choices

Check in

Peer review Run integration
tests

Run penetration
tests

Run unit tests Deploy to prod Record errors

Require Manual
approval to

advance
Style check Build container

images
Compilation Run load tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

24

A Typical DevOps Pipeline

Develop Build Test Deploy Monitor

Check in

Peer review

Run
integration

tests

Run
penetration

tests
Run unit tests

Deploy to prod Record errors

Require
Manual

approval to
advance

Style check

Build container
images

Compilation
Run load

tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• After you have adopted DevOps, you should try to continuously
improve your DevOps process to achieve faster deployment of
better-quality software.
• There are four types of software development measurement:
• Process measurement You collect and analyse data about your development,

testing and deployment processes.
• Service measurement You collect and analyse data about the software’s

performance, reliability and acceptability to customers.
• Usage measurement You collect and analyse data about how customers use your

product.
• Business success measurement You collect and analyse data about how your

product contributes to the overall success of the business.

25

DevOps Measurement

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• As far as possible, the DevOps principle of automating
everything should be applied to software measurement.
• You should instrument your software to collect data about

itself and you should use a monitoring system to collect
data about your software’s performance and availability.
• Some process measurements can also be automated.
• However, there are problems in process measurement because people are

involved. They work in different ways, may record information differently and
are affected by outside influences that affect the way they work.

26

Automating Measurement

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

27

Metrics used in the DevOps scorecard
Figure 10.15 Metrics used in the DevOps scorecard

Deployment
frequency

Change
volume

DevOps
metrics

Lead time from
development to deployment

Percentage of
failed deployments

Mean time to
recovery

Number of
customer complaints

Availability

Performance

Percentage increase
in customer numbers

Process metrics

Service metrics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Payal Chakravarty from IBM suggests a practical approach
to DevOps measurement based around a metrics
scorecard with 9 metrics:
• These are relevant to software that is delivered as a cloud service. They

include process metrics and service metrics
• For the process metrics, you would like to see decreases in the number of

failed deployments, the mean time to recovery after a service failure and the
lead time from development to deployment.

• You would hope to see increases in the deployment frequency and the
number of lines of changed code that are shipped.

• For the service metrics, availability and performance should be stable or
improving, the number of customer complaints should be decreasing, and the
number of new customers should be increasing.

28

Metrics scorecard

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

29

Metrics Trends (via Logging or Similar)

Weeks

Availability

Deployment
frequency

Number of
customer
complaints

Figure 10.16 Metrics trends

1 2 3 4 5

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Executing
software

Log 2

Log 1

Log 3

Log
analyser

Metrics
dashboard

Figure 10.17 Logging and analysis

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS30

Poll Everywhere Time!

CRICOS PROVIDER #00120C

CI: Continuous Integration

46ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• By using DevOps with automated support, you can dramatically
reduce the time and costs for integration, deployment and
delivery.
• Everything that can be, should be automated is a fundamental

principle of DevOps.
• As well as reducing the costs and time required for integration,

deployment and delivery, process automation also makes these
processes more reliable and reproducible.
• Automation information is encoded in scripts and system

models that can be checked, reviewed, versioned and stored in
the project repository.

47

DevOps automation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Continuous integration
Each time a developer commits a change to the project’s master branch,
an executable version of the system is built and tested.
• Continuous delivery

A simulation of the product’s operating environment is created and the
executable software version is tested.
• Continuous deployment

A new release of the system is made available to users every time a
change is made to the master branch of the software.
• Infrastructure as code

Machine-readable models of the infrastructure (network, servers, routers,
etc.) on which the product executes are used by configuration
management tools to build the software’s execution platform. The
software to be installed, such as compilers and libraries and a DBMS, are
included in the infrastructure model.

48

Aspects of DevOps automation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• System integration (system building) is the process of gathering all of the elements required in a
working system, moving them into the right directories, and putting them together to create an
operational system.

• Typical activities that are part of the system integration process include:

• Installing database software and setting up the database with the appropriate schema.

• Loading test data into the database.

• Compiling the files that make up the product.

• Linking the compiled code with the libraries and other components used.

• Checking that external services used are operational.

• Deleting old configuration files and moving configuration files to the correct locations.

• Running a set of system tests to check that the integration has been successful.

49 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

System integration

CRICOS PROVIDER #00120C

• Continuous integration simply means that an integrated version of the
system is created and tested every time a change is pushed to the
system’s shared repository.
• On completion of the push operation, the repository sends a message

to an integration server to build a new version of the product
• The advantage of continuous integration compared to less frequent

integration is that it is faster to find and fix bugs in the system.
• If you make a small change and some system tests then fail, the

problem almost certainly lies in the new code that you have pushed to
the project repo.
• You can focus on this code to find the bug that’s causing the problem.

50

Continuous Integration (CI)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

51

Continuous Integration (CI)

GET
COMPILE

AND BUILD TEST

Executable
system

Figure 10.9 Continuous integration

Source code files
from code management

Libraries Configuration
files

Database
files

Executable
tests

Deployable
system

Trigger
from repo

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• In a continuous integration environment, developers have to
make sure that they don’t ‘break the build’.
• Breaking the build means pushing code to the project

repository which, when integrated, causes some of the system
tests to fail.
• If this happens to you, your priority should be to discover and fix

the problem so that normal development can continue.
• To avoid breaking the build, you should always adopt an

‘integrate twice’ approach to system integration.
• You should integrate and test on your own computer before pushing code to the

project repository to trigger the integration server

52

Breaking the build

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

53

Local integration

Make changes
to code

Commit changes
to local repo

Pull changes
to master branch

Merge master
with local repo

Compile and
build system

Test
system

Executable
system

Test failure

Push code
to project repo

Test
success

Executable
tests

Figure 10.10 Local integration

From project repo

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Continuous integration is only effective if the integration
process is fast and developers do not have to wait for the
results of their tests of the integrated system.
• However, some activities in the build process, such as

populating a database or compiling hundreds of system files,
are inherently slow.
• It is therefore essential to have an automated build process that

minimizes the time spent on these activities.
• Fast system building is achieved using a process of incremental

building, where only those parts of the system that have been
changed are rebuilt

54

System building

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Running a set of system tests depends on
the existence of executable object code for
both the program being tested and the
system tests.
• In turn, these depend on the source code for

the system and the tests that are compiled
to create the object code.
• Figure on the right shows the dependencies

involved in creating the object code for a
source code files called Mycode.
• An automated build system uses the

specification of dependencies to work out
what needs to be done. It uses the file
modification timestamp to decide if a source
code file has been changed.

55

Dependencies

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Mycode (compiled)

Mycode (source)

Lib 2

Figure 10.12 File dependencies

Classdef (compiled)Lib 2

CRICOS PROVIDER #00120C

• Group Processes
• Continuous Integration
• Code Review

• Pair/Mob Programming

• Individual Processes
• Asking Questions
• How to run a meeting

56

Process Roundup

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

State of Code Review 2017

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS57

CRICOS PROVIDER #00120C

58

History of CI

(1999) Extreme Programming (XP) rule: “Integrate Often”

(2000) Martin Fowler posts “Continuous Integration” blog

(2001) First CI tool

(2005) Hudson/Jenkins

(2011) Travis CI

(2019) GitHub Actions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

59

CI/CD Pipeline overview

Code Edit Tests Run

Code MergedCode
Deployed

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

60

Github Flow

Working Dir
Staging Area
Local Repo

Remote
Master

Master
featureName

featureName

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

https://docs.github.com/en/get-started/quickstart/github-flow

https://medium.com/burdaforward/state-of-ci-cd-and-the-dreaded-git-flow-fce92d04fb07

CRICOS PROVIDER #00120C

Create Pull Request
GitHub tells Travis CI build is
mergeable

It builds and passes tests
Travis updates PR
PR is merged

61

Sample CI Workflow

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

https://docs.github.com/en/actions/migrating-to-github-actions/migrating-from-travis-ci-to-github-actions

CRICOS PROVIDER #00120C

62

Example CI/CD Pipeline

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

“My favorite way of thinking about build time is basically,
you have tea time, lunch time, or bedtime…”

63

CI Research

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

64

DevOps: More Resources

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

CI helps us catch bugs earlier
CI makes us less worried about breaking our builds
CI lets us spend less time debugging

“[CI] does have a pretty big impact on [catching bugs]. It allows us to find
issues even before they get into our main repo, ... rather than letting bugs go
unnoticed, for months, and letting users catch them.”

65

Developers say:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Do developers on projects with CI give (more/similar/less)
value to automated tests?

66

Developers report:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Do developers on projects with CI give (more/similar/less)
value to automated tests?
Do projects with CI have (higher/similar/lower) test quality?

67

Developers report:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Do developers on projects with CI give (more/similar/less)
value to automated tests?
Do projects with CI have (higher/similar/lower) test
quality?
Do projects with CI have (higher/similar/lower) code quality?

68

Developers report:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Do developers on projects with CI give (more/similar/less)
value to automated tests?
Do projects with CI have (higher/similar/lower) test
quality?
Do projects with CI have (higher/similar/lower) code
quality?
Are developers on projects with CI (more/similar/less)
productive?

69

Developers report:

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

70

Challenge: Flaky Tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

OBSERVATION

Most of the benefits of CI come
from running tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS71

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS72

Poll Everywhere Time!

CRICOS PROVIDER #00120C

CD: Continuous Deployment

73ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Continuous integration means creating an executable version of a software system whenever a
change is made to the repository. The CI tool builds the system and runs tests on your
development computer or project integration server.

• However, the real environment in which software runs will inevitably be different from your
development system.

• When your software runs in its real, operational environment bugs may be revealed that did not
show up in the test environment.

• Continuous delivery means that, after making changes to a system, you ensure that the changed
system is ready for delivery to customers.

• This means that you have to test it in a production environment to make sure that
environmental factors do not cause system failures or slow down its performance.

74 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Continuous Delivery
and Deployment (CD)

CRICOS PROVIDER #00120C

75

Continuous Delivery
and Deployment (CD)

Continuous delivery

Tested
system

Configure
 test server

Install system
on test server

Run acceptance
tests

Install software on
production servers

Switch operation to
new software

Continuous deployment

All tests pass

Figure 10.13 Continuous delivery and deployment

Required
software

Test
set

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• After initial integration testing, a staged test environment is created.
• This is a replica of the actual production environment in which the

system will run.
• The system acceptance tests, which include functionality, load and

performance tests, are then run to check that the software works as
expected. If all of these tests pass, the changed software is installed
on the production servers.
• To deploy the system, you then momentarily stop all new requests for

service and leave the older version to process the outstanding
transactions.
• Once these have been completed, you switch to the new version of the

system and restart processing.

76

The deployment pipeline

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Reduced costs
If you use continuous deployment, you have no option but to invest in a completely automated deployment pipeline.
Manual deployment is a time-consuming and error-prone process. Setting up an automated system is expensive and
time-consuming but you can recover these costs quickly if you make regular updates to your product.

• Faster problem solving
If a problem occurs, it will probably only affect a small part of the system and it will be obvious what the source of
that problem is. If you bundle many changes into a single release, finding and fixing problems is more difficult.

• Faster customer feedback
You can deploy new features when they are ready for customer use. You can ask them for feedback on these features
and use this feedback to identify improvements that you need to make.

• A/B Testing and Canary Deployments
This is an option if you have a large customer base and use several servers for deployment. You can deploy a new
version of the software on some servers and leave the older version running on others. You then use the load balancer
to divert some customers to the new version while others use the older version. You can then measure and assess how
new features are used to see if they do what you expect.

77 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Benefits of Continuous Deployment
(CD)

CRICOS PROVIDER #00120C

• Build code and run smoke test (Microsoft 1995)

• Benefits

• it minimizes integration risk

• It reduces the risk of low quality
• it supports easier defect diagnosis

• it improves morale

Nightly Build

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Commits flow out to rings, de-flight if issue

• For example:

• Ring 0 => Team

• Ring 1 => Dogfood

• Ring 2 => Beta
• Ring 3 => Many

• Ring 4 => All
• Windows 10 Insiders Program

• Dev Channel (weekly builds of Windows 10)

• Beta Channel (dev + validated updates by Microsoft)
• Release Preview Channel (highest quality, validated updates)

79

Ring Deployment: Microsoft

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

If deployment requires on-prem deployment, say a web browser
• There are four channels: Nightly, Alpha, Beta, Release

Candidate
• Code flows every 2 weeks to next channel, unless fast tracked

by release engineer.
• Involve corporate customer specific testing in testing (Practice

also used by IBM, Redhat)
• same for Windows Edge browser Insiders Program:
• Canary: nightly builds
• Dev: weekly builds
• Beta: 6 weeks

80

Rapid Release/Mozilla

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

81

“Big bang” deployments

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

Chuck Rossi at Facebook: “Get your s*** in, fix it in
production”

82

Fast to Deploy, Slow to Release

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

CRICOS PROVIDER #00120C

• Early: Integrate as soon as possible. Find bugs early. Code can
run in production about 6 months before being publicly
announced.
• Often: Reduce friction. Try things out. See what works. Push

small changes just to gather metrics, feasibility testing. Large
changes just slow down the team. Do dark launches, to see what
performance is in production, can scale up and down. "Shadow
infrastructure" is too expensive, just do in production.
• Incremental: Deploy in increments. Contain risk. Pinpoint

issues.

83

Dark Launches at Instagram

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Release is cut Sunday 6pm
• Stabilize until Tuesday, canaries, release. Tuesday push is 12,000 diffs.

• Cherry pick: Push 3 times a day (Wed-Fri) 300-700 cherry picks / day.

84

Facebook process (until 2016)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

reference: https://engineering.fb.com/2017/08/31/web/rapid-release-at-massive-scale/

CRICOS PROVIDER #00120C

85

Facebook quasi-continuous release

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

86

Rolling deployments

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

87

Red/Black (Blue/Green) deployments

reference: https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

88

Canary deployments

https://dev.to/mostlyjason/intro-to-deployment-strategies-blue-green-canary-and-more-3a3

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

89

Feature Flags

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS90

Poll Everywhere Time!

CRICOS PROVIDER #00120C

Infrastructure as Code

91ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• In an enterprise environment, there are usually many different
physical or virtual servers (web servers, database servers, file servers,
etc.) that do different things. These have different configurations and
run different software packages.
• It is therefore difficult to keep track of the software installed on each

machine.
• The idea of infrastructure as code was proposed as a way to address

this problem. Rather than manually updating the software on a
company’s servers, the process can be automated using a model of
the infrastructure written in a machine-processable language.
• Configuration Management (CM) tools such as Puppet can

automatically install software and services on servers according to the
infrastructure definition

92

Infrastructure as Code

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS93

Infrastructure as Code (Puppet)

https://phoenixnap.com/blog/what-is-puppet

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS94

Infrastructure as Code (Ansible)

https://phoenixnap.com/blog/ansible-vs-terraform-vs-puppet

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS95

Infrastructure as Code (Terraform)

https://phoenixnap.com/blog/ansible-vs-terraform-vs-puppet

CRICOS PROVIDER #00120C

• Defining your infrastructure as code and using a configuration
management system solves two key problems of continuous
deployment.
• Your testing environment must be exactly the same as your deployment

environment. If you change the deployment environment, you have to mirror those
changes in your testing environment.

• When you change a service, you have to be able to roll that change out to all of
your servers quickly and reliably. If there is a bug in your changed code that
affects the system’s reliability, you have to be able to seamlessly roll back to the
older system.

• The business benefits of defining your infrastructure as code
are lower costs of system management and lower risks of
unexpected problems arising when infrastructure changes are
implemented.

96

Benefits of infrastructure as code

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

• Visibility
Your infrastructure is defined as a stand-alone model that can be read, discussed,
understood and reviewed by the whole DevOps team.

• Reproducibility
Using a configuration management tool means that the installation tasks will always be
run in the same sequence so that the same environment is always created. You are not
reliant on people remembering the order that they need to do things.

• Reliability
The complexity of managing a complex infrastructure means that system administrators
often make simple mistakes, especially when the same changes have to be made to
several servers. Automating the process avoids these mistakes.

• Recovery
Like any other code, your infrastructure model can be versioned and stored in a code
management system. If infrastructure changes cause problems you can easily revert to
an older version and reinstall the environment that you know works.

97 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Characteristics of infrastructure as
code

CRICOS PROVIDER #00120C

• A container provides a stand-alone execution environment running on top of an operating system such as
Linux.

• The software installed in a Docker container is specified using a Dockerfile, which is, essentially, a definition
of your software infrastructure as code.

• You build an executable container image by processing the Dockerfile.

• Using containers makes it very simple to provide identical execution environments.

• For each type of server that you use, you define the environment that you need and build an image for execution. You can
run an application container as a test system or as an operational system; there is no distinction between them.

• When you update your software, you rerun the image creation process to create a new image that includes the modified
software. You can then start these images alongside the existing system and divert service requests to them.

98 ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

Containers

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS99

Poll Everywhere Time!

CRICOS PROVIDER #00120C

Monitoring

100ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

101

What is Observability?

“As a philosophy, observability is our ability as
developers to know and discover what is going on in

our systems. In practice, it means adding telemetry to
our systems in order to measure change and track

workflows.”

The New Stack, “What is observability?” 28 Feb 2020
https://thenewstack.io/what-is-observability/

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

102

Observability: Dashboards

reference: https://www.youtube.com/watch?v=mBU3AJ3j1rg

1. What’s happening now?

2. What does “normal” behavior look like?

3. What does it look like when something’s gone (or is going) wrong?

4. Can I correlate events to changes in the actual graphs?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

103

Observability: Dashboard Example

https://datadog-prod.imgix.net/img/blog/monitoring-kubernetes-with-datadog/kubernetes-dashboard.png?fit=max

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

104

Observability: Defining “Normal”

reference: https://www.youtube.com/watch?v=vq4QZ4_YDok

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

105

Observability:
When things aren’t “Normal”

reference: https://www.youtube.com/watch?v=qyzymLlj9ag

Automatic
rollback on

high variance!

This is starting to sound awfully like a
quality attribute….

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 7 OF 12: DEVOPS106

Poll Everywhere Time!

