
CRICOS PROVIDER #00120CCRICOS PROVIDER #00120C

COMP 2120 / COMP 6120

TESTING

Week:
10 of 12

A/Prof Alex Potanin

CRICOS PROVIDER #00120C

ANU Acknowledgment of Country

“We acknowledge and
celebrate the First
Australians on whose
traditional lands we
meet, and pay our
respect to the elders
past and present.”

https://aiatsis.gov.au/explore/map-indigenous-australia

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

https://aiatsis.gov.au/explore/map-indigenous-australia

CRICOS PROVIDER #00120C

• Types of Testing
• Test Automation
• Limitations of Testing
• Fuzzing
• Performance Testing
• Chaos Engineering
• A/B Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Today

CRICOS PROVIDER #00120C

Types of Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

•What is testing?
• Execution of code on sample inputs in a controlled environment

• Principle goals:
• Validation: program meets requirements, including quality attributes.
• Defect testing: reveal failures.

• Other goals:
• Reveal bugs (main goal)

• Assess quality (hard to quantify)
• Clarify the specification, documentation
• Verify contracts

What is Testing???

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• What can we test for? (Software quality attributes)
• What can we not test for?
• Why should we test? What does testing achieve?
• What does testing not achieve?
• When should we test?
• And where should we run the tests?
• What should we test?
• What CAN we test?
• How should we test?
• How many ways can you test the sort() function?
• How good are our tests?
• How to measure test quality?

What is Testing???

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

•Software testing is a process in which you execute your program
using data that simulates user inputs.
•You observe its behaviour to see whether or not your program is
doing what it is supposed to do.
•Tests pass if the behaviour is what you expect. Tests fail if the behaviour differs
from that expected.
• If your program does what you expect, this shows that for the inputs used, the
program behaves correctly.

•If these inputs are representative of a larger set of inputs, you
can infer that the program will behave correctly for all members
of this larger input set.

Software testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• If the behaviour of the program does not match the behaviour
that you expect, then this means that there are bugs in your
program that need to be fixed.
• There are two causes of program bugs:
• Programming errors You have accidentally included faults in your program code.

For example, a common programming error is an ‘off-by-1’ error where you make a
mistake with the upper bound of a sequence and fail to process the last element
in that sequence.

• Understanding errors You have misunderstood or have been unaware of some of
the details of what the program is supposed to do. For example, if your program
processes data from a file, you may not be aware that some of this data is in the
wrong format, so your program doesn’t include code to handle this.

Program bugs

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Enumerate various strategies for picking test cases, such
as:
• Specification-based testing
• Boundary-value testing
• Structural testing
• Property testing
• Regression testing
• Differential testing
• Property-based testing
• Mutation testing

• https://testing.googleblog.com/search/label/TotT

Test Strategies

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Functional testing
Test the functionality of the overall system. The goals of functional testing are to discover as many
bugs as possible in the implementation of the system and to provide convincing evidence that the
system is fit for its intended purpose.

• User testing
Test that the software product is useful to and usable by end-users. You need to show that the
features of the system help users do what they want to do with the software. You should also show
that users understand how to access the software’s features and can use these features effectively.

• Performance and load testing
Test that the software works quickly and can handle the expected load placed on the system by its
users. You need to show that the response and processing time of your system is acceptable to end-
users. You also need to demonstrate that your system can handle different loads and scales
gracefully as the load on the software increases.

• Security testing
Test that the software maintains its integrity and can protect user information from theft and
damage.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Types of testing

CRICOS PROVIDER #00120C

• Functional testing involves developing a large set of program tests so
that, ideally, all of a program’s code is executed at least once.
• The number of tests needed obviously depends on the size and the

functionality of the application.
• For a business-focused web application, you may have to develop

thousands of tests to convince yourself that your product is ready for
release to customers.
• Functional testing is a staged activity in which you initially test

individual units of code. You integrate code units with other units to
create larger units then do more testing.
• The process continues until you have created a complete system ready

for release.

Functional testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Functional testing

Feature
testing

System
testing

Release
testing

Figure 9.2 Functional testing

Unit
Testing

Start

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Unit testing
The aim of unit testing is to test program units in isolation. Tests should be designed to execute all of the
code in a unit at least once. Individual code units are tested by the programmer as they are developed.

• Feature testing
Code units are integrated to create features. Feature tests should test all aspects of a feature. All of the
programmers who contribute code units to a feature should be involved in its testing.

• System testing
Code units are integrated to create a working (perhaps incomplete) version of a system. The aim of system
testing is to check that there are no unexpected interactions between the features in the system. System
testing may also involve checking the responsiveness, reliability and security of the system. In large
companies, a dedicated testing team may be responsible for system testing. In small companies, this is
impractical, so product developers are also involved in system testing.

• Release testing
The system is packaged for release to customers and the release is tested to check that it operates as
expected. The software may be released as a cloud service or as a download to be installed on a customer’s
computer or mobile device. If DevOps is used, then the development team are responsible for release testing
otherwise a separate team has that responsibility.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Functional testing processes

CRICOS PROVIDER #00120C

• As you develop a code unit, you should also develop tests for that code.

• A code unit is anything that has a clearly defined responsibility. It is usually a function or class
method but could be a module that includes a small number of other functions.

• Unit testing is based on a simple general principle:

• If a program unit behaves as expected for a set of inputs that have some shared characteristics, it will
behave in the same way for a larger set whose members share these characteristics.

• To test a program efficiently, you should identify sets of inputs (equivalence partitions) that
will be treated in the same way in your code.

• The equivalence partitions that you identify should not just include those containing inputs
that produce the correct values. You should also identify ‘incorrectness partitions’ where the
inputs are deliberately incorrect.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Unit testing

CRICOS PROVIDER #00120C

• Popular unit-testing framework for Java

• Easy to use
• Tool support available (Maven, Gradle, etc.)

• Can be used as design mechanism

JUnit

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Tests usually need an input and expected output.

•More generally, a test environment, a test harness, and a
test oracle
• Environment: Resources needed to execute a family of tests
• Harness: Triggers execution of a test case (aka entry point)

• Oracle: A mechanism for determining whether a test was successful

Basic Elements of a Test

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Basic Unit Test for Sort

Is this test good enough?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

•What are some interesting values to test?
• List tuples <input, output, reason>

CRICOS PROVIDER #00120C

• What are unit tests?
• Small tests are fast and deterministic, allowing developers to run them

frequently as part of their workflow and get immediate feedback
• Easy to write at the same time as the code they’re testing, allowing engineers to

focus their tests on the code they’re working on without having to set up and
understand a larger system

• Promote high levels of test coverage because they are quick and easy to write
• Easy to understand what’s wrong when they fail because each test is

conceptually simple and focused on a particular part of the system
• Serve as documentation and examples, showing engineers how to use the part of

the system being tested and how that system is intended to work

• Should be 80% unit tests (maintainable!) and 20% broader-
scoped

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Unit Tests (from SE @ Google Chapter
12)

CRICOS PROVIDER #00120C

• Strive for unchanging tests
• Test via public API’s
• Test state, not Interactions

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Avoiding Brittle Tests

versus

CRICOS PROVIDER #00120C

•Make your tests complete and concise
• test’s body should contain all of the information needed to understand it

without containing any irrelevant or distracting information

• Test behaviours, not methods
• Behaviours can often be expressed using the words “given,” “when,” and

“then”: “Given that a bank account is empty, when attempting to withdraw
money from it, then the transaction is rejected.”

• Don’t put logic in tests
•Write clear failure messages

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Writing Clear Tests

CRICOS PROVIDER #00120C

• Test cases are often designed based on behavioral equivalence
classes.
• Assumption: if test passes for one value => test will pass for all values in the equivalence

class.

• Systematic tests can be drawn from specification.
• For example: A year is a leap year if:
• the year is divisible by 4;
• and the year is not divisible by 100;
• except when the year is divisible by 400

• Tests:
• assert isLeapYear(1945) == false
• assert isLeapYear(1944) == true
• assert isLeapYear(1900) == false
• assert isLeapYear(2000) == true

Black-box & Specification-Based
Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Aim: Test for cases that are at the “boundary” of equivalence classes
in the specification.
• Small change in input moves it from one class to another.
• Example: Testing a function divide(int a, int b)
• One boundary may be at `a == b`

• Edge case: One of many parameters are at the boundary
• E.g. for divide: a=0, b=42 or a=42, b = 0
• E.g. for sort: list contains duplicates, list is empty

• Corner case: Combination of parameters are at the boundary
• E.g. for divide: a=0, b=0

Boundary-Value Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Test edge cases
If your partition has upper and lower bounds (e.g. length of strings,
numbers, etc.) choose inputs at the edges of the range.
• Force errors

Choose test inputs that force the system to generate all error
messages. Choose test inputs that should generate invalid outputs.
• Fill buffers

Choose test inputs that cause all input buffers to overflow.
• Repeat yourself

Repeat the same test input or series of inputs several times.

Unit testing guidelines (1)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Overflow and underflow
If your program does numeric calculations, choose test inputs that
cause it to calculate very large or very small numbers.
• Don’t forget null and zero

If your program uses pointers or strings, always test with null pointers
and strings. If you use sequences, test with an empty sequence. For
numeric inputs, always test with zero.
• Keep count

When dealing with lists and list transformation, keep count of the
number of elements in each list and check that these are consistent
after each transformation.
• One is different

If your program deals with sequences, always test with sequences
that have a single value.

Unit testing guidelines (2)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

But, remember…

CRICOS PROVIDER #00120C

• Use public APIs only
• Clearly distinguish inputs, configuration, execution, and

oracle
• Be simple; avoid complex control flow such as conditionals

and loops
• Tests shouldn’t need to be frequently changed or

refactored
• Definitely not as frequently as the code being tested changes

Test Design principles

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Snoopy oracles
• Relying on implementation state instead of observable behavior
• E.g. Checking variables or fields instead of return values

• Brittle tests
• Overfitting to special-case behavior instead of general principle
• E.g. hard-coding message strings instead of behavior

• Slow tests
• Self-explanatory (beware of heavy environments, I/O, and sleep())

• Flaky tests
• Tests that pass or fail nondeterministically
• Often because of reliance on random inputs, timing (e.g. sleep(1000)), availability of

external services (e.g. fetching data over the network in a unit test), or dependency on order
of test execution (e.g. previous test sets up global variables in certain way)

Anti-patterns

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Features have to be tested to show that the functionality is
implemented as expected and that the functionality meets the real
needs of users.
• For example, if your product has a feature that allows users to login using their Google

account, then you have to check that this registers the user correctly and informs them of
what information will be shared with Google.

• You may want to check that it gives users the option to sign up for email information about
your product.

• Normally, a feature that does several things is implemented by
multiple, interacting, program units.
• These units may be implemented by different developers and all of

these developers should be involved in the feature testing process.

Feature testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Interaction tests

• These test the interactions between the units that implement the feature. The developers of the units that are combined to
make up the feature may have different understandings of what is required of that feature.

• These misunderstandings will not show up in unit tests but may only come to light when the units are integrated.

• The integration may also reveal bugs in program units, which were not exposed by unit testing.

• Usefulness tests

• These test that the feature implements what users are likely to want.

• For example, the developers of a login with Google feature may have implemented an opt-out default on registration so that
users receive all emails from a company. They must expressly choose what type of emails that they don’t want.

• What might be preferred is an opt-in default so that users choose what types of email they do want to receive.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Types of feature test

CRICOS PROVIDER #00120C

• User registration
As a user, I want to be able to login without creating a new
account so that I don’t have to remember another login id
and password.
• Information sharing

As a user, I want to know what information you will share
with other companies. I want to be able to cancel my
registration if I don’t want to share this information.
• Email choice

As a user, I want to be able to choose the types of email
that I’ll get from you when I register for an account.

User stories for the sign-in with Google
feature

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Initial login screen
Test that the screen displaying a request for Google account credentials
is correctly displayed when a user clicks on the ‘Sign-in with Google’ link.
Test that the login is completed if the user is already logged in to Google.
• Incorrect credentials

Test that the error message and retry screen is displayed if the user
inputs incorrect Google credentials.
• Shared information

Test that the information shared with Google is displayed, along with a
cancel or confirm option. Test that the registration is cancelled if the
cancel option is chosen.
• Email opt-in

Test that the user is offered a menu of options for email information and
can choose multiple items to opt-in to emails. Test that the user is not
registered for any emails if no options are selected.

Feature tests for sign-in with Google

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• System testing involves testing the system as a whole,
rather than the individual system features.
• System testing should focus on four things:
• Testing to discover if there are unexpected and unwanted interactions

between the features in a system.
• Testing to discover if the system features work together effectively to

support what users really want to do with the system.
• Testing the system to make sure it operates in the expected way in the

different environments where it will be used.
• Testing the responsiveness, throughput, security and other quality attributes

of the system.

System and release testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• The best way to systematically test a system is to start
with a set of scenarios that describe possible uses of the
system and then work through these scenarios each time
a new version of the system is created.
• Using the scenario, you identify a set of end-to-end

pathways that users might follow when using the system.
• An end-to-end pathway is a sequence of actions from

starting to use the system for the task, through to
completion of the task.

Scenario-based testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Andrew and Maria have a two year old son and a four month old daughter. They live in Scotland and they want to have
a holiday in the sunshine. However, they are concerned about the hassle of flying with young children. They decide to
try a family holiday planner product to help them choose a destination that is easy to get to and that fits in with their
childrens’ routines.

• Maria navigates to the holiday planner website and selects the ‘find a destination’ page. This presents a screen with a
number of options. She can choose a specific destination or can choose a departure airport and find all destinations
that have direct flights from that airport. She can also input the time band that she’d prefer for flights, holiday dates
and a maximum cost per person.

• Edinburgh is their closest departure airport. She chooses ‘find direct flights’. The system then presents a list of
countries that have direct flights from Edinburgh and the days when these flights operate. She selects France, Italy,
Portugal and Spain and requests further information about these flights. She then sets a filter to display flights that
leave on a Saturday or Sunday after 7.30am and arrive before 6pm.

• She also sets the maximum acceptable cost for a flight. The list of flights is pruned according to the filter and is
redisplayed. Maria then clicks on the flight she wants. This opens a tab in her browser showing a booking form for this
flight on the airline’s website.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Choosing a holiday destination

CRICOS PROVIDER #00120C

1. User inputs departure airport and chooses to see only direct flights.
User quits.

2. User inputs departure airport and chooses to see all flights. User
quits.

3. User chooses destination country and chooses to see all flights.
User quits.

4. User inputs departure airport and chooses to see direct flights. User
sets filter specifying departure times and prices. User quits.

5. User inputs departure airport and chooses to see direct flights. User
sets filter specifying departure times and prices. User selects a
displayed flight and clicks through to airline website. User returns
to holiday planner after booking flight.

End-to-end pathways

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Release testing is a type of system testing where a system that’s intended for release to customers is
tested.

• The fundamental differences between release testing and system testing are:

• Release testing tests the system in its real operational environment rather than in a test environment. Problems
commonly arise with real user data, which is sometimes more complex and less reliable than test data.

• The aim of release testing is to decide if the system is good enough to release, not to detect bugs in the system.
Therefore, some tests that ‘fail’ may be ignored if these have minimal consequences for most users.

• Preparing a system for release involves packaging that system for deployment (e.g. in a container if it
is a cloud service) and installing software and libraries that are used by your product. You must define
configuration parameters such as the name of a root directory, the database size limit per user and so
on.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Release testing

CRICOS PROVIDER #00120C

• Once you have identified security risks, you then analyze
them to assess how they might arise. For example, for the
first risk two slides earlier (unauthorized attacker) there are
several possibilities:
• The user has set weak passwords that can be guessed by an attacker.
• The system’s password file has been stolen and passwords discovered by

attacker.
• The user has not set up two-factor authentication.
• An attacker has discovered credentials of a legitimate user through social

engineering techniques.
• You can then develop tests to check some of these

possibilities.
• For example, you might run a test to check that the code that allows users to

set their passwords always checks the strength of passwords.

Risk analysis

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Aim: Test for cases that exercise various program
elements (e.g. functions, lines, statements, branches)

• Key idea: If you don’t execute some code, you can’t find
bugs in that code. So, let’s execute all the code.

•Which one do you think is harder: black-box boundary-
value testing or white-box structural testing?

White-box or Structural Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Coverage of the Basic Unit Test

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

But the basic unit test worked well
for Merge and otherSort….

Coverage != Completeness

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Key idea: Inject bugs in the program by mutating the source
code.
• Ideally: at least one test should fail on the mutated program (=

catch bug).
• If this happens, the mutant is said to be “killed”.
• If all tests continue to pass under the mutated program, then the mutant is said

to “survive”.
• Mutation score = (mutants killed) / (total mutants). This is a better predictor of

bug-finding capability than coverage.

• Competent programmer assumption: programs are mostly
correct, except for very small errors.
• Shows that tests are falsifiable at the boundary of implementation (as opposed to boundary of

specification).

Mutation Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Sample mutations include:
• Change ‘a + b’ to ‘a – b’
• Change ‘if (a > b)’ to ‘if (a >= b)’ or ‘if(b > a)’
• Change ‘i++’ to ‘i—’
• Replace integer variables with 0
• Change ‘return x’ to ‘return True’ (or some other constant)
• Delete lines containing void method calls (e.g. ‘x.setFoo(1)’)
• … and many more

• Over time, standard list of mutators curated by researchers
• Pitest is a popular mutation testing tool for Java (pitest.org)

Mutation Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Nice idea but has several limitations:
1. Equivalent mutations: Modifications that do not affect program semantics

(e.g. affecting the pivot in Quicksort).

2. Needs a pretty complete test oracle: Otherwise, some genuine bugs may
never be caught. We’ll come back to this point later.

3. Expensive to run. N mutants require N test executions. Program testing
costs scale quadratically (because N also grows with size).

Mutation Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Obvious in some applications (e.g. “sort()”) but more
challenging in others (e.g. “encrypt()” or UI-based tests)

• Lack of good oracles can limit the scalability of testing.
Easy to generate lots of input data, but not easy to validate
if output (or other program behavior) is correct.

• Fortunately, we have some tricks.

Test Oracles

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Intends to validate invariants that are always true of a
computed result.
• E.g. if testing a list-reversing function called `rev`, then we have the invariant:

`rev(rev(list)).equals(list)`

• Key idea: Can now easily scale testing to very large data
sets, either hand-written or automatically generated,
without the need for hard-coding expected outputs
completely.

Property-Based Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• If you have two implementations of the same specification, then their output
should match on all inputs.
• E.g. `timSort(x).equals(quickSort(x))` à should always be true
• Special case of a property test, with a free oracle.

• If a differential test fails, at least one of the two implementations is wrong.
• But which one?
• If you have N > 2 implementations, run them all and compare. Majority wins (the odd one out is buggy).

• Differential testing works well when testing programs that implement standard
specifications such as compilers, browsers, SQL engines, XML/JSON parsers,
media players, etc.
• Not feasible in general

Differential Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Differential testing through time (or versions, say V1 and
V2).

• Assuming V1 and V2 don’t add a new feature or fix a
known bug, then f(x) in V1 should give the same result as
f(x) in V2.

• Key Idea: Assume the current version is correct. Run
program on current version and log output. Compare all
future versions to that output.

Regression Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Security testing aims to find vulnerabilities that may be
exploited by an attacker and to provide convincing evidence
that the system is sufficiently secure.
• The tests should demonstrate that the system can resist attacks

on its availability, attacks that try to inject malware and attacks
that try to corrupt or steal users’ data and identity.
• Comprehensive security testing requires specialist knowledge

of software vulnerabilities and approaches to testing that can
find these vulnerabilities.

Security testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• A risk-based approach to security testing involves identifying
common risks and developing tests to demonstrate that the
system protects itself from these risks.
• You may also use automated tools that scan your system to

check for known vulnerabilities, such as unused HTTP ports
being left open.
• Based on the risks that have been identified, you then design

tests and checks to see if the system is vulnerable.
• It may be possible to construct automated tests for some of

these checks, but others inevitably involve manual checking of
the system’s behaviour and its files.

Risk-based security testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Unauthorized attacker gains access to a system using
authorized credentials
• Authorized individual accesses resources that are forbidden to

them
• Authentication system fails to detect unauthorized attacker
• Attacker gains access to database using SQL poisoning attack
• Improper management of HTTP session
• HTTP session cookies revealed to attacker
• Confidential data are unencrypted
• Encryption keys are leaked to potential attackers

Examples of security risks

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

FindBugs (2006!)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Time!

CRICOS PROVIDER #00120C

Test Automation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Tests first!
• Popular agile technique
• Write tests as specifications before code
• Never write code without a failing test
• Claims:
• Design approach toward testable design
• Think about interfaces first
• Avoid unneeded code
• Higher product quality
• Higher test suite quality
• Higher overall productivity

Test Driven Development (TDD)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Common bar for contributions

Chromium

Firefox

Docker

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Usual model:
• Introduce regression tests for bug fixes, etc.
• Compare results as code evolves
• Code1 + TestSet à TestResults1

• Code2 + TestSet à TestResults2

• As code evolves, compare TestResults1 with TestResults2, etc.

• Benefits:
• Ensure bug fixes remain in place and bugs do not reappear.

• Reduces reliance on specifications, as <TestSet,TestResults1> acts as one.

Regression testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Continuous Integration

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Unit testing
• Integration testing
• System testing

Testing Levels

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Unit testing
• Code level, E.g. is a function implemented correctly?
• Does not require setting up a complex environment
• Integration testing
• Do components interact correctly? E.g. a feature that cuts across client and

server.
• Usually requires some environment setup, but can abstract/mock out other

components that are not being tested (e.g. network)
• System testing
• Validating the whole system end-to-end (E2E)
• Requires complete deployment in a staging area, but fake data
• Testing in production
• Real data but more risks

Testing Levels

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

E2E
Integratio

n
Unit

What’s a good distribution of test
levels?

E2E

Integration

Unit

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

The test pyramid

Unit tests

Feature tests

System
tests

Increased automation
Reduced costs

Figure 9.5 The test pyramid

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• It is good practice to structure automated tests into three parts:
• Arrange You set up the system to run the test. This involves defining the test

parameters and, if necessary, mock objects that emulate the functionality of code
that has not yet been developed.

• Action You call the unit that is being tested with the test parameters.
• Assert You make an assertion about what should hold if the unit being tested has

executed successfully. In program on the previous slide, we use assertEquals,
which checks if its parameters are equal.

• If you use equivalence partitions to identify test inputs, you
should have several automated tests based on correct and
incorrect inputs from each partition.

Automated tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Generally, users access features through the product’s
graphical user interface (GUI).
• However, GUI-based testing is expensive to automate so it is

best to design your product so that its features can be directly
accessed through an API and not just from the user interface.
• The feature tests can then access features directly through the

API without the need for direct user interaction through the
system’s GUI.
• Accessing features through an API has the additional benefit

that it is possible to re-implement the GUI without changing the
functional components of the software.

Automated feature testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Feature editing through an API

Feature 1

Feature 3 Feature 4

Feature 2

API

Browser or mobile app interface

Figure 9.6 Feature testing through an API

Feature
tests

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• System testing, which should follow feature testing, involves testing
the system as a surrogate user.
• As a system tester, you go through a process of selecting items from

menus, making screen selections, inputting information from the
keyboard and so on.
• You are looking for interactions between features that cause

problems, sequences of actions that lead to system crashes and so on.
• Manual system testing, when testers have to repeat sequences of

actions, is boring and error-prone. In some cases, the timing of actions
is important and is practically impossible to repeat consistently.
• To avoid these problems, testing tools have been developed that can record a series of

actions and automatically replay these when a system is retested

System testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Interaction recording and playback

System being tested

System API

Interaction
session record

User action
recording

User action
playback

Figure 9.7 Interaction recording and playback

Browser or mobile app interface

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Test-driven development (TDD) is an approach to program
development that is based around the general idea that you should
write an executable test or tests for code that you are writing before
you write the code.
• It was introduced by early users of the Extreme Programming agile

method, but it can be used with any incremental development
approach.
• Test-driven development works best for the development of individual

program units and it is more difficult to apply to system testing.
• Even the strongest advocates of TDD accept that it is challenging to

use this approach when you are developing and testing systems with
graphical user interfaces.

Test-driven development

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Test-driven development

Write code stub that
will fail test

Run all
automated tests

Implement code that
should cause failing test to pass

Identify partial implementation
of functionality

Functionality
complete

Functionality
incomplete

Refactor code
if required

All tests pass

Identify new
functionality

Run all
automated tests

Test failure

Figure 9.8 Test-driven development

Start

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Identify partial implementation
Break down the implementation of the functionality required into
smaller mini-units. Choose one of these mini-units for implementation.
• Write mini-unit tests

Write one or more automated tests for the mini-unit that you have
chosen for implementation. The mini-unit should pass these tests if it
is properly implemented.
• Write a code stub that will fail test

Write incomplete code that will be called to implement the mini-unit.
You know this will fail.
• Run all existing automated tests

All previous tests should pass. The test for the incomplete code
should fail.

Stages of test-driven development (1)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Implement code that should cause the failing test to pass
Write code to implement the mini-unit, which should cause
it to operate correctly
• Rerun all automated tests

If any tests fail, your code is probably incorrect. Keep
working on it until all tests pass.
• Refactor code if necessary

If all tests pass, you can move on to implementing the
next mini-unit. If you see ways of improving your code, you
should do this before the next stage of implementation.

Stages of test-driven development (2)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• It is a systematic approach to testing in which tests are clearly linked to sections of
the program code.

• This means you can be confident that your tests cover all of the code that has been
developed and that there are no untested code sections in the delivered code. In my view,
this is the most significant benefit of TDD.

• The tests act as a written specification for the program code. In principle at least, it
should be possible to understand what the program does by reading the tests.

• Debugging is simplified because, when a program failure is observed, you can
immediately link this to the last increment of code that you added to the system.

• It is argued that TDD leads to simpler code as programmers only write code that’s
necessary to pass tests. They don’t over-engineer their code with complex features
that aren’t needed.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Benefits of test-driven development

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Time!

CRICOS PROVIDER #00120C

Limitations of Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

•What does testing help us achieve?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Why Should We Test?

CRICOS PROVIDER #00120C

• Program/system functionality:
• Execution space (white box).

• Input or requirements space (black box).

• The expected user experience (usability).
• GUI testing, A/B testing

• The expected performance envelope (performance,
reliability, robustness, integration).
• Security, robustness, fuzz, and infrastructure testing.
• Performance and reliability: soak and stress testing.

• Integration and reliability: API/protocol testing

Things we might try to test

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Functional errors
• Performance errors
• Deadlock
• Race conditions
• Boundary errors
• Buffer overflow
• Integration errors
• Usability errors
• Robustness errors
• Load errors

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Software Errors

• Design defects
• Versioning and configuration

errors
• Hardware errors
• State management errors
• Metadata errors
• Error-handling errors
• User interface errors
• API usage errors
• …

CRICOS PROVIDER #00120C

• [Low bar] Ensure that our software meets requirements, is correct, etc.
• Preventing bugs or quality degradations from being accidentally

introduced in the future
• Helps uncover unexpected behaviors that can’t be identified by reading

source code
• Increased confidence in changes (“will I break the internet with this

commit?”)
• Bridges the gap between a declarative view of the system (i.e.,

requirements) and an imperative view (i.e., implementation) by means of
redundancy.
• Tests are executable documentation; increases code maintainability
• Forces writing testable code <-> checks software design

Value of Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• TDD discourages radical program change
I found that I was reluctant to make refactoring decisions that I knew would cause many tests to fail. I
tended to avoid radical program change for this reason.

• I focused on the tests rather than the problem I was trying to solve
A basic principle of TDD is that your design should be driven by the tests you have written. I found that I was
unconsciously redefining the problem I was trying to solve to make it easier to write tests. This meant that I
sometimes didn’t implement important checks, because it was difficult to write tests in advance of their
implementation.

• I spent too much time thinking about implementation details rather than the programming problem
Sometimes when programming, it is best to step back and look at the program as a whole rather than
focusing on implementation details. TDD encourages a focus on details that might cause tests to pass or fail
and discourages large-scale program revisions.

• It is hard to write ‘bad data’ tests
Many problems involving dealing with messy and incomplete data. It is practically impossible to anticipate all
of the data problems that might arise and write tests for these in advance. You might argue that you should
simply reject bad data but this is sometimes impractical.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Sommerville’s reasons for not using
TDD

CRICOS PROVIDER #00120C

•What Can We Run Automated Tests For?
• Correctness
• Performance
• Reliability
• Security?
• Maintainability?

•What Can We NOT (Easily) Test For?
• Can’t prove correctness or other quality attributes over all cases:
• can only measure a sample

• Only as good as the tests you write – will come back to Oracle Problem
• Testing does not validate specifications / requirements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Limitations of Testing

CRICOS PROVIDER #00120C

"Testing shows the presence, not the absence of bugs.”
 -Edsger W. Dijkstra
• Testing doesn’t really give any formal assurances
•Writing tests is hard, time consuming
• Knowing if your tests are good enough is not obvious
• Executing tests can be expensive, especially as software

complexity and configuration space grows
• Full test suite for a single large app can take several days to run

• Halting Problem

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Limitations of Testing

CRICOS PROVIDER #00120C

• At Release Time?
• After Every Code Change?
• After Writing New Code?
• Before Writing New Code?
• Before or After Merging?
• In Production?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

When Should We Test?

CRICOS PROVIDER #00120C

• Line coverage
• Statement coverage
• Branch coverage
• Instruction coverage
• Basic-block coverage
• Edge coverage
• Path coverage
• …

Code Coverage

‘X’ coverage = Number of ‘X’ executed / Total number of ‘X’ in program

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Code Coverage

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

We can measure coverage on almost
anything

A. Zeller, Testing and Debugging Advanced course, 2010

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Recall: issues with metrics and incentives
• Also: Numbers can be deceptive
• 100% coverage != exhaustively tested

• “Coverage is not strongly correlated with suite
effectiveness”
• Based on empirical study on GitHub projects [Inozemtseva and Holmes,

ICSE’14]

• Still, it’s a good low bar
• Code that is not executed has definitely not been tested

Beware of coverage chasing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Distinguish code being tested and code being executed
• Library code >>>> Application code
• Can selectively measure coverage

• All application code >>> code being tested
• Not always easy to do this within an application

Coverage of what?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• What’s better, tests that always pass or tests that always fail?
• Tests should ideally be falsifiable. Boundary determines

specification
• Ideally:
• Correct implementations should pass all tests
• Buggy code should fail at least one test
• Intuition behind mutation testing
• What if tests have bugs?
• Pass on buggy code or fail on correct code
• Even worse: flaky tests
• Pass or fail on the same test case nondeterministically
• What’s the worst type of test?

Coverage != Outcome

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Time!

CRICOS PROVIDER #00120C

Fuzzing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

def p1(x):
 if x * x – 10 == 15:
 return True
 return False

Puzzle:
Find x such that p1(x) returns True

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

def p2(x):
 if x > 0 and x < 1000:
 if ((x - 32) * 5/9 == 100):
 return True
 return False

Puzzle:
Find x such that p2(x) returns True

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

def p3(x):

 if x > 3 and x < 100:

 z = x - 2

 c = 0

 while z >= 2:

 if z ** (x - 1) % x == 1:

 c = c + 1

 z = z - 1

 if c == x - 3:
 return True

 return False

Puzzle:
Find x such that p3(x) returns True

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Original: https://xkcd.com/1210 CC-BY-NC 2.5

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Fuzz Testing

https://xkcd.com/1210

CRICOS PROVIDER #00120C

Communications of the ACM (1990)

“

”
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Fuzz Testing

CRICOS PROVIDER #00120C

Fuzz Testing

Input Program
Execute

w0o19[a%#
1990 study found crashes in:
adb, as, bc, cb, col, diction, emacs, eqn,
ftp, indent, lex, look, m4, make, nroff,
plot, prolog, ptx, refer!, spell, style, tsort,
uniq, vgrind, vi

/dev/random

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Causes: incorrect arg validation, incorrect type casting,
executing untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero,
use-after-free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

Common Fuzzer-Found Bugs in C/C++

How to identify these bugs in languages like C/C++?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Address Sanitizer (ASAN)
• LeakSanitizer (comes with ASAN)
• Thread Sanitizer (TSAN)
• Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

Automatic Oracles: Sanitizers

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

https://github.com/google/sanitizers

CRICOS PROVIDER #00120C

AddressSanitizer

int get_element(int* a, int i) {
 return a[i];
}

int get_element(int* a, int i) {
 if (a == NULL) abort();
 return a[i];
}

int get_element(int* a, int i) {
 if (a == NULL) abort();
 region = get_allocation(a);
 if (in_heap(region)) {
 low, high = get_bounds(region);
 if ((a + i) < low || (a +i) > high) {
 abort();
 }
 }
 return a[i];
}

int get_element(int* a, int i) {
 if (a == NULL) abort();
 region = get_allocation(a);
 if (in_stack(region)) {
 if (popped(region)) abort();
 …
 }
 if (in_heap(region)) { ... }
 return a[i];
}

Is it null?

Is the access out of bounds?

Is this a reference to a stack-allocated variable after return?

Compile with `clang –fsanitize=address`

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Asan is a memory error detector for C/C++. It finds:
• Use after free (dangling pointer dereference)
• Heap buffer overflow
• Stack buffer overflow

• Global buffer overflow
• Use after return

• Use after scope
• Initialization order bugs

• Memory leaks

AddressSanitizer

https://github.com/google/sanitizers/wiki/AddressSanitizer

Slowdown about 2x on SPEC CPU 2006

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Exercise: Write down two strengths and two weaknesses
of fuzzing. Bonus: Write down one or more assumptions
that fuzzing depends on.

Strengths and Limitations

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Strengths:
• Cheap to generate inputs
• Easy to debug when a failure is identified

• Limitations:
• Randomly generated inputs don’t make sense most of the time.
• E.g. Imagine testing a browser and providing some ”input” HTML randomly: dgsad5135o gsd;gj

lsdkg3125j@!T%#(W+123sd asf j

• Unlikely to exercise interesting behavior in the web browser
• Can take a long time to find bugs. Not sure when to stop.

Strengths and Limitations

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Mutation-Based Fuzzing (e.g. Radamsa)

Input
Pick

Input’
Random
Mutation Program

ExecuteInitial
Input

Input
Input

Input

Seeds

<foo></foo> <woo>?</oo>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

§Binary input
§ Bit flips, byte flips
§ Change random bytes
§ Insert random byte chunks
§ Delete random byte chunks
§ Set randomly chosen byte chunks to interesting values e.g. INT_MAX,

INT_MIN, 0, 1, -1, …
§ Other suggestions?

§Text input
§ Insert random symbols or keywords from a dictionary
§ Other suggestions?

Mutation Heuristics

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

American Fuzzy Lop
(https://github.com/google/AFL)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Coverage-Guided Fuzzing (e.g. AFL)

Input
Pick

Input’
Random
Mutation Program

Execute

Sav
e?

Execution feedback

No

Yes

Add
Input’

Initial
Input

Input
Input

Input

Seeds

Coverage
Instrumentation

𝑐𝑜𝑣𝑒𝑟𝑎𝑔𝑒New
branch

coverage
?

<foo></foo> <woo>?</oo>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Coverage-Guided Fuzzing with AFL

http://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Coverage-Guided Fuzzing with AFL

http://lcamtuf.coredump.cx/afl/

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

http://lcamtuf.coredump.cx/afl/

CRICOS PROVIDER #00120C

ClusterFuzz @ Chromium

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

•Where “inputs” are not just strings or binary files?
• Yes! Possible to randomly generate strongly typed values,

data structures, API calls, etc.
• Recall: Property-Based Testing

Can fuzzing be applied to unit testing?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Random List<Integer>

List list = new ArrayList();
while (randomBoolean()) { // randomly stop/go
 list.append(randomInt()); // random element
}
return list;

List list = new ArrayList();
int len = randomInt(); // pick a random length
for (int i = 0 to len) {
 list.append(randomInt()); // random element
}
return list;

Generators
Exercise: Write a generator for
Creating random HashMap<String, Integer>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Mutator for list: List<Integer>
int k = randomInt(0, len(list));
int action = randomChoice(ADD, DELETE, UPDATE);
switch (action) {
 case UPDATE: list.set(k, randomInt()); // update element at k
 case ADD: list.addAt(k, randomInt()); // add random element at k
 case DELETE: list.removeAt(k); // delete k-th element
}

Mutators

Exercise: Write a mutator
HashMap<String, Integer>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

https://www.fuzzingbook.org/

The Fuzzing Book

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

https://www.fuzzingbook.org/

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Time!

CRICOS PROVIDER #00120C

Performance Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Goal: Identify performance bugs. What are these?
• Unexpected bad performance on some subset of inputs
• Performance degradation over time
• Difference in performance across versions or platforms

• Not as easy as functional testing. What’s the oracle?
• Fast = good, slow = bad // but what’s the threshold?
• How to get reliable measurements?

• How to debug where the issue lies?

Performance Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

•Measure execution time of critical components
• Log execution times and compare over time

Performance Regression Testing

Source: https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/speed/addressing_performance_regressions.md

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Firefox

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Finding bottlenecks in execution time and memory
• Flame graphs are a popular visualization of resource

consumption by call stack.

Profiling

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Domain-Specific Perf Testing (e.g.
JMeter)

http://jmeter.apache.org

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

http://jmeter.apache.org/

CRICOS PROVIDER #00120C

•Modeling and simulation
• e.g. queuing theory

• Specify load distributions
and derive or test configurations

Performance-driven Design

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Robustness testing technique: test beyond the limits of
normal operation.
• Can apply at any level of system granularity.
• Stress tests commonly put a greater emphasis on

robustness, availability, and error handling under a heavy
load, than on what would be considered “correct” behavior
under normal circumstances.

Stress testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Problem: A system may behave exactly as expected under
artificially limited execution conditions.
• E.g., Memory leaks may take longer to lead to failure (also motivates

static/dynamic analysis, but we’ll talk about that later).

• Soak testing: testing a system with a significant load over
a significant period of time (positive).
• Used to check reaction of a subject under test under a

possible simulated environment for a given duration and
for a given threshold.

Soak testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Time!

CRICOS PROVIDER #00120C

Chaos Engineering

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

What kind of failures can
happen here?

How likely is that error to
happen?

How do I fix it?

Monolithic Application

Container

PostgreSQL ML Model

Mayan EDMS

Microservice

Process Call

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

What kind of failures can happen here?

How likely is that error to happen?

How do I fix it?

Container

Microservice Application

Container

PostgreSQL

Mayan EDMS

Container

ML Model

Remember, these calls are
messages sent on an
unreliable network.

Microservice

Process Call

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

1.Network may be partitioned

2.Server instance may be down

3.Communication between services may be delayed

4.Server could be overloaded and responses delayed

5.Server could run out of memory or CPU

Failures in Microservice Architectures

All of these issues
can be indistinguishable

from one another!

Making the calls across the network
to multiple machines makes the

probability that the system is
operating under failure much

higher.

These are the problems of
latency and partial failure.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

How do we even begin to test these scenarios?

Is there any software that can be used to test these types of failures?

Let’s look at a few ways companies do this.

Where Do We Start?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Purposely injecting failures into critical systems in order to:

• Identify flaws and “latent defects”
• Identify subtle dependencies (which may or may not lead to a flaw/defect)

• Prepare a response for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

Game Days

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Our applications are built on and with “unreliable” components

Failure is inevitable (fraction of percent; at Google scale, ~multiple times)

Goals:

• Preemptively trigger the failure, observe, and fix the error

• Script testing of previous failures and ensure system remains resilient
• Build the necessary relationships between teams before disaster strikes

Game Days

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Full data center destruction (Amazon EC2 region)

• No advanced notice of which data center will be taken offline
• No notice of when the data center will be taken offline

• Only advance notice (months) that a GameDay will be happening
• Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for
detecting errors and paging employees was located in the zone of the failure!

Example: Amazon GameDay

Not all failures can be actually
performed and must be

simulated!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

1.Anticipation: know what to expect

2.Monitoring: know what to look for

3.Response: know what to do

4.Learning: know what just happened
 (e.g, postmortems)

Cornerstones of Resilence

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Terminate network in Sao Paulo for testing:
• Hidden dependency takes down links in Mexico which

would have remained undiscovered without testing

Turn off data center to find that machines won’t come
back:
• Ran out of DHCP leases (for IP address allocation) when a

large number of machines come back online
unexpectedly.

Some Example Google Issues

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Significant deployment in Amazon Web Services in order
to remain
elastic in times of high and low load (first public, 100% w/o
content delivery.)

Pushes code into production and modifies runtime
configuration
hundreds of times a day

Key metric: availability

Netflix: Cloud Computing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• A Netflix infrastructure testing system.
• “Malicious” programs randomly trample on components,

network, datacenters, AWS instances…
• Chaos monkey was the first – disables production instances at random.
• Other monkeys include Latency Monkey, Doctor Monkey, Conformity Monkey,

etc… Fuzz testing at the infrastructure level.
• Force failure of components to make sure that the system architecture is

resilient to unplanned/random outages.

• Netflix has open-sourced their chaos monkey code.

Chaos monkey/Simian army

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Netflix UI: AppBoot

My List RecommendationsRatingsUser ProfilesBookmarks

AppBoot

Microservice

Remote Call

What happens if the
bookmark service is down?

Search

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Allow the system to degrade in a way it’s still usable

Fallbacks:
• Cache miss due to failure of cache;
• Go to the bookmarks service and use value at possible latency

penalty

Personalized content, use a reasonable default instead:
• What happens if recommendations are unavailable?
• What happens if bookmarks are unavailable?

Graceful Degradation: Anticipating
Failure

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

1.Build a hypothesis around steady state behavior

2.Vary real-world events
experimental events, crashes, etc.

3.Run experiments in production
control group vs. experimental group
draw conclusions, invalidate hypothesis

4.Automate experiments to run continuously

Principles of Chaos Engineering

Are users complaining?

Does everything seem to
be working properly?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Back to quality attributes: availability!

Steady State Behavior

SPS is the
primary

indicator
of the system’s
overall health.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Time!

CRICOS PROVIDER #00120C

A/B Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• This is hard
• Capture and Replay Strategy
• mouse actions
• system events

• Test Scripts: (click on button labeled "Start" expect value X in field
Y)
• Lots of tools and frameworks
• e.g. Selenium for browsers

• (Avoid load on GUI testing by separating model from GUI)
• Beyond functional correctness?

Automating GUI/Web Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Live System?
• Extra Testing System?
• Check output / assertions?
• Effort, Costs?
• Reproducible?
• Higher Quality Feedback to Developers

Manual Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Controlled randomized experiment with two variants, A
and B, which are the control and treatment.
• One group of users given A (current system); another

random group presented with B; outcomes compared.
• Often used in web or GUI-based applications, especially to

test advertising or GUI element placement or design
decisions.

Usability: A/B testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• A company sends an advertising email to its customer
database, varying the photograph used in the ad...

Example

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Act now! Sale ends soon!

Example: group A (99% of users)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Example: group B (1%)

Act now! Sale ends soon!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

• Requires good metrics and statistical tools to identify
significant differences.
• E.g. clicks, purchases, video plays
•Must control for confounding factors

A/B Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Time!

