Week: COMP 2120/ COMP 6120
10 of 12

TESTING

ANU Acknowledgment of Country

I\ AIATSIS Explore Family history Collection Research Education What's new About Shop Search Q

-_-—-_mm-----_--

“We acknowledge and g T OMTE g sYoNEY
celebrate the First b ¢
Australians on whose Ve Vene N 0.
traditional lands we | v 41
meet, and pay our -
respect to the elders

past and present.”

. .
o, Merimbula S O

Cdar

;* Ridwell el Leaflet | Rendered with MapTiler Desktop /]\
https://aiatsis.gov.au/explore/map-indigenous-austra

s —

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

https://aiatsis.gov.au/explore/map-indigenous-australia

Today

* Types of Testing
 Test Automation

_imitations of Testing
~uzzing

Performance Testing

Chaos Engineering
A/B Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Q: When | was 4, my sister was 2. |
am now 44. How old is my sister?

Programmer: 44 - (4 - 2) = 42

Tester:

When | was 4, my sister was 2. | am now 44. How old is my
sister?

"7, Answer) Follow 97 Q2 Request D1 7 &

100+ Answers
B Samuel Lipoff, studied at Harvard University ®

This is a tough one. She might be 42, but she could be 41 or 43 also, since you don't say
when your birthday is and her birthday is. Also, she could be dead. Finally, you might have
thought she was your sister but actually your mom had an affair with another man and the
woman who is 1-3 years younger than you is not actually your sister. But your mom may
have given away your real sister for adoption, in which case she's probably older than you.
See why it's tough?

Finally, what if you think your sister is dead, but she actually has become an astronaut on
a secret government project for near light-speed travel? Then your sister would be aging
more slowly than you, so she could potentially be even younger than 41.

The Story of Google Web Server

In Google’s early days, engineer-driven testing was often assumed to be of little
importance. Teams regularly relied on smart people to get the software right. A few
systems ran large integration tests, but mostly it was the Wild West. One product in
particular seemed to suffer the worst: it was called the Google Web Server, also
known as GWS.

GWS is the web server responsible for serving Google Search queries and is as impor-
tant to Google Search as air traffic control is to an airport. Back in 2005, as the project
swelled in size and complexity, productivity had slowed dramatically. Releases were
becoming buggier, and it was taking longer and longer to push them out. Team mem-
bers had little confidence when making changes to the service, and often found out
something was wrong only when features stopped working in production. (At one
point, more than 80% of production pushes contained user-affecting bugs that had to
be rolled back.)

To address these problems, the tech lead (TL) of GWS decided to institute a policy of
engineer-driven, automated testing. As part of this policy, all new code changes were
required to include tests, and those tests would be run continuously. Within a year of
instituting this policy, the number of emergency pushes dropped by half. This drop
occurred despite the fact that the project was seeing a record number of new changes
every quarter. Even in the face of unprecedented growth and change, testing brought
renewed productivity and confidence to one of the most critical projects at Google.
Today, GWS has tens of thousands of tests, and releases almost every day with rela-
tively few customer-visible failures.

The changes in GWS marked a watershed for testing culture at Google as teams in
other parts of the company saw the benefits of testing and moved to adopt similar
tactics.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

0
\

What is Testing?7??

 What is testing?

* Execution of code on sample inputs in a controlled environment

* Principle goals:
* Validation: program meets requirements, including quality attributes.
» Defect testing: reveal failures.

e Other goals:
* Reveal bugs (main goal)
e Assess quality (hard to quantify)
» Clarify the specification, documentation
* Verify contracts

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

What is Testing???

« What can we test for? (Software quality attributes)
« What can we not test for?

 Why should we test? What does testing achieve?
 What does testing not achieve?

* When should we test?
 And where should we run the tests?

« What should we test?
« What CAN we test?

* How should we test?
« How many ways can you test the sort() function?

« How good are our tests?
« How to measure test quality?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Software testing

«Software testing is a process in which you execute your program
using data that simulates user inputs.

*You observe its behaviour to see whether or not your program is
doing what it is supposed to do.

*Tests pass if the behaviour is what you expect. Tests fail if the behaviour differs
from that expected.

*|f your program does what you expect, this shows that for the inputs used, the
program behaves correctly.
[f these inputs are representative of a larger set of inputs, you
can infer that the program will behave correctly for all members

of this larger input set.
_

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Program bugs

* |f the behaviour of the program does not match the behaviour
that you expect, then this means that there are bugs in your
program that need to be fixed.

* There are two causes of program bugs:

 Programming errors You have accidentally included faults in your program code.
For example, a common programming error is an ‘off-by-1" error where you make a
mistake with the upper bound of a sequence and fail to process the last element
in that sequence.

« Understanding errors You have misunderstood or have been unaware of some of
the details of what the program is supposed to do. For example, if your program
processes data from a file, you may not be aware that some of this data is in the
wrong format, so your program doesn’t include code to handle this.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Test Strategies

as.

Specification-based testing
Boundary-value testing
Structural testing

Property testing
Regression testing
Differential testing
Property-based testing
Mutation testing

e https://testing.googleblog.com/search/label/TotT

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Types of testing

* Functional testing
Test the functionality of the overall system. The goals of functional testing are to discover as many
bugs as possible in the implementation of the system and to provide convincing evidence that the
system is fit for its intended purpose.

» User testing
Test that the software product is useful to and usable by end-users. You need to show that the
features of the system help users do what they want to do with the software. You should also show
that users understand how to access the software’s features and can use these features effectively.

* Performance and load testing
Test that the software works quickly and can handle the expected load placed on the system by its
users. You need to show that the response and processing time of your system is acceptable to end-
users. You also need to demonstrate that your system can handle different loads and scales
gracefully as the load on the software increases.

» Security testing

'gest that the software maintains its integrity and can protect user information from theft and
amage.

*te

~
—
=7

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Functional testing

* Functional testing involves developing a large set of program tests so
that, ideally, all of a program’s code is executed at least once.

 The number of tests needed obviously depends on the size and the
functionality of the application.

* For a business-focused web application, you may have to develop
thousands of tests to convince yourself that your product is ready for
release to customers.

* Functional testing is a staged activity in which you initially test
individual units of code. You integrate code units with other units to
create larger units then do more testing.

* The process continues until you have created a complete system ready
for release.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Functional testing

Start
Unit
Testing \
Release Feature
testing testing
System /
testing

N . . e %
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Functional testing processes

* Unit testing
The aim of unit testing is to test program units in isolation. Tests should be designed to execute all of the
code in a unit at least once. Individual code units are tested by the programmer as they are developed.

* Feature testing
Code units are integrated to create features. Feature tests should test all aspects of a feature. All of the
programmers who contribute code units to a feature should be involved in its testing.

+ System testing
Code units are integrated to create a working (perhaps incomplete) version of a system. The aim of system
testing is to check that there are no unexpected interactions between the features in the system. System
testing may also involve checking the responsiveness, reliability and security of the system. In large
companies, a dedicated testing team may be responsible for system testing. In small companies, this is
impractical, so product developers are also involved in system testing.

* Release testing
The system is packaged for release to customers and the release is tested to check that it operates as
expected. The software may be released as a cloud service or as a download to be installed on a customer’s
computer or mobile device. If DevOps is used, then the development team are responsible for release testing
otherwise a separate team has that responsibility.

-
=
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Unit testing

* As you develop a code unit, you should also develop tests for that code.

* A code unit is anything that has a clearly defined responsibility. It is usually a function or class
method but could be a module that includes a small number of other functions.

» Unit testing is based on a simple general principle:

- If a program unit behaves as expected for a set of inputs that have some shared characteristics, it will
behave in the same way for a larger set whose members share these characteristics.

* To test a program efficiently, you should identify sets of inputs (equivalence partitions) that
will be treated in the same way in your code.

- The equivalence partitions that you identify should not just include those containing inputs
that produce the correct values. You should also identify ‘incorrectness partitions’ where the
inputs are deliberately incorrect.

_

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

JUnit

Popular unit-testing framework for Java

Easy to use

Tool support available (Maven, Gradle, etc.)

Can be used as design mechanis import org.junit.jupiter.api.*;
import static org.junit.jupiter.api.Assertions.x;

import java.util.x;

public class Tester {
@Test
public void testSort() {
int[] input = {8, 16, 15, 4, 42, 23};
int[] output = {4, 8, 15, 16, 23, 42};
assertArrayEquals(sort(input), output);

}

int[] sort(int[] args) {

l ieterTntanars in — noaw Arraul 1e+ ()

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Basic Elements of a Test

* Tests usually need an input and expected output.

@Test

public void testSort() {
int[] input = {8, 16, 15, 4, 42, 23};
int[] output = {4, 8, 15, 16, 23, 42};
assertArrayEquals(sort(input), output);

}

 More generally, a test environment, a test harness, and a

test oracle

 Environment: Resources needed to execute a family of tests

« Harness: Triggers execution of a test case (aka entry point)

« Oracle: A mechanism for determining whether a test was successful

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Basic Unit Test for Sort

@Test

public void testSort() {
var input = Arrays.asList(1, 3, 2);
var output = Arrays.asList(1, 2, 3);
Collections.sort(input);
assertEquals(input, output);

}

« What are some interesting values to test?

* List tuples <input, output, reason>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

%er;it Tests (from SE @ Google Chapter

« What are unit tests?

« Small tests are fast and deterministic, allowing developers to run them
frequently as part of their workflow and get immediate feedback

« Easy to write at the same time as the code they’re testing, allowing engineers to
focus their tests on the code they’re working on without having to set up and
understand a larger system

* Promote high levels of test coverage because they are quick and easy to write

« Easy to understand what’s wrong when they fail because each test is
conceptually simple and focused on a particular part of the system

« Serve as documentation and examples, showing engineers how to use the part of
the system being tested and how that system is intended to work

* Should be 80% unit tests (maintainable!) and 20% broader-
scoped

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Avoiding Brittle Tests

» Strive for unchanging tests grest

. Test via public API's public void shouldWriteToDatabase() {
accounts.createUser("foobar");

» Test state, not Interactions verify(database).put("foobar");
}

VEersus

@Test

public void shouldCreateUsers() {
accounts.createUser("foobar");
assertThat(accounts.getUser("foobar")).isNotNull();

}

*x
-
—
N/
=

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Writing Clear Tests

 Make your tests complete and concise

* test’s body should contain all of the information needed to understand it
without containing any irrelevant or distracting information

* Test behaviours, not methods

« Behaviours can often be expressed using the words “given,” “when,” and
“then”: “Given that a bank account is empty, when attempting to withdraw
money from it, then the transaction is rejected.”

* Don’t put logic in tests

a1}

* Write clear failure messages

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Black-box & Specification-Based B2
Testing PNGINEERN

» Test cases are often designed based on behavioral equivalence
classes.

. Alssumption: if test passes for one value => test will pass for all values in the equivalence
class.

« Systematic tests can be drawn from specification.

* For example: A year is a leap year if:
« theyear is divisible by 4;
« and the year is not divisible by 100;
« except when the year is divisible by 400
+ Tests:
- assert isLeapYear(1945) == false
- assert isLeapYear(1944) == true
- assert isLeapYear(1900) == false
- assert isLeapYear(2000) == true

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Boundary-Value Testing

- Aim: Test for cases that are at the “boundary” of equivalence classes
in the specification.
* Small change in input moves it from one class to another.

« Example: Testing a function divide(int a, int b)
* One boundary may beat'a==0b

» Edge case: One of many parameters are at the boundary
» E.g. for divide: a=0, b=42 or a=42,b =0
« E.g. for sort: list contains duplicates, list is empty

« Corner case: Combination of parameters are at the boundary
« E.g. for divide: a=0, b=0

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Unit testing guidelines (1)

» Test edge cases
If your partition has upper and lower bounds (e.g. length of strings,
numbers, etc.) choose inputs at the edges of the range.

* Force errors
Choose test inputs that force the system to generate all error
messages. Choose test inputs that should generate invalid outputs.

* Fill buffers
Choose test inputs that cause all input buffers to overflow.

* Repeat yourself
Repeat the same test input or series of inputs several times.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Unit testing guidelines (2)

lan Sommerville

* Overflow and underflow

If your program does numeric calculations, choose test inputs that
cause it to calculate very large or very small numbers.

* Don’t forget null and zero
If your program uses pointers or strings, always test with null pointers
and strings. If you use sequences, test with an empty sequence. For
numeric inputs, always test with zero.

 Keep count
When dealing with lists and list transformation, keep count of the

number of elements in each list and check that these are consistent
after each transformation.

 One is different

If your program deals with sequences, always test with sequences
that have a single value.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

But, remember...

The Importance of Maintainability

Imagine this scenario: Mary wants to add a simple new feature to the product and is
able to implement it quickly, perhaps requiring only a couple dozen lines of code. But
when she goes to check in her change, she gets a screen full of errors back from the
automated testing system. She spends the rest of the day going through those failures
one by one. In each case, the change introduced no actual bug, but broke some of the
assumptions that the test made about the internal structure of the code, requiring
those tests to be updated. Often, she has difficulty figuring out what the tests were
trying to do in the first place, and the hacks she adds to fix them make those tests
even more difficult to understand in the future. Ultimately, what should have been a
quick job ends up taking hours or even days of busywork, killing Mary’s productivity
and sapping her morale.

Here, testing had the opposite of its intended effect by draining productivity rather
than improving it while not meaningfully increasing the quality of the code under
test. This scenario is far too common, and Google engineers struggle with it every
day. There’s no magic bullet, but many engineers at Google have been working to
develop sets of patterns and practices to alleviate these problems, which we encourage
the rest of the company to follow.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

’ﬁ))g:-

Test Design principles 5'0,%?
ENGINEERING

* Use public APIs only

 Clearly distinguish inputs, configuration, execution, and
oracle

* Be simple; avoid complex control flow such as conditionals
and loops

* Tests shouldn’t need to be frequently changed or
refactored

» Definitely not as frequently as the code being tested changes

Anti-patterns

* Snoopy oracles
* Relying on implementation state instead of observable behavior
« E.g. Checking variables or fields instead of return values

e Brittle tests

« Overfitting to special-case behavior instead of general principle
« E.g. hard-coding message strings instead of behavior

* Slow tests
« Self-explanatory (beware of heavy environments, I/O, and sleep())

* Flaky tests
« Tests that pass or fail nondeterministically

+ Often because of reliance on random inputs, timing (e.g. sleep(1000)), availability of
external services (e.g. fetching data over the network in a unit test), or dependency on order
of test execution (e.g. previous test sets up global variables in certain way)

0.

§
W

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Feature testing

* Features have to be tested to show that the functionality is
implemented as expected and that the functionality meets the real

needs of users.

* For example, if your product has a feature that allows users to login using their Google
account, then you have to check that this registers the user correctly and informs them of

what information will be shared with Google.

* You may want to check that it gives users the option to sign up for email information about
your product.

 Normally, a feature that does several things is implemented by
multiple, interacting, program units.

* These units may be implemented by different developers and all of
these developers should be involved in the feature testing process.

*x
-
—
N/
=

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Types of feature test

e
Engineering Software Products
An Introduction to Modern
Software Engineering

* Interaction tests

These test the interactions between the units that implement the feature. The developers of the units that are combined to
make up the feature may have different understandings of what is required of that feature.

These misunderstandings will not show up in unit tests but may only come to light when the units are integrated.

The integration may also reveal bugs in program units, which were not exposed by unit testing.

Usefulness tests
These test that the feature implements what users are likely to want.

For example, the developers of a login with Google feature may have implemented an opt-out default on registration so that
users receive all emails from a company. They must expressly choose what type of emails that they don’t want.

What might be preferred is an opt-in default so that users choose what types of email they do want to receive.

...

i

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING j

User stories for the sign-in with Goo g s
feature

 User registration
As a user, | want to be able to login without creating a new
account so that | don’t have to remember another login id
and password.

* Information sharing
As a user, | want to know what information you will share
with other companies. | want to be able to cancel my
registration if | don’t want to share this information.

 Email choice
As a user, | want to be able to choose the types of email
that I'll get from you when | register for an account.

P 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Feature tests for sigh-in with Google

lan Sommerville

* Initial login screen m
Test that the screen disEIaying a request for Google account credentials
is correctly displayed when a user clicks on the ‘Sign-in with Google’ link.
Test that the login is completed if the user is already logged in to Google.

* Incorrect credentials
Test that the error message and retry screen is displayed if the user
inputs incorrect Google credentials.

« Shared information
Test that the information shared with Google is displayed, along with a
cancel or confirm option. Test that the registration is cancelled if the
cancel option is chosen.

* Email opt-in
Test that the user is offered a menu of options for email information and
can choose multiple items to opt-in to emails. Test that the user is not
registered for any emails if no options are selected.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

System and release testing

e System testing involves testing the system as a whole,
rather than the individual system features.

« System testing should focus on four things:

» Testing to discover if there are unexpected and unwanted interactions
between the features in a system.

» Testing to discover if the system features work together effectively to
support what users really want to do with the system.

* Testing the system to make sure it operates in the expected way in the
different environments where it will be used.

* Testing the responsiveness, throughput, security and other quality attributes

of the system.
o

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Scenario-based testing

* The best way to systematically test a system is to start
with a set of scenarios that describe possible uses of the
system and then work through these scenarios each time
a new version of the system is created.

* Using the scenario, you identify a set of end-to-end
pathways that users might follow when using the system.

 An end-to-end pathway is a sequence of actions from
starting to use the system for the task, through to
completion of the task.

CRICOS PROVIDER #00120C

Choosing a holiday destination

"Ll 4 | L
Engineering Software Products
An Introduction to Modern

+ Andrew and Maria have a two year old son and a four month old daughter. They live in Scotland and they want to have
a holiday in the sunshine. However, they are concerned about the hassle of flying with young children. They decide to
trﬁ/l?j family holiday planner product to help them choose a destination that is easy to get to and that fits in with their
childrens’ routines.

« Maria navigates to the holiday planner website and selects the ‘find a destination’ page. This presents a screen with a
number of options. She can choose a specific destination or can choose a departure airport and find all destinations
that have direct flights from that airport. She can also input the time band that she'd prefer for flights, holiday dates
and a maximum cost per person.

« Edinburgh is their closest departure airport. She chooses ‘find direct flights’. The system then presents a list of
countries that have direct flights from Edinburgh and the days when these flights operate. She selects France, Italy,
Portugal and Spain and requests further information about these flights. She then sets a filter to display flights that
leave on a Saturday or Sunday after 7.30am and arrive before 6pm.

« She also sets the maximum acceptable cost for a flight. The list of flights is pruned according to the filter and is
redisplayed. Maria then clicks on the flight she wants. This opens a tab in her browser showing a booking form for this
flight on the airline’s website.

*5w

~
—
=

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

End-to-end pathways

a ~ W N

User inputs departure airport and chooses to see only direct flights.
User quits.

User inputs departure airport and chooses to see all flights. User
quits.

User chooses destination country and chooses to see all flights.
User quits.

User inputs departure airport and chooses to see direct flights. User
sets filter specifying departure times and prices. User quits.

User inputs departure airport and chooses to see direct flights. User
sets filter specifying departure times and prices. User selects a
displayed flight and clicks through to airline website. User returns
to holiday planner after booking flight.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Release testing

. Releao?e testing is a type of system testing where a system that’s intended for release to customers is
testeda.

* The fundamental differences between release testing and system testing are:

* Release testing tests the system in its real operational environment rather than in a test environment. Problems
commonly arise with real user data, which is sometimes more complex and less reliable than test data.

« The aim of release testing is to decide if the system is good enough to release, not to detect bugs in the system.
Therefore, some tests that ‘fail’ may be ignored if these have minimal consequences for most users.

* Preparing a system for release involves packaging that system for deployment (e.g. in a container if it
is a cloud service) and installing software and libraries that are used by your product. You must define
configuration parameters such as the name of a root directory, the database size limit per user and so
on.

R
-
N —,
N/
=

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Risk analysis

* Once you have identified security risks, you then analyze R L
them to assess how they might arise. For example, for the
first risk two slides earlier (unauthorized attacker) there are
several possibilities:

 The user has set weak passwords that can be guessed by an attacker.

* The s&/stem’s password file has been stolen and passwords discovered by
attacker.

 The user has not set up two-factor authentication.

« An attacker has discovered credentials of a legitimate user through social
engineering techniques.

* You can then develop tests to check some of these
possibilities.

* For example, you might run a test to check that the code that allows users to
set their passwords always checks the strength of passwords.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

White-box or Structural Testing

 Aim: Test for cases that exercise various program
elements (e.g. functions, lines, statements, branches)

* Key idea: If you don’t execute some code, you can’t find
bugs in that code. So, let’s execute all the code.

 Which one do you think is harder: black-box boundary-
value testing or white-box structural testing?

Coverage of the Basic Unit Test

test session starts
platform darwin -- Python 3.10.4, pytest-7.1.3, pluggy-1.0.0
rootdir: /Users/alex/Dropbox/Teaching/COMP2120/2022S2/TestingExamples
collected 8 items

bubble_sort.py
insertion_sort.py

bubble_sort.py
insertion_sort.py

alex@kanga TestingExamples %

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

But the basic unit test worked well
for Merge and otherSort....

Coverage |= Completeness

| ~ v

‘ENGINEERING

~ %

:QOFTWARE &
ENGINE
* Key idea: Inject bugs in the program by mutating the source

code.

* [deally: at least one test should fail on the mutated program (=

catch bug).
* |f this happens, the mutant is said to be “killed”.

 |f all tests continue to pass under the mutated program, then the mutant is said
to “survive”.

« Mutation score = (mutants killed) / (total mutants). This is a better predictor of
bug-finding capability than coverage.
« Competent programmer assumption: programs are mostly
correct, except for very small errors.
 Shows that tests are falsifiable at the boundary of implementation s opposed to boundary of

specification).
"..'

Mutation Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mutation Testing

« Sample mutations include:

« Change‘a+b' to‘a-b’
Change ‘if (a > b)’ to ‘if (a >=b)’ or ‘if(b > a)’
Change ‘i++ to ‘i—’

Replace integer variables with O

Change ‘return x’ to ‘return True’ (or some other constant)

Delete lines containing void method calls (e.g. ‘x.setFoo(1)’)
e ...and many more

* Over time, standard list of mutators curated by researchers
 Pitest is a popular mutation testing tool for Java (pitest.org)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mutation Testing

2
QO?TWARE
ENCINEERING

* Nice idea but has several limitations:

1.

Equivalent mutations: Modifications that do not affect program semantics
(e.g. affecting the pivot in Quicksort).

Needs a pretty complete test oracle: Otherwise, some genuine bugs may
never be caught. We'll come back to this point later.

Expensive to run. N mutants require N test executions. Program testing
costs scale quadratically (because N also grows with size).

Comparable<T>> partition(T[] array left right) {
mid = (left + right) >>>

pivot = array

(left <= right) {
(less(array[left], pivot)) {
++left
}

(less(pivot, array[right])) {
--right
}

¢

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Test Oracles

* Obvious in some applications (e.g. “sort()”) but more
challenging in others (e.g. “encrypt()” or Ul-based tests)

» Lack of good oracles can limit the scalability of testing.
Easy to generate lots of input data, but not easy to validate
If output (or other program behavior) is correct.

* Fortunately, we have some tricks.

ra 17= 3|3
ﬁsncmsmm;

* Intends to validate invariants that are always true of a
computed result.

« E.g.if testing a list-reversing function called rev’, then we have the invariant:
‘rev(rev(list)).equals(list)’

Property-Based Testing

« Key idea: Can now easily scale testing to very large data
sets, either hand-written or automatically generated,
without the need for hard-coding expected outputs
completely. 8uepeaty

testSameLength(List<Integer> input) {

output = sort(input)

output.size() == input.size() :

ﬁ&;

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

P |
:co%ﬁﬁkf
'ENGINEERING

Differential Testing

* If you have two implementations of the same specification, then their output
should match on all inputs.

« E.g.timSort(x).equals(quickSort(x))" = should always be true
» Special case of a property test, with a free oracle.

 If adifferential test fails, at least one of the two implementations is wrong.

* But which one?
« If you have N > 2 implementations, run them all and compare. Majority wins (the odd one out is buggy).

» Differential testing works well when testing programs that implement standard
specifications such as compilers, browsers, SQL engines, XML/JSON parsers,
media players, etc.

* Not feasible in general

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Regression Testing

V2).

 Assuming V1 and V2 don’t add a new feature or fix a

known bug, then f(x) in V1 should give the same result as
f(x) in V2.

* Key Idea: Assume the current version is correct. Run
program on current version and log output. Compare all
future versions to that output.

P 6120 | WEEK 10 OF 12: TESTING

Security testing

« Security testing aims to find vulnerabilities that may be
exploited by an attacker and to provide convincing evidence
that the system is sufficiently secure.

* The tests should demonstrate that the system can resist attacks
on its availability, attacks that try to inject malware and attacks
that try to corrupt or steal users’ data and identity.

« Comprehensive security testing requires specialist knowledge
of software vulnerabilities and approaches to testing that can
find these vulnerabilities.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Risk-based security testing

* A risk-based approach to security testing involves identifying
common risks and developing tests to demonstrate that the
system protects itself from these risks.

* You may also use automated tools that scan your system to
check for known vulnerabilities, such as unused HTTP ports
being left open.

« Based on the risks that have been identified, you then design
tests and checks to see if the system is vulnerable.

* [t may be possible to construct automated tests for some of
these checks, but others inevitably involve manual checking of
the system’s behaviour and its files.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Examples of security risks

 Unauthorized attacker gains access to a system using
authorized credentials

 Authorized individual accesses resources that are forbidden to
them

* Authentication system fails to detect unauthorized attacker

« Attacker gains access to database using SQL poisoning attack
* Improper management of HT TP session

« HTTP session cookies revealed to attacker

* Confidential data are unencrypted

* Encryption keys are leaked to potential attackers

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

FindBugs (2000!

QERSIT)

N

oé SN

18 / 56
% Q

Ao g
qRYLPS\ 9 1ru

FindBugs

because it's easy’

Docs and Info

FindBugs 2.0

Demo and data

Users and supporters
FindBugs blog

Fact sheet

Manual

Manual(ja/ H 4%5f)

FAQ

Bug descriptions

Bug descriptions(ja/ H A%#)
Bug descriptions(fr)
Mailing lists

Documents and Publications
Links

Downloads
FindBugs Swag

Development
Open bugs
Reporting bugs
Contributing
Dev team

™ NERSI7,
< - e

S -

Q

1,
4/<y\.\':\

FindBugs™ - Find Bugs in Java Programs

This is the web page for FindBugs, a program which uses static analysis to look for bugs in Jav:
terms of the Lesser GNU Public License. The name FindBugs™ and the FindBugs logo are trac
has been downloaded more than a million times.

The current version of FindBugs is 3.0.1.
FindBugs requires JRE (or JDK) 1.7.0 or later to run. However, it can analyze programs compi

The current version of FindBugs is 3.0.1, released on 13:05:33 EST, 06 March, 2015. We are ve
FindBugs. File bug reports on our sourceforge bug tracker

Changes | Talks | Papers | Sponsors | Support

FindBugs 3.0.1 Release

¢ A number of changes described in the changes document, including new bug patterns:
o BSHIFT WRONG ADD PRIORITY,
o CO COMPARETO INCORRECT FLOATING,

DC PARTIALLY CONSTRUCTED,

DM BOXED PRIMITIVE FOR COMPARE,

DM INVALID MIN MAX,

ME MUTABLE ENUM FIELD,

ME ENUM FIELD SETTER,

MS MUTABLE COLLECTION,

MS MUTABLE COLLECTION PKGPROTECT,

DANMCE ADRAV INNEY

2 0 0 0 0 0 0 ©

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Timel

Join by Web PollEv.com/potanin Join by Text Send potanin to 22333

Have you written JUnit tests before?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

@ DALLE History Collections

Edit the detailed description

Surprise me Upload d
pencil drawing of automation

Generate

2l
Mmoo ae——
HR~ JOe-£EN il
3 3 ! = &
‘] o i } J
‘ i . il
¥ T2 > \
Era S §
| } S
S
-

Atiom Anatior

;tuﬁ;to;r;;ltalor AUTOAAT'Ol

Test Automation

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Test Driven Development (TDD)

e Tests first!

* Popular agile technique
* Write tests as specifications before code
* Never write code without a failing test

e Claims:
» Design approach toward testable design :
Think about interfaces first o - -~

(Re)] \
== s
\\,, A // -
4 \ Check
ly 4w Whether
h) all the tests
The test y o) am
o [
Some tests fek
fail y

CODE-DRIVEN TESTING REFACTORING

Avoid unneeded code
Higher product quality
Higher test suite quality
Higher overall productivity

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Common bar for contributions

Chromium
e Changes should include corresponding tests. Automated testing is at
the heart of how we move forward as a project. All changes should
include corresponding tests so we can ensure that there is good
coverage for code and that future changes will be less likely to regress

. : , | _
functionality. Protect your code with tests! Firefox

Testing Policy

Everything that lands in mozilla-central includes automated
tests by default. Every commit has tests that cover every
major piece of functionality and expected input conditions.
Docker
Conventions

Fork the repo and make changes on your fork in a feature branch:

« Ifit's a bugfix branch, name it XXX-something where XXX is the number of the issue
« Ifit's a feature branch, create an enhancement issue to announce your intentions, and name it XXX-
something where XXX is the number of the issue.

Submit unit tests for your changes. Go has a great test framework built in; use it! Take a look at existing tests for
inspiration. Run the full test suite on your branch before submitting a pull request.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Regression testing

e Usual model:

* Introduce regression tests for bug fixes, etc.

« Compare results as code evolves
« Codel + TestSet = TestResultsT
« Code?2 + TestSet - TestResults2

* As code evolves, compare TestResults1 with TestResults?2, etc.
* Benefits:

 Ensure bug fixes remain in place and bugs do not reappear.
 Reduces reliance on specifications, as <TestSet, TestResults1> acts as one.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Continuous Integration

® @
‘ COMMIT % QQ REVIEW STAGING PRODUCTION

1@ @ {® o009 1@ 1@ 1@

BUILD UNIT |NTEGRATION
TESTS TESTS
(J CD PIPELINE
CI PIPELINE
RELATED CODE

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Testing Levels

* Unit testing
* Integration testing
« System testing

Testing Levels

* Unit testing
* Code level, E.g. is a function implemented correctly?
* Does not require setting up a complex environment
 Integration testing

« Do components interact correctly? E.g. a feature that cuts across client and
server.

» Usually requires some environment setup, but can abstract/mock out other
components that are not being tested (e.g. network)

» System testing

« Validating the whole system end-to-end (E2E)

* Requires complete deployment in a staging area, but fake data
* Testing in production

* Real data but more risks

0
\

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

What’s a good distribution of test
levels?

The test pyramid

Increased automation
Reduced costs

System
tests

Feature tests

Unit tests

Engineering Software Products
An Introduction to Modern
Software Engineering

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Automated tests

* |t is good practice to structure automated tests into three parts:

« Arrange You set up the system to run the test. This involves defining the test
parameters and, if necessary, mock objects that emulate the functionality of code
that has not yet been developed.

« Action You call the unit that is being tested with the test parameters.

« Assert You make an assertion about what should hold if the unit being tested has
executed successfully. In program on the previous slide, we use assertEquals,

which checks if its parameters are equal.

* |[f you use equivalence partitions to identify test inputs, you
should have several automated tests based on correct and
incorrect inputs from each partition.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Automated feature testing

* Generally, users access features through the product’s
graphical user interface (GUI).

 However, GUIl-based testing is expensive to automate so it is
best to design your product so that its features can be directly
accessed through an APl and not just from the user interface.

 The feature tests can then access features directly through the
APl without the need for direct user interaction through the
system’s GUI.

* Accessing features through an API has the additional benefit
that it is possible to re-implement the GUI without changing the
functional components of the software.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Feature editing through an API

Browser or mobile app interface

by l

Feature BN API
tests
Y v
Feature 1 Feature 2
Y Y
Feature 3 Feature 4

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

System testing

« System testing, which should follow feature testing, involves testing
the system as a surrogate user.

* As a system tester, you go through a process of selecting items from
menus, making screen selections, inputting information from the
keyboard and so on.

* You are looking for interactions between features that cause
problems, sequences of actions that lead to system crashes and so on.

 Manual system testing, when testers have to repeat sequences of
actions, is boring and error-prone. In some cases, the timing of actions
IS important and is practically impossible to repeat consistently.

* To avoid these problems, testing tools have been developed that can record a series of
actions and automatically replay these when a system is retested

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Interaction recording and playback

An Introduction to Modern
Software Engineering

Browser or mobile app interface

User action Interaction User action
recording session record playback
. System API

System being tested

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Test-driven development

« Test-driven development (TDD) is an approach to program
development that is based around the general idea that you should
write an executable test or tests for code that you are writing before
you write the code.

* |t was introduced by early users of the Extreme Programming agile

method, but it can be used with any incremental development
approach.

« Test-driven development works best for the development of individual
program units and it is more difficult to apply to system testing.

* Even the strongest advocates of TDD accept that it is challenging to

use this approach when you are developing and testing systems with
graphical user interfaces.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Test-driven development

Start Identify new
functionality

Identify partial implementation
of functionality

Write code stub that

will fail test

Functionality
o incomplete
Functionality
complete Run all
automated tests
Refactor code Implement code that
if required should cause failing test to pass
Test failure
Run all
automated tests

All tests pass

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 10 OF 12: TESTING

N . . e %
Engineering Software Products
An Introduction to Modern
Software Engineering

lan Sommerville

CRICOS PROVIDER #00120C

Stages of test-driven development (1 |

 Identify partial implementation
Break down the implementation of the functionality required into
smaller mini-units. Choose one of these mini-units for implementation.

* Write mini-unit tests
Write one or more automated tests for the mini-unit that you have
chosen for implementation. The mini-unit should pass these tests if it
is properly implemented.

* Write a code stub that will fail test
Write incomplete code that will be called to implement the mini-unit.
You know this will fail.

* Run all existing automated tests
All previous tests should pass. The test for the incomplete code

should fail.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Stages of test-driven development (2“

re Products

lan Sommerville

 Implement code that should cause the failing test to pillsi_ i
Write code to implement the mini-unit, which should cause
It to operate correctly

* Rerun all automated tests
If any tests fail, your code is probably incorrect. Keep
working on it until all tests pass.

* Refactor code if necessary
If all tests pass, you can move on to implementing the
next mini-unit. If you see ways of improving your code, you
should do this before the next stage of implementation.

CRICOS PROVIDER #00120C

Benefits of test-driven development

- It is a systematic approach to testing in which tests are clearly linked to sectiggg®ss §
the program code. |

« This means you can be confident that your tests cover all of the code that has been
developed and that there are no untested code sections in the delivered code. In my view,
this is the most significant benefit of TDD.

* The tests act as a written specification for the program code. In principle at least, it
should be possible to understand what the program does by reading the tests.

* Debugging is simplified because, when a program failure is observed, you can
immediately link this to the last increment of code that you added to the system.

- It is argued that TDD leads to simpler code as programmers only write code that’s
necessary to pass tests. They don’t over-engineer their code with complex features
that aren’t needed.

ot
-
—
S~
=

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Timel

Join by Web PollEv.com/potanin Join by Text Send potanin to 22333

Is System Testing:

Black Box (A)

White Box (B)

No idea, | was sleeping (C)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

@ DALL-E History Collections

Edit the detailed description Surprise me Upload -l

pencil drawing of limitations

Generate

Imnvims

Mness VM
71 W AT & =

Limitations of Testing

Why Should We Test?

« What does testing help us achieve?

CRICOS PROVIDER #00120C

Things we might try to test

* Program/system functionality:

« Execution space (white box).
« Input or requirements space (black box).

* The expected user experience (usability).
 GUI testing, A/B testing

* The expected performance envelope (performance,
reliability, robustness, integration).

« Security, robustness, fuzz, and infrastructure testing.
« Performance and reliability: soak and stress testing.
* Integration and reliability: APl/protocol testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

vy

Software Errors
:QOF TWARE

'ENGINEERING
* Functional errors * Design defects ’4
 Performance errors * Versioning and configuration
« Deadlock errors
« Race conditions « Hardware errors
- Boundary errors » State management errors
 Buffer overflow * Metadata errors
- Integration errors * Error-handling errors
- Usability errors User interface errors
* Robustness errors * APl usage errors

e L oad errors

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Iﬁl

Value of Testing P

'ENGINEERING

»
N

* [Low bar] Ensure that our software meets requirements, is correct, etc.

* Preventing bugs or quality degradations from being accidentally
introduced in the future

* Helps uncover unexpected behaviors that can’t be identified by reading
source code

 Increased confidence in changes (“will | break the internet with this
commit?”)

« Bridges the gap between a declarative view of the system (i.e.,
requirements) and an imperative view (i.e., implementation) by means of
redundancy.

* Tests are executable documentation; increases code maintainability
* Forces writing testable code <-> checks software design

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Sommerville’s reasons for not using
TDD

TDD discourages radical program change o
| found that | was reluctant to make refactoring decisions that | knew would cause many tests to fail.
tended to avoid radical program change for this reason.

I focused on the tests rather than the problem | was trying to solve

A basic principle of TDD is that your design should be driven by the tests you have written. | found that | was
unconsciously redefining the problem | was trying to solve to make it easier to write tests. This meant that |
sometimes didn’t implement important checks, because it was difficult to write tests in advance of their
implementation.

I spent too much time thinking about implementation details rather than the programming problem
Sometimes when programming, it is best to step back and look at the program as a whole rather than
focusing on implementation details. TDD encourages a focus on details that might cause tests to pass or fail
and discourages large-scale program revisions.

It is hard to write ‘bad data’ tests

Many problems involving dealing with messy and incomplete data. It is practically impossible to anticipate all
of the data problems that might arise and write tests for these in advance. You might argue that you should
simply reject bad data but this is sometimes impractical.

-
=
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

CRICOS PROVIDER #00120C

Limitations of Testing

* What Can We Run Automated Tests For?

» Correctness
* Performance
* Reliability
« Security?
* Maintainability?
« What Can We NOT (Easily) Test For?

 Can’t prove correctness or other quality attributes over all cases:
« can only measure a sample

* Only as good as the tests you write - will come back to Oracle Problem
* Testing does not validate specifications / requirements

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Limitations of Testing

"Testing shows the presence, not the absence of bugs.

-Edsger W. Dijkstra
* Testing doesn’t really give any formal assurances
* Writing tests is hard, time consuming
 Knowing if your tests are good enough is not obvious

* Executing tests can be expensive, especially as software
complexity and configuration space grows
* Full test suite for a single large app can take several days to run

« Halting Problem

When Should We

At Release Time?

Test?

« After Every Code Change?
« After Writing New Code?
* Before Writing New Code?

» Before or After Merging’
* In Production?

YOU SCHEDULED THE
END OF THE TEST PHASE
AFTER THE START OF
THE PRODUCTION PHASE.

é BEING SMART DOESN'T
> | COME WITH SOME SORT

eI g OF GOOD FEELING LIKE

CONFIDENT.

Dilbert.com DilbertCartoonist@gmail.com

IT’S TOO BAD THAT

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Code Coverage

* Line coverage

« Statement coverage
 Branch coverage

* |Instruction coverage
* Basic-block coverage
« Edge coverage

« Path coverage

Code Coverage

LCOV - code coverage report

Current view: top level - test Hit Total Coverage
Test: coverage.info Lines: 6092 7293 83.5 %
Date: 2018-02-07 13:06:43 Functions: 481 518 92.9 %
- F— S DU I L S A S B U = O

}
else {

asnl_string table test.c el 0 [: [DSh, ECDSA __just use the SHaL hash 1/
G 10:
asnl_tine_test.c C—— [720% | 72/100] —

bad_dtls_test.c — 97.6 % 163 /167 oo P
bftest.c [106 1/ 1: hashout.data = hashes + SSL_MDS_DIGEST_LEN;
=adda 107 1/ 1 hashout.length = SSL_SHA1_DIGEST_LEN;
bio_enc_test.c | 78.7 % 74 /94 igs 1/ 1: if ((err = SSLFreeBuffer(shashctx)) != 0)
bntest.c kil T Ll iy ﬁ‘l’ 1 1: if ((ReadyHash (§SSLHashsHAL, shashctx)) != 0)
chacha_internaltest.c —— 83.3 % 10/12 1 e e tag s sesHashe, Shasheed -
I T 113 1 / 1: 1f ((err = SSLHashSHAl.update(&hashCtx, &clientRandom)) != 0
ciphernane_test.c ey
crltest.c | —— 100.0 % 90/90 ﬁs 1 / 1: 1f ((err = SSLHashSHAl.update(&hashCtx, &serverRandom)) != 0)
ct test.c | — 95.5 % 212 /222 117 1/ 1 1f ((err = SSLHashSHAL.update (8hashCtx, &signedParams)) != 0)
e e 75.5 % 123 /163 gi) if (;ce"r:; ?affl;_HashSHAl.f]nal(&hashctx, &hashout)) != 0)
122 :
dhtest.c I— 84.6 % 88/104 123 : err = sslRawVerify(ctx, .
124 H ctx->peerPubKey,
drbytest.c iy [: oo gnobey /% plaintext
dtls_mtu_test.c | 86.8 % 59 /68 }gs ;ila;ra]':t)ﬁzrgmen, /* plaintext ¢
dtlstest.c | —— 97.1 % 34/35 128 : o) signaturelen);
129 : 1f(err
dtlsvilistentest.c | —— 94.9 % 37/39 130 : sslErrorLog("ssSLDecodeSignedServerkeyExchange: sslRawverify "
ecdsatest.c [E— 94.0 % 140/149 13 : goto fail, TS BN, (ntlern);
enginetest .c (| 92.8 % 141/152 1= P2
evp extra test.c —] ! 13 : fails .
_—— 100.0 % 112/112 136 1/ 1 SSLFreeBuffer (&signedHashes) ;
fatalerrtest.c | 89.3 % 25/28 137 1/ L: SsLFreeBuffer (shashctx) ;
138 1 ilg t H
handshake helper.c ——— 84.7 % 494 /583 130 £ e
hmactest.c —] 100.0 % VL7 | o —
ideatest.c | E— 100.0 % 30/30 100.0 % 4/4
igetest.c —— 87.9 % 109/124 100.0 % 11/11
lhash_test.c —— 78.6 % 66 /84 100.0 % 8/8
mdc2_internal_test.c 1 81.8 % 9/11 100.0 % 2/2
mdc2test.c E— 100.0 % 18/18 100.0 % 2/2
ocspapitest.c | E—r 95.5 % 64 /67 100.0 % 4/4
packettest.c E— 100.0 % 248 /248 100.0 % 24 /24

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

We can measure coverage on almost
anything

o M e I A R A e

AL L o S
i Dia 1Swoek- Ar Lomg o SRR
. Dis sChas A String -

Dis sPrevihar As Otring

2 Starts with Res it 13 4 comment
I 529 sline = Trim(sline)
T e If Left(zline, 3] = “Rea® Then
531 ClearllpLine =
It Function
End 1t

Stacts with ' 46 15 @ commers

It Lefr(sline, 1} = *'* Then

BIE*M
QL tew @

“End I

Conteins ' may end 17 @ commant, 30 te3t if it 13 & comment or 1o th
dody of a striny

~It Indtr(sline, * '*} > O Then
aPrevChar = * *
10aoteCoant = 0

r¥or leeunt « | To Len{sline)

N €Char = Mid(shine. loowre, 1) } Bn €3t View Oraw QK
1155 If we fond * " than w aven musber of * characters in frut odin ‘ Eﬂa- £ pew D JE?[?&: Mg:"n
l O[O v o JO M g

means it 13 the stert s and o maber seans 2t 10 § |3 Hew

A Bt ™ " nare v L L e, i e P 485 e e

A. Zeller, Testing and Debugging Advanced course, 2010

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Beware of coverage chasing

* Recall: issues with metrics and incentives
* Also: Numbers can be deceptive

* 100% coverage != exhaustively tested

« “Coverage is not strongly correlated with suite
effectiveness”

 Based on empirical study on GitHub projects [Inozemtseva and Holmes,
ICSE’14]

e Still, it's a good low bar

* Code that is not executed has definitely not been tested

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

:QOF TWARE

Coverage of what?

ENGINE
* Distinguish code being tested and code being executed
 Library code >>>> Application code

« Can selectively measure coverage

* All application code >>> code being tested

* Not always easy to do this within an application

Coverage != Outcome

* Tests should ideally be falsifiable. Boundary determines
specification
 |[deally:
* Correct implementations should pass all tests
 Buggy code should fail at least one test
 Intuition behind mutation testing

 What if tests have bugs?

 Pass on buggy code or fail on correct code

 Even worse: flaky tests
* Pass or fail on the same test case nondeterministically

 What's the worst type of test?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Timel

Join by Web PollEv.com/potanin

What Can You Detect with the help of Software Testers?

Software Errors

0
"ENGINEER!

* Functional errors * Design defects

* Performance errors * Versioning and configuration errors
* Deadlock

* Race conditions

* Boundary errors

* Buffer overflow

* Integration errors
* Usability errors

* Robustness errors

* Hardware errors

* State management errors
* Metadata errors

* Error-handling errors

* User interface errors

* APl usage errors

* Load errors

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Draw fuzzing tester

Fuzzing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Puzzle: [|
Find x such that p1 (x) returns True B
def pl(x): i |
if x * x - 10 == 15:
return True

return False

Puzzle:
Find x such that p2 (x) returns True
def p2(x):
if X > @0 and x < 1000:
if ((x - 32) * 5/9 == 100):
return True

return False

Puzzle:

Find x such that p3 (x) returns True

def p3(x):
if x > 3 and x < 100:
zZ =X - 2
c =20

while z >= 2:
if z ** (x - 1) % x == 1:
c=c+1
z =2z -1

if ¢ == x - 3:
return True

return False

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK

10 OF 12: TESTIN

Fuzz Testing

I“UWE}’ TACOS!

Y
882

YERH,
. .
RO e 10 E03583%
S A
= “3‘%75?375 3/0%77?063 lOgLfOZon
2

Original: https://xkcd.com/1210 CC-BY-NC 2.5

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

https://xkcd.com/1210

Barton P. Miller, Lars Fredriksen and Bryan So

Study of the
Reliability of

l.ltllltles

COMMUNICATIONS OF THE ACM!Decermber 1990/Vol.33, No.2

Communications of the ACM (1990)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

On a
dark and stormy night one of the
authors was logged on to his work-
station on a dial-up line from home

and the rain had affected the
phone lines; there were frequent
spurious characters on the line.
The author had to race to see if he
could type a sensible sequence of
characters before the noise scram-
bled the command. This line noise
was not surprising; but we were
surprised that these spurious char-
acters were causing programs to
crash.

Fuzz Testing

w0019[a%#
Execute 1990 study found crashes in:
/dev/random) adb, as, bc, cb, col, diction, emacs, eqgn,
ftp, indent, lex, look, m4, make, nroff,

plot, prolog, ptx, referl, spell, style, tsort,
uniq, vgrind, vi

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Common Fuzzer-Found Bugs in C/C+E

Causes: incorrect arg validation, incorrect type casting, ”
executing untrusted code, etc.

Effects: buffer-overflows, memory leak, division-by-zero,
use-after-free, assertion violation, etc. (“crash”)

Impact: security, reliability, performance, correctness

How to identify these bugs in languages like C/C++?

Automatic Oracles: Sanitizers

« Address Sanitizer (ASAN)

* LeakSanitizer (comes with ASAN)

* Thread Sanitizer (TSAN)

« Undefined-behavior Sanitizer (UBSAN)

https://github.com/google/sanitizers

https://github.com/google/sanitizers

AddressSanitizer

Compile with ‘clang -fsanitize=address’

int get_element(int* a, int i) {
return al[i];

} Is it null?

Is the access out of bounds?

int get_element(int* a, int i) {
if (a == NULL) abort();
return af[il];

}

int get_element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_heap(region)) {
low, high = get_bounds(region);
if ((a + i) < low || (a +i) > high) {
abort();
}
}

return af[il];

Is this a reference to a stack-allocated variable after return?

int get_element(int* a, int i) {
if (a == NULL) abort();
region = get_allocation(a);
if (in_stack(region)) {
if (popped(region)) abort();

}
if (in_heap(region)) { ... }
return af[i];

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

AddressSanitizer

Asan is a memory error detector for C/C++. It finds:
« Use after free (dangling pointer dereference)

Heap buffer overflow

Stack buffer overflow

Global buffer overflow

Use after return

Use after scope)
Initialization order bugs '
Memory leaks ” I

https://github.com/google/sanitizers/wiki/AddressSanitizer

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Strengths and Limitations e |
:QOFTWARE)

 Exercise: Write down two strengths and two weaknesses
of fuzzing. Bonus: Write down one or more assumptions
that fuzzing depends on.

Strengths and Limitations

» Strengths:

 Cheap to generate inputs
« Easy to debug when a failure is identified

 Limitations:

« Randomly generated inputs don’t make sense most of the time.

« E.g.Imagine testing a browser and providing some "input” HTML randomly: dgsad51350 gsd:gj
lsdkg3125j@!T%#(W+123sd asf |

* Unlikely to exercise interesting behavior in the web browser
« Can take a long time to find bugs. Not sure when to stop.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mutation Heuristics

= Binary input
= Bit flips, byte flips
= Change random bytes
» |[nsert random byte chunks
= Delete random byte chunks

= Set randomly chosen byte chunks to interesting values e.g. INT_MAX,
INT_MIN, O, 1, -1, ...

= Other suggestions?

= Text input
» |[nsert random symbols or keywords from a dictionary
= Other suggestions?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

American Fuzzy Lop
(https://github.com/google/AFL)

2) The afl-fuzz approach

American Fuzzy Lop is a brute-force fuzzer coupled with an exceedingly simple but rock-solid instrumentation-
guided genetic algorithm. It uses a modified form of edge coverage to effortlessly pick up subtle, local-scale
changes to program control flow.

Simplifying a bit, the overall algorithm can be summed up as:
1. Load user-supplied initial test cases into the queue,
2. Take next input file from the queue,
3. Attempt to trim the test case to the smallest size that doesn't alter the measured behavior of the program,
4. Repeatedly mutate the file using a balanced and well-researched variety of traditional fuzzing strategies,

5. If any of the generated mutations resulted in a new state transition recorded by the instrumentation, add
mutated output as a new entry in the queue.

6. Go to 2.

The discovered test cases are also periodically culled to eliminate ones that have been obsoleted by newer,

higher-coverage finds; and undergo several other instrumentation-driven effort minimization steps.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Coverage-Guided Fuzzing (e.g. AFL)

Coverage-Guided Fuzzing with AFL

November 07, 2014
Pulling JPEGs out of thin air

This is an interesting demonstration of the capabilities of afl; I was actually pretty surprised that it worked!

$ mkdir in_dir ’—‘r—|rﬂ|—1r—v[—v[—||'—"—|’_||_]l—,v—‘v—|r—|r—"_,ﬁy_!|_l”:']
$ echo 'hello' >in dir/hello =

$./afl-fuzz -i in:dir -o out_dir ./jpeg-9a/djpeg EREEEERR m [_] m ~ l—' m—" r—.ﬂ‘ W ? l_! ‘_' H‘T ‘_t m I—’T,

00))) -)) o
L3 ! |l | | 1

’—lﬁwrﬁmrﬁr—ﬂr‘ﬂﬁrﬁmmr—!mﬁﬁﬁmhmﬁﬁ
*Tﬁr_"ﬁrﬁrﬂrﬁr_'mﬁﬁﬁ'_u_]'—ﬂ"ﬂr‘ﬁhr_ﬂ_ﬂ_j

http://lcamtuf.blogspot.com/2014/11/pulling-jpegs-out-of-thin-air.html

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Coverage-Guided

The bug-o-rama trophy case

Fuzzing wi

th AFL

1JG jpeg ! libjpeg-turbo 1 2 libpng !
libtiff12345 mozjpeg PHP12345678
Mozilla Firefox 1234 Internet Explorer1234 Apple Safari 1
Adobe Flash / PCRE1234567 sqlite123 4 OpenSSL1234567
LibreOffice 123 4 poppler 2= freetype 1 2
GnuTLS ! GnuPG1234 OpenSSH12345
PuTTY12 ntpd 12 nginx123

bash (post-Shellshock) £ 2

tepdump 123456789

JavaScriptCore 123 4

pdfium 12

ffmpeg 12345

libmatroska *

libarchive 123456

wireshark X 2 3

ImageMagick 223456789

BIND 123

QEMU 12

lems?

http://lcamtuf.coredump.cx/afl/

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

http://lcamtuf.coredump.cx/afl/

ClusterFuzz @ Chromium

@ bugs chromium ~ All issues ~ Q_ label:ClusterFuzz -status:Duplicate

1- 100 of 25423 Next » List

D v Pri v M~ Stars v ReleaseBlock ~ Component ¥ Status ~ Owner v
1133812 1 e 2 e BIink>GetUserMedi Untriaged = ---

1133763 1 - 1 - - Untriaged -

1133701 1 e 1 e Blink>JavaScript Untriaged = ---

1133254 1 - 2 - - Untriaged = ----

1133124 1 — 1 — —— Untriaged e

1133024 2 - 3 e Internals>Network Started dmcardle@ch

Ul>Accessibility, . . .
1132958 1 - 2 - Blink>Accessibility Assigned sin...@chromi

1132907 2 - 2 - Blink>JavaScript>GC Assigned dinfuehr@chr

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Can fuzzing be applied to unit testmg

* Where “inputs” are not just strings or binary files?

* Yes! Possible to randomly generate strongly typed values,
data structures, API calls, etc.

* Recall: Property-Based Testing

@Property

testSameLength(List<Integer> input) {

output = sort(input)

output.size() == input.size() :

ﬁ&;

Generators

Random List<Integer>

List 1ist = new ArraylList();
while (randomBoolean()) {

list.append(randomInt());
}

return list;

List 1ist = new ArraylList();

int 1len = randomInt();

for (int 1 = 0 to len) {
list.append(randomInt());

}

return list;

Exercise: Write a generator for
Creating random HashMap<String, Integer>

// randomly stop/go
// random element

// pick a random length

// random element

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Mutators

Mutator for list: List<Integer>

int K = randomInt(®, len(list));

int action = randomChoice(ADD, DELETE, UPDATE) ;

switch (action) {
case UPDATE: list.set(k, randomInt()); // update element at k
case ADD: list.addAt(k, randomInt()); // add random element at k
case DELETE: 1list.removeAt(k); // delete k-th element

Y

Exercise: Write a mutator
HashMap<String, Integer>

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

The Fuzzing Book

The Fuzzing Book v About this Book v © Resources v ®, Share v © Help v

: The Fuzzing Book
httpS://WWW-fUZZIngbOO k-org Tools and Techn s for Generating Software Tests

by Andreas Zelle{ Rahul Gopinath,

arcel Bhme, Gordon Fraser, and Christian Holler

About this Book

Welcome to "The Fuzzing Book"! Software has bugs, and catching bugs can involve lots of effort. This book addresses this problem by automating
software testing, specifically by generating tests automatically. Recent years have seen the development of novel techniques that lead to dramatic
improvements in test generation and software testing. They now are mature enough to be assembled in a book - even with executable code.

from bookutils import YouTubeVideo
YouTubeVideo("w4u5gCgPlmg")

THE UNIVERSITY OF

SYDNEY Study Research Engage with us. About us News & opinion Q

Faculty of Engineering

Study engineering Schools Ourresearch Industry and community ~ News and events About

€ Home People_

.
Generating So re Tests

Dr Rahul Gopinath .

& About P < Breaking Software for Fun an
Lecturer, School of Computer Science

& Our people
Email Address

& Academic staff rahul.gopinath@sydney.edu.au J12 - Computer Science Building

The University of Sydney

Websites
Rahul Gopinath Watcl YouTube
https:/rahul.gopinath.org

@_rahulgopinath

Biographical details - A Textbook for Paper, Screen, and Keyboard

Rahul Gopinath is a Lecturer in the School of Computer science. His main research area lies in the junction
between Software Engineering and Cybersecurity. His research focus is on using static and dynamic program
analysis to improve reliability, security, and maintainability of software systems.

You can use this book in four ways:

show more

* You can read chapters in your browser. Check out the list of chapters in the menu above, or start right away with the introduction to

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING =

https://www.fuzzingbook.org/

Poll Everywhere Timel

Join by Web PollEv.com/potanin Join by Text Send potanin to 22333

Have you used a Fuzzer before?

Vs

Yes (A)

(&

Ve

No (B)

(.

Vs

I don't know (C)

(&

r

Can you repeat the question? (D)

(.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

@ DALLEE History Collections

Edit the detailed description Surprise me Upload -]

pencil drawing of performance measurements Generate

: Pe rupran

Parrnpoc

Performance Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Performance Testing

» Goal: Identify performance bugs. What are these?

 Unexpected bad performance on some subset of inputs
 Performance degradation over time
» Difference in performance across versions or platforms

* Not as easy as functional testing. What's the oracle?

* Fast = good, slow = bad // but what’s the threshold?
« How to get reliable measurements?
* How to debug where the issue lies?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Performance Regression Testing

 Measure execution time of critical components
* Log execution times and compare over time

Job 12e96643840000

Issue 808613 - Analyze benchmark results - 2.0 hours - 2/14/2018, 9:48:34 AM

Differences found after commits 490

Re-record loading.desktop story set by

ksakamoto@chromium.org 480

Job arguments

470
benchmark loading.desktop

chart cpuTimeToFirstMeaningfulPaint / —
. 460 /

chromiu I 11-pro /—4
statistic avg
450
story Pantip
Re-record loading.desktop story set by ksakamoto@chromium.org
target telemetry_perf_tests
tir_label warm .
wace Panti Build Test Values
{f antip
AEEEESESESSSEEEEEEEE ESEEEEEEEEEEEEEEEEEEE EEEEEEEEEEEEEEEEEEEE
builder Mac Builder task_id 3baeadbeaa7f1710 trace Pantip_2018-02-14_11-40-
630b5fe7ae1b260e78db8823309 bot_id build197-b4 0793865 himl
. e7ae e ot_id bui &
isolate_hash o 56405170 1460087 64P 500035 trace Pantip_2018-02-14_11-40-
i el e adee: 42_21734.html
isolate_hash - g/6orcadocaca

Source: https://chromium.googlesource.com/chromium/src/+/refs/heads/main/docs/speed/addressing_performance_regressions.md

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Firefox

A Study of Performance Variations
in the Mozilla Firefox Web Browser

¢« C @& aosabook.org Jan Larres! Alex Potanin! Yuichi Hirose? 23]

ES ANU [E3 Bills E3 Blogs E3 Home E3 Mail B35 GNNRun J&

! School of Engineering and Computer Science
Email: {larresjan,alex}@ecs.vuw.ac.nz

2 School of Mathematics, Statistics and Operations Research
Email: hirose@msor.vuw.ac.nz
Victoria University of Wellington, New Zealand

Talne .

While hacking on the Talos harness in the summer of 2011 to add support for new platforms and tests, we encountered the results from Jan Larres's master’s thesis, in
which he investigated the large amounts of noise that appeared in the Talos tests. He analyzed various factors including hardware, the operating system, the file
system, drivers, and Firefox that might influence the results of a Talos test. Building on that work, Stephen Lewchuk devoted his internship to trying to statistically
reduce the noise we saw in those tests.

Based on their work and interest, we began forming a plan to eliminate or reduce the noise in the Talos tests. We brought together harness hackers to work on the

harness itself, web developers to update Graph Server, and statisticians to determine the optimal way to run each test to produce predictable results with
minimal noise.

ATVIOZINE; onerorour UEW Trsta - . . - . o - . - . .
modification since its inception i.. ... CANR0t asily be attributed to cither genuine chang romatec Seets el Wikh tis ha'anoe by alerv

B T Ll L e e LI e R LT R L L P

changed hands.

In the summer of 2011, we finally began to look askance at the noise and the variation in the Talos numbers, and we began to wonder how we could make some small
modification to the system to start improving it. We had no idea we were about to open Pandora’s Box.

In this chapter, we will detail what we found as we peeled back layer after layer of this software, what problems we uncovered, and what steps we took to address
them in hopes that you might learn from both our mistakes and our successes.

’ﬁ’) &

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Profiling

* Finding bottlenecks in execution time and memory

Flame Graph

 Flame graphs are a popular visualization of resource
consumption by call stack.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Domain-Specific Perf Testing (e.g.

IMeter

88 Apache JMeter Dashboard by UbikLoadPack ~

data_source jmeter_influx v application JMeter_demo v ansactio JR_OK ¥ Start/stop marker

Summary

Total Requests Failed Requests Received Bytes Sent Bytes

2107 Requests Failed

Total Throughput Total Errors

Num of Errors Threads

Transactions Response Times (95th pct)

http://jmeter.apache.org

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Error Rate %

Active Threads ~

2018-04-10 16:03:40

Threads:

16:00

http://jmeter.apache.org/

Performance-driven Design

 Modeling and simulation

e e.g.queuing theory

« Specify load distributions
and derive or test configuratio

&2 View Report - 3 - Multithreading and QueuingArchitecture Simulator

Evaluation Summary

Property | Value
| Propert

Scenario Scenariol
Number of users S

Transaction Generation Rate 3
Actual Simulation Load
Actual Network Load 0 =0
No, of System Transactions Generated {ST1=24, 5T2=24}
No. of System Transactions Completed {ST1=24, ST2=24} |
Averaoe System Transaction Comoletion Time 156938 <
Choose a Graph
1 =]
View Error Report g
2
L] & |
Overview | Acme Source | ClientServer |
Masks Problems ‘ Acme Performance Simulator View Acme Security Simulator Yiew ¥ =08
o
Rules Specify Performance Properties
Structure Performance Values | Error Handling
Types Response Range (Seconds) System Resources
r Consumed (in %) 5.0
Representations Transaction Complexity | Yery Simple Simple Average
Errors Minimum Value | 1.02 1.041 [1.06 [Mukihreaded [Queve
e Maximum Value | 1.03 1.05 | 107 Max, Threads: Queue Size:
Viuss : : :
S 100
Performance ——
Specify Performance Properties
0° Performance Values Error Handling
Error Handling
Errors Selected Parameters [value Error Handling Mechanism
Process Crash Successful system trans. (%) [99 Connect to another Thread, Log v

W

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Stress testing

normal operation.
« Can apply at any level of system granularity.

» Stress tests commonly put a greater emphasis on
robustness, availability, and error handling under a heavy

load, than on what would be considered “correct” behavior
under normal circumstances.

Soak testing

artificially limited execution conditions.

« E.g., Memory leaks may take longer to lead to failure (also motivates
static/dynamic analysis, but we'll talk about that later).

« Soak testing: testing a system with a significant load over
a significant period of time (positive).
* Used to check reaction of a subject under test under a

possible simulated environment for a given duration and
for a given threshold.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Timel

Join by Web PollEv.com/potanin Join by Text Send potanin to 22333

Can Performance Testing be done not in Production?

I don't know (C)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Collections

DALL-E History

)

d!

Upload

Surprise me

Edit the detailed description

Generate

pencil drawing of chaos

ineering

Chaos Eng

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Monolithic Application

What kind of failures can
happen here?

How likely is that error to

happen?
Mayan EDMS
Container HOW do I le It?
—
]

Microservice

ANU SCHOOL OF COMPUTING | COMP 2120/ COMP 6120 | WEEK 10 OF 12: TESTING

Microservice Application

Mayan EDMS

Remember, these calls are
messages sent on an
unreliable network.

PostgreSQL ML Model w
—_

Container Container

Container

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

Failures in Microservice Architecturef==Aa

1.Network may be partitioned

All of these issues
can be indistinguishable
from one another!

2.Server instance may be down

Making the calls across the network
to multiple machines makes the
probability that the system is
operating under failure much

3.Communication between services may be dela Hishen

These are the problems of
latency and partial failure.

4.Server could be overloaded and responses del

5.Server could run out of memory or CPU

=
ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING
CRICOS PROVIDER #00120C

| Fav 'ﬁlsns % |
ggENGINEERING'

Where Do We Start?

How do we even begin to test these scenarios?

|s there any software that can be used to test these types of failures?

Let’s look at a few ways companies do this.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

oIS

| e |
§ENGINEERINO

Game Days

Purposely injecting failures into critical systems in order to:

« |dentify flaws and “latent defects”

« |dentify subtle dependencies (which may or may not lead to a flaw/defect)
 Prepare aresponse for a disastrous event

Comes from “resilience engineering” typical in high-risk industries

Practiced by Amazon, Google, Microsoft, Etsy, Facebook, Flickr, etc.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Game Days

sorrwmzs ‘

ENGINEERING

Our applications are built on and with “unreliable” components

Failure is inevitable (fraction of percent; at Google scale, ~multiple times)
Goals:

 Preemptively trigger the failure, observe, and fix the error

« Script testing of previous failures and ensure system remains resilient
« Build the necessary relationships between teams before disaster strikes

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Example: Amazon GameDay

Full data center destruction (Amazon EC2 region)

No advanced notice of which data center will be taken offline

No notice Not all failures can be actually (will be taken offline
performed and must be))
Only adva simulated! a GameDay will be happening

Real failures in the production environment

Discovered latent defect where the monitoring infrastructure responsible for
detecting errors and paging employees was located in the zone of the failure!

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Cornerstones of Resilence

1.Anticipation: know what to expect
2.Monitoring: know what to look for
3.Response: know what to do

4.Learning: know what just happened
(e.g, postmortems)

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Some Example Google Issues

Terminate network in Sao Paulo for testing:

 Hidden dependency takes down links in Mexico which
would have remained undiscovered without testing

Turn off data center to find that machines won’t come
back:

 Ran out of DHCP leases (for IP address allocation) when a
large number of machines come back online
unexpectedly.

*te

~
—
=7

Netflix: Cloud Computing

Significant deployment in Amazon Web Services in order
to remain

elastic in times of high and low load (first public, 100% w/o
content delivery.)

Pushes code into production and modifies runtime
configuration
hundreds of times a day

u | | u u
= *5w
—Key metric: availability =
=
ANU SCHOOL OF Ci :

OMPUTING | COMP 2120/ COMP 6120 | WEEK 10 OF 12: TESTING

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Chaos monkey/Simian army e |

'ENGINEERING

* A Netflix infrastructure testing system.
« “Malicious” programs randomly trample on components,

network, datacenters, AWS instances...

 Chaos monkey was the first - disables production instances at random.

 Other monkeys include Latency Monkey, Doctor Monkey, Conformity Monkey,
etc... Fuzz testing at the infrastructure level.

* Force failure of components to make sure that the system architecture is
resilient to unplanned/random outages.

* Netflix has open-sourced their chaos monkey code.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Netflix Ul: AppBoot

What happens if the
bookmark service is down?

Bookmarks User Profiles Ratings Recommendations

=» Remote Call

. Microservice

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Graceful Degradation: Anticipating
Failure

Allow the system to degrade in a way it’s still usable

Fallbacks:
e Cache miss due to failure of cache;

* Go to the bookmarks service and use value at possible latency
penalty

Personalized content, use a reasonable default instead:
 What happens if recommendations are unavailable?
 What happens if bookmarks are unavailable?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Principles of Chaos Engineering

1.Build a hypothesis around steady state behavior

2.Vary real-world events

experimental events, crashes, etc. DOES EYEMLING SEE 1o
be working properly?

Are users complaining?

3.Run experiments in production
control group vs. experimental group
draw conclusions, invalidate hypothesis

4.Automate experiments to run continuously

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Steady State Behavior

Back to quality attributes: availability!

SPS is the
primary
indicator
of the system’s
overall health.

17:30 20:15 23:00 01:45 04:30 07:15 10:00 12:45 15:00

Time

FIGURE 2. A graph of SPS ([stream] starts per second) over a 24-hour period. This
metric varies slowly and predictably throughout a day. The orange line shows the trend
for the prior week. The y-axis isn't labeled because the data is proprietary.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Poll Everywhere Timel

Join by Web PollEv.com/potanin Join by Text Send potanin to 22333

Have you come across Chaos Engineering approach before?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

@ DALL-E History Collections

Edit the detailed description Surprise me Upload —|

pencil drawing of usability Generate

loal A

USESLY

unsoily
K

Uny resitty @

I Btnebsuo 2% Flacings

Ulsiuisty

A/B Testing

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Automating GUI/Web Testing

* This is hard
e Capture and Replay Strategy

°* mouse actions

e system events
e Test Scripts: (click on button labeled "Start" expect value X in field
Y)
* Lots of tools and frameworks

e e.g. Selenium for browsers

* (Avoid load on GUI testing by separating model from GUI)
* Beyond functional correctness?

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Manual Testing

GENERIC TEST CASE: USER SENDS MMS WITH PICTURE ATTACHED.

Step ID | User Action

System Response

1 Go to Main Menu Main Menu appears

2 Go to Messages Menu Message Menu appears

3 Select “Create new Mes- | Message Editor screen
sage” opens

Add Recipient

Recipient is added

Select “Insert Picture”

Insert Picture Menu opens

4
5
6 Select Picture
5

Picture 1s Selected

Select “Send Message”

Message is correctly sent

Live System?

Extra Testing System?
Check output / assertions?
Effort, Costs?
Reproducible?

Higher Quality Feedback to Develop

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

Usability: A/B testing | P |

:QOF TWARE

* Controlled randomized experiment with two variants, A
and B, which are the control and treatment.

* One group of users given A (current system); another
random group presented with B; outcomes compared.

« Often used in web or GUI-based applications, especially to
test advertising or GUIl element placement or design
decisions.

Example

« A company sends an advertising email to its customer
database, varying the photograph used in the ad...

Example: group A (99% of users)

Example: group B (1%)

A/B Testing

* Requires good metrics and statistical tools to identify
significant differences.

« E.g. clicks, purchases, video plays
* Must control for confounding factors

Poll Everywhere Timel

Join by Web PollEv.com/potanin Join by Text Send potanin to 22333

Did you notice that you were A/B tested on Facebook or other major App before?

Vs

Yes, definitely (A)

(&

Ve

Yes, but | am unsure (B)

(.

Vs

Nope, never noticed any differences in my interface (C)

(&

r

| am sleeping, please wake me up at 10:55am (D)

(.

ANU SCHOOL OF COMPUTING | COMP 2120 / COMP 6120 | WEEK 10 OF 12: TESTING

