17/08/2023, 11:12 OneNote

Week 4 lab tutorial — help

Wednesday, 16 August 2023 12:33 PM

Fundamental goals
+ Learn about CI/CD - catch problems early
« Learn about Docker

Activity 1
1. Fork and Clone | Navigate to the repository on your workspace
the Repository: (https://gitlab.cecs.anu.edu.au/comp2120/2023/comp2120-tut4-ci)
Click on the "Fork" button to create a copy of the repository in your
Gitlab account. Use your Gitlab university credentials to login.
Once forked, clone the repository to your local machine using the
following command: “git clone <URL_of_your_forked_repository>"
2. Understand the | The repository is a solution to a problem from Codeforces.
Repository: It uses JUnit 4 for testing.
The build system is Gradle. (Note: Maven is another popular build
system, but the commands for building and testing would be similar.)
3. Set Up the CI Navigate to the root of the project.
Pipeline: Create the .gitlab-ci.yml file.
Write the Cl pipeline in the YAML format as described below:
stages:
- build
- test
gradle-build:
stage: build
tags:
- comp2100
script:
- ./gradlew assemble
artifacts:
paths:
- build/
gradle-test:
stage: test
tags:
- comp2100
script:
- ./gradlew test
artifacts:
reports:
junit: build/test-results/test/ TEST-*.xml
Explanation:

+ The stages keyword defines the order in which jobs are executed.
Here, we have two stages: build and test.

+ gradle-build is the job that compiles the source code into
application bytecode using the gradle assemble command.

+ gradle-test is the job that runs all the test cases for the project
using the gradle test command.

« The artifacts keyword specifies the list of files and directories that
are attached to the job when it succeeds. In the gradle-test job,
we're specifying that the JUnit test results should be saved as an
artifact.

+ The tags references the runner that will be used for the job. Here,
we use 'comp2100' runner that is available on Gitlab server.

4. Commit and After writing the CI pipeline, save the .gitlab-ci.yml file.
Push:
Commit the changes:
git add .gitlab-ci.yml
git commit -m "Add CI pipeline for building and testing"
Push the changes to your forked repository:

https://onedrive live.com/redir?resid=30930EDCCEC99BB7%2126602&page=Edit&wd=target%28Prep.one%7C1f0acbc2-6b36-4ed2-8776-4ed190df815¢%2F...

1/5

https://gitlab.cecs.anu.edu.au/comp2120/2023/comp2120-tut4-ci

17/08/2023, 11:12

OneNote

“git push origin master’

5. Verify the
Pipeline:

Navigate to your GitLab repository.
Go to CI/CD -> Pipelines.

Click on the job number to see the pipeline you've just created. It should
match the described structure.

Potential issues: gradle-build fails because Docker container (in which Cl job is running) doesn’t

recognise "gradle’ command — can resolve by the fact that the repo has a Gradle wrapper.

How to setup annotated test results in the browser

1. Generate JUnit
Test Reports:

Ensure your build.gradle file is configured to produce JUnit XML
reports.

2. Update .gitlab-
ci.yml:

You've already set up the artifacts section in your .gitlab-ci.yml to collect
JUnit test results:
artifacts:
reports:
junit: build/test-results/test/ TEST-*.xml

This configuration tells GitLab CI/CD to collect the JUnit XML reports as
artifacts and use them for test report visualization.

3. View Annotated
Test Results:

Once the pipeline runs:
+ Navigate to your GitLab project.

Go to CI/CD > Pipelines.
+ Click on the pipeline that you want to view.

+ In the pipeline details, you'll see a Test Report tab (next to Jobs).
Click on it.

+ Here, you'll see the annotated test results. Failed tests will be
highlighted, and you can click on each test to see more details.

Activity 2

Aim: make CI/CD pipeline only run for pull requests (merge requests in GitLab terminology)
Method: use the rules keyword in the .gitlab-ci.yml file. The rules keyword allows you to define
conditions for when jobs should run.

merge requests:

1. Modify your .gitlab-ci.yml file to
run the gradle-test job only during | stages:

- build
- test

gradle-build:
stage: build
tags:
- comp2100
script:
- ./gradlew assemble
artifacts:
paths:
- build/

gradle-test:

stage: test
tags:

- comp2100
script:

- /gradlew test
artifacts:

reports:

junit: build/test-results/test/ TEST-*.xml

rules:

- if: '$CI_PIPELINE_SOURCE ==
"merge_request_event"'

(optional)

https://onedrive live.com/redir?resid=30930EDCCEC99BB7%2126602&page=Edit&wd=target%28Prep.one%7C1f0acbc2-6b36-4ed2-8776-4ed190df815¢%2F...

2. Further refine pipeline For instance, to run a proselint job only when

documentation changes:

proselint:

2/5

17/08/2023, 11:12

tests on documentation

to check for changes.

For example, to skip extensive

OneNote

stage: test

changes, you can add more script:
rules and use the changes
keyword to specify paths or files

- proselint docs/
rules:
- changes:
- docs/**/*

This proselint job will only run if there are changes in the
docs/ directory.

Expected result: see only gradle-build job in CI/CD, since grade-test will be skipped (as current
push does not involve a pull/merge request)

Some info on Docker

« Assembly of linux functions/security applications
« Better performance than VM because doesn't copy entire OS, but shares linux kernel with

host

+ Good for run automated tasks in standardized environment
« Dependency hell — isolate services

« Docker image — snapshot of Docker at certain point in time, Docker container — instance of

docker image (think of a digital photograph as Docker image, printout of photo as Docker

container)

Activity 3

Aim: use the nginx framework as a web server within a Docker container and display your

custom index.html page

1. Run the nginx Docker
image:

“docker run --name nginx-server -d -p 8080:80 nginx’

This command does the following:
--name nginx-server: Names the container nginx-server.
-d: Runs the container in detached mode.

-p 8080:80: Maps port 8080 on the host to port 80 on the
container.

nginx: Specifies the nginx Docker image.

2. Access the web server:

Open a web browser and navigate to http://localhost:8080. You

3. Create an index.html page
on your local computer:

should see the default nginx welcome page.

<IDOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8">

<meta name="viewport" content="width=device-width, initial-
scale=1.0">

<title>My Custom Page<t/title>
</head>
<body>
<h1>Welcome to My Custom Page!</h1>
</body>
</html>

4. Mount the local index.html
into the nginx container:

First, stop and remove the previous nginx container:

docker stop nginx-server
docker rm nginx-server

Now, run the nginx Docker image again, but this time mount
the local index.html:

docker run --name nginx-server -d -p 8080:80 -v

Ipath/to/your/index.html:/usr/share/nginx/html/index.html nginx

Replace /path/to/your/index.html with the actual path to your
index.html file.

5. Access the web server
again:

Navigate to http://localhost:8080 in your web browser. This
time, you should see the content of your custom index.html

page.

Note: make sure to include the path to default nginx Docker image as well

https://onedrive live.com/redir?resid=30930EDCCEC99BB7%2126602&page=Edit&wd=target%28Prep.one%7C1f0acbc2-6b36-4ed2-8776-4ed190df815¢%2F...

3/5

17/08/2023, 11:12 OneNote

Final command looks something like

docker run --name nginx-server -d -p 8080:80 -v ./index.html:/usr/share/nginx/html/index.html
nginx

Activity 4

Aim: run nginx container using Docker compose and mount index.html file

Note: background information may be required

1. Create a
Docker Compose
File:

Create a file named docker-compose.yml in the directory where your
index.html is located.

2. Add the

Following Content | version: '3'

to docker-

compose.yml:)
services:

nginx-server:
image: nginx
ports:
- "8080:80"
volumes:
- ./index.html:/usr/share/nginx/html/index.html

Explanation:
version: '3": Specifies the version of the Docker Compose file format.
services: Defines the services to be run.
nginx-server: The name of the service.
image: nginx: Specifies the nginx Docker image.
ports: Maps port 8080 on the host to port 80 on the container.

volumes: Mounts the local index.html file to the location inside the
container where nginx serves the default page.

3. Start the nginx
Container using
Docker
Compose:

In the directory where your docker-compose.yml and index.html files are
located, run:

docker-compose up -d

4. Access the

Open a web browser and navigate to http://localhost:8080. You should see

Web Server: the content of your custom index.html page.
5. Stop the nginx | docker-compose down
Container:

Note: may need to remove nginx-sever again (using docker stop and docker rm) before able to

do step 3

Extension task

Most students probably won't get up to this. But here's a general outline of how to approach:

1. Prerequisites:

Ensure you have Docker installed on your machine (or VM if you're using
a cloud provider).
Have a GitLab account and access to a GitLab project.

2. Install GitLab
Runner:

Depending on your OS, the installation process may vary. Here's a
general approach:

For Debian/Ubuntu:

curl -LJO "https://gitlab-runner-
downloads.s3.amazonaws.com/latest/deb/gitlab-runner_amd64.deb"

sudo dpkg -i gitlab-runner_amd64.deb

For Red Hat/CentOS:

curl -LJO "https://gitlab-runner-
downloads.s3.amazonaws.com/latest/rpm/gitlab-runner_amd64.rpm"

sudo rpm -i gitlab-runner_amd64.rpm

For other OS or manual installation, refer to the official
documentation.

3. Register the
GitLab Runner:

Navigate to your GitLab project.
Go to Settings > CI/CD.

https://onedrive live.com/redir?resid=30930EDCCEC99BB7%2126602&page=Edit&wd=target%28Prep.one%7C1f0acbc2-6b36-4ed2-8776-4ed190df815¢%2F...

4/5

https://docs.gitlab.com/runner/install/

17/08/2023, 11:12

OneNote

Under Runners, find the Set up a specific Runner manually section. Note
down the URL and the registration token.
On your machine, run:
“sudo gitlab-runner register’
Follow the prompts:

Enter the coordinator URL (from GitLab).

Enter the registration token (from GitLab).

Enter a description for the runner.

Enter tags (optional but useful for specific jobs).

Choose the executor (e.g., docker).

If you chose docker, specify the default Docker image (e.g.,
alpine:latest).

4. Start the GitLab
Runner:

“sudo gitlab-runner start’

5. Verify Runner

Back in your GitLab project, under Settings > CI/CD > Runners, you

Status: should now see your runner listed as active.

6. Configure .gitlab- | In your project, ensure that the .gitlab-ci.yml file uses the tags you

ci.yml: specified during registration (if any) to ensure jobs run on your self-
hosted runner.

7. Run CI/CD Whenever you push changes to your GitLab repository or create merge

Pipelines: requests, the CI/CD pipeline will trigger, and your self-hosted runner will

pick up and execute the jobs.

8. Maintenance:

Regularly check for updates to the GitLab Runner software and update
as needed.

Monitor the resources on your machine or VM, especially if running
intensive CI/CD tasks.

https://onedrive live.com/redir?resid=30930EDCCEC99BB7%2126602&page=Edit&wd=target%28Prep.one%7C1f0acbc2-6b36-4ed2-8776-4ed190df815¢%2F...

5/5

