
2023 Final Exam 

COMP2300/ENGN2219/COMP6300 
 

Digital Logic Fundamentals 

Q1. During a work assignment, you are asked to design a combinational 

circuit with a three-bit input, {A, B, C} (A is the most significant bit and C is 

the least significant bit), and two 1-bit outputs, Factorial and Div3. The value of 

each output is determined as follows: 

 

• The output Factorial is 1 if the input number is equal to its factorial. 

Factorial is the product of all positive integers (excluding 0) that are less 

than or equal to the input number. When the input combinations are all 0, 

the output is 1 

 

• The output Div3 is 1 only when the input 3-bit number is divisible by 3 

 

 

Answer the following questions. 

 

A. Draw the truth table for the combinational circuit. 

 

B. Express the output Factorial as the simplest sum of products 

representation. Show your work step-by-step. 

 

C. Express the output Div3 as the simplest sum of products representation. 

Show your work step-by-step. 

 

D. Draw a schematic of Factorial and Div3 using basic logic gates. 

 

E. It is well-known that we can implement any Boolean function either 

using basic logic gates or a look-up table (N to 1 multiplexer). Explain 

the tradeoff between the two approaches. 

 

 

 

 

 

 

 

 



Q2. Consider the high-level schematic of a general-purpose hardware circuit 

shown that computes two outputs from three inputs. Circle the correct answer. 

Each question carries 4 points. We will subtract 1 point for each incorrect 

answer and award 0 points for unanswered questions. 

 

A. Y2 depends on: 

a. X3  

b. X1 and X3 

c. X2 and X3 

d. X1, X2, and X3 

 

 

B. Y1 has no relationship to X3: 

a. True 

b. False 

 

C. If C1 has a delay of 10 units, and all other components have a delay of 3 

units, then the critical path of Y1 consists of: 

a. A1, D2, F2 

b. A1, B1, C1, F2 

c. C1, E2, G2, F2 

d. A1, B1, D2, E2, G2, F2 

e. B1, D2, F2 

f. Need more information 

 

 

D. If C1 has a delay of 5 units, and all other components have a delay of 3 

units, then the critical path of Y2 consists of: 

a. C1, E2, G2 

b. A1, D2, E2, G2 

c. A1, B1, D2, E2, G2 

d. B1, D2, E2, G2 

e. A1, B1, E2, G2, F2 

f. Need more information 

 

E. If the input is changed from (X1 =1, X2 = 0, X3 = 0) to (X1 = 1, X2 = 0, 

X3 = 1), then the following components are triggered to recompute their 

outputs: 

a. A1, B1, C1, D2, E2, G2, F2 

b. C1, E2, G2 

c. A1, B1, D2, F2 

d. C1, E2, G2, F2 

e. A1, B1, E2, G2, F2 
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Finite State Machines 

Q1. In this question, you will design a finite state machine-based video game 

controller. The video game has the following specification.  

 

• There are two input buttons, B1 and B2. When the player presses any of 

these buttons, a signal is sent to the controller. Both buttons are never 

pressed at once. Assume at least one button is pressed every clock cycle. 
 

• The game console has two output LEDs, RED and BLUE. These LEDs 

are controlled by the controller via two output signals. 
 

• The BLUE LED turns ON when the player presses the buttons in the 

following sequence, B1, B2, B1. (Not necessarily consecutively.) 
 

• The RED LED turns ON when the player presses the two buttons in the 

following sequence, B2, B2, B1. (Consecutively.) 

 

• Once the LEDs are turned on, they remain turned on forever. 

 
 

Design the finite state machine controller by finishing the following tasks. You 

may find it more convenient to build two separate Moore machines, one for 

each output. 

 

A. Design the Moore state transition diagram(s) for the above specification. 

Build the encoded state transition tables. Specify the next state and output 

equations.  

 

Note: You do not need to simplify the equations or draw the schematic of 

the resulting circuit. 

 

B. Explain how you will decide the clock frequency for the state machine 

controller. 

 

 

Q2. A specialized pipelined processing unit (PPU) for a high-performance 

computational problem is shown below. The PU processes an input token (set of 

inputs) using three stages. Your job is to compute the time it takes to process 

several tokens for different scenarios discussed below.  

 



 
 

First, the timing specification for the combinational and sequential elements of 

the circuit is given below. 

 

• The propagation delay of Stage 1 is equal to 3.4 nanoseconds. 

 

• The propagation delay of Stage 2 is equal to 3.3 nanoseconds. 

 

• The propagation delay of Stage 3 is equal to 3.7 nanoseconds. 

 

• The clock-to-Q propagation delay (tpcq) is equal to 0.2 nanoseconds. 

 

• The setup time (tsetup) is equal to 0.1 nanoseconds.  

 

• The hold time (thold) is zero. 

 

 

Now, consider the following scenarios. Assume that in the case of multiple 

PPUs, tokens are evenly partitioned among the PPUs. How long does it take to 

process the specified tokens? 

 

A. Twelve tokens and one PPU 

 

B. One billion tokens and one PPU 

 

C. One billion tokens and four PPUs 
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Assembly and ISA 

Q1A. There is no link register in the QuaC ISA. How can we write assembly 

code with functions without a link register? How would you write code to return 

from a function in QuAC? 

 
 

Q1B. Write a recursive function (starting at the label fib) which computes 

Fibonacci numbers in QuAC assembly. The Code is shown below. 

 

 

 

 

 

 

 

 

 

 

 

The parameter to the function is provided in r1 and the result should be 

returned in r1. Add a comment explaining which registers are caller vs callee 

saved. For this question you can assume the input is a 16-bit unsigned integer 

and the result will also fit into a 16-bit unsigned integer so do not worry about 

numerical overflow in your function.  

 

You can use any instruction from the base QuAC ISA specification. In addition, 

we provide two new instructions from the QuAC isntruction set with better 

support for writing functions in QuAC assembly. The instructions and their 

semantics are shown below. 

 

 
 

We define r6 to be the stack pointer (sp). You may assume that this register 

has already been appropriately initialized. There is no link register. 

 

push ra 

sp := sp – 1 

[sp] := ra  

 

pop ra 

ra := [sp] 

sp := sp + 1 

 

int fibon(int n) { 

  if (n == 0) 

    return 0; 

  else if (n == 1) 

  return 1; 

  else 

    return fibo(n-1) + fibo(n-2); 

} 



Q2. Circle whether each of the following is an aspect of the ISA or the 

microarchitecture. We will subtract 1 point for each incorrect answer and award 

0 points for unanswered questions. Each question carries 2 points.  

 

  

1. One-bit branch history prediction 

a. ISA  

b. Microarchitecture 

 

2.  Location of the bit in the machine instruction that identifies whether a 

specific memory instruction is a load or a store instruction 

a. ISA  

b. Microarchitecture 

 

3. Number of levels in the cache hierarchy of a processor 

a. ISA  

b. Microarchitecture 

 

4. Number of cores in the processor 

a. ISA  

b. Microarchitecture 

 

5. Width of registers in the register file 

a. ISA  

b. Microarchitecture 

 

6. Number of cycles it takes to execute an ADD instruction in a multi-cycle 

processor 

a. ISA  

b. Microarchitecture 

 

7. The size of memory addressable by programs 

a. ISA  

b. Microarchitecture 

 

8. Whether memory is byte-addressable or word-addressable 

a. ISA  

b. Microarchitecture 

 

9. Superscalar issue width of a dynamically scheduled out-of-order 

processor 

a. ISA  

b. Microarchitecture 



10.  The conditions for stalling the in-order CPU pipeline on a load-use 

hazard 

a. ISA  

b. Microarchitecture 

 

11.  Software-based exploitation of instruction-level parallelism with very 

simple hardware (e.g., VLIW) 

a. ISA  

b. Microarchitecture 

 

12.  The number of ALUs 

a. ISA  

b. Microarchitecture 

 

13.  The policy to stall on branch instead of using prediction 

a. ISA  

b. Microarchitecture 

 

14.  Register renaming to eliminate false dependences 

a. ISA  

b. Microarchitecture 

 

15.  Choosing port-mapped I/O for communicating with peripherals 

a. ISA  

b. Microarchitecture 

 

Q3. Pick all ISA decisions from below that improve code density. You can 

make one mistake and still get the full points. 

  

A. Complex instructions instead of reduced instructions 

 

B. Sophisticated memory addressing modes 

 

C. Memory-mapped I/O 

 

D. Instruction cache that resides close to the CPU 

 

E. Microprogramming 

 

F. Wide registers 

 

G. Algorithm 

 



H. Conditional execution for all instructions 

 

I. A large programmer-visible register file  

 

J. Clock frequency 

 

  



Input/Output 

Q1. It has been observed that in a large datacenter, during the peak hours of 

the daytime, the processing load consists of 50% CPU activity and 50% disk 

activity. The users of the service are complaining that the response time is very 

slow. As a manager of the service, you have been briefed that an upgrade of 

disks would cost $4,000 and make them 1.2 times as fast as they are currently. 

You have also been told that an upgrade of CPU will make it 2 times faster for 

$6,000. What is the cost per 1% increase in performance with the CPU upgrade 

and the disk upgrade? Which option would you recommend, and why? Show 

your work.   

 

Q2. You have a choice of following I/O systems. 

 

• Programmed polling I/O 

• Programmed interrupt driven I/O 

• DMA interrupt driven I/O 

 

Which one would you choose for each of the below peripherals? Briefly Explain 

the reason. 

 

A. Slow peripheral that sends one character at a time (e.g., keyboard) 

B. Slow storage device that sends an entire 4 KB block when requested 

C. Temperature sensor for thermostat 

  



Microarchitecture 

Q1. Pick all features from below that impact clock frequency. You are 

allowed to make one mistake and still get the full points. 

  

A. Instruction complexity 

 

B. Programming language 

 

C. VLIW (very long instruction word) 

 

D. Conditional execution 

 

E. Complex memory addressing modes 

 

F. Compiler 

 

G. Algorithm 

 

H. Number of programmer visible registers 

 

I. Transistor quality 

 

J. Pipeline depth 

 

K. Type of stack (downward / upward) 

 

L. Type of I/O (Interrupts / polling) 

 

M. Code size 

 

N. Microbit colour 

 

Q2. This question requires you to answer questions related to the execution of 

the following instruction sequence. First, study the instruction sequence below. 

Then, answer the questions.  



 

 

 

A. How many times is i7 executed if the above code runs on a multi-cycle 

CPU?  

 

B. Consider the ARM 5-stage pipelined CPU without forwarding and hazard 

detection in hardware. Your task is to insert NOPs in the assembly code 

so that it executes correctly on the pipelined CPU. Rewrite the code 

above by inserting NOPs. What is the IPC if the code with NOPs is 

executed on this pipelined CPU? (Recall that IPC is acronym for 

instructions per cycle.) 

 

C. Now consider the ARM 5-stage pipelined CPU with forwarding and 

hazard detection. In the case of conditional branches, this CPU predicts 

branches are not taken. You can make the following assumptions. 

 

• Conditional branches resolve and update the PC at the end of EX 

stage.  

• Unconditional branches stall fetch until the PC is updated in the 

WB stage.  

• Memory accesses take one cycle.  

 

For one execution of the loop body (i.e., in some iteration before the loop 

terminates), identify a pair of instructions where forwarding helps avoid 

stalls altogether. Also identify a pair of instructions which lead to one or 

i1:   MOV R0, #0 

i2:   MOV R1, #10 

i3:   MOV R2, #200 

i4:   MOV R3, #0 

i5:   MOV R4, #0 

     LOOP: 

i6:   CMP R0, R1 

i7:   BEQ L2 

i8:   LDR R3, [R2], 4 

i9:   ADD R3, R3, R1  

i10:  ADD R4, R3, R4 

i11:  SUB R1, R1, #1 

i12:  B LOOP 

     L2: 

 

 

 



more stall cycles despite hazard detection. What is the IPC if the code 

executes on the pipelined CPU with forwarding and hazard detection? 

 

Note: You can answer these questions using either text or an illustration.  

 

D.  Assume the CPU uses a more sophisticated branch predictor than always 

untaken. What is the prediction accuracy of the Smith2 predictor (2-bit 

saturating counters) for the BEQ instruction if the above code executes 

only once? What if the above code executes four times? 

 

Q3. Consider the following ARM assembly code. Answer the following 

questions. 

 

 

 

 

 

 

 

 

 

 

A. List all the true and false (anti and output) dependencies in the above 

ARM assembly code. You can list dependencies using the following 

format: {i1 to i1, anti, by way of R0}. 

 

B. How many independent chains of instructions are there in the code? 

Write the chains in the following format {i1, i1, i1}. 

 

C. What is the maximum number of instructions that can execute in parallel 

on a hypothetical machine with no structural hazards (unlimited ALUs, 

any number of memory accesses in flight at once)? Briefly explain your 

reasoning. 

 

Q4.  This question requires to you show the contents of different structures of 

an out-of-order processor that uses a scoreboard for resolving read-after-write 

hazards. Use the following assumptions. 

 

• WAR and WAW hazards stall fetch in the RR stage.  

• The CPU has an 8-entry architectural register file. 

• All entries of the scoreboard are 1 prior to the execution of the first 

instruction. A busy register, i.e., value is being computed and dependent 

instruction must wait, is indicated by {v = 0} in the scoreboard. 

i1: LDR R1, [R0, #16] 

i2: LDR R2, [R0, #32] 

i3: ADD R1, R1, #32 

i4: ADD R2, R2, #32 

i5: STR R1, [R0, #16] 

i6: STR R2, [R0, #32] 



• The issue queue is empty. The v bits of all slots are 0. All slots are 

available. An unavailable slot is indicated by the v bit set to 1. 

• The pipeline is fully flushed before the execution of first instruction. 

• The contents of the register file are shown below.  

• Any memory access results in a cache miss. 

• Memory accesses complete in three steps: (1) address generation, (2) data 

cache access, (3) main memory access. If data is not present in the cache, 

then the request is sent to memory during the next cycle. 

• It takes four cycles for the memory to respond. Therefore, an access that 

does not find the requested word in the data cache spends 1 cycle 

computing the address, 1 cycle looking up in the data cache, and four 

cycles waiting for memory (6 cycles total in the EX-stage). 

• The value of data word stored at memory location 16 is 0. 

 

For the four instructions below, answer the following questions. 

 

 

 

 

 

 

 

A. Provide the contents of the issue queue at the end of cycle # 8 and cycle # 

12. You can pick any free slot in the issue queue for any instruction. Use 

the following format to answer this question using text.  

 

Cycle # X: {i1: v=1, dst tag = R0, rs1 rdy = 0, rs1 tag = R0, rs2 rdy = 0, 

rs2 val = 0} 

 

Also draw and attach the cycle-by-cycle pipeline diagram, as shown in 

the lecture slides.   

 

B. Provide the contents of the scoreboard at the end of cycle #5 and cycle # 

9. You can show the scoreboard contents in each cycle by writing a string 

of 8 binary digits, e.g., 00001111 for each cycle. 

 

C. Provide the contents of the Register File at the end of cycle # 12. Use the 

format below. 

 

{R0 = 10, R1 = 10, R2 = 13, and so on for the remaining registers} 

 

i1: LDR R2, [R1, #0] 

i2: ADD R4, R3, #1 

i3: ADD R6, R2, R4 

i4: SUB R7, R6, #3 

 

 

 



D. What is broadcasted on the common data bus (CDB) at the end of cycle # 

8? 

 

 

Initial state of the issue queue, scoreboard, and register file. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Pipeline cycle-by-cycle diagram format: 

 
 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 
i1: LDR R2, [R1, #0] FE DE RR DI IS EX@ EXD$ MEM MEM MEM MEM WB      
i2: SUB R3, R2, #6  FE DE RR DI IS IS IS IS IS IS EX WB     
i3: ADD R4, R1, #5   FE DE RR DI IS EX WB         
i4: ADD R6, R3, R3    FE DE RR DI IS IS IS IS IS EX WB    

 
 

Register File Scoreboard 

Issue Queue (IQ) 



Bonus Questions 

We now provide you an opportunity to attempt two bonus questions. We 

will not deduct any points for wrong answers. Each bonus question carries 

10 points. These points will be added to your final score out of 300.  

 

Q1.  Rank the following microarchitectures according to their potential to 

exploit instruction-level parallelism (ILP). List the highest ILP 

microarchitecture first. Your answer may look like {A, B, C, D, E, F, G, H}. 

Briefly explain your reasoning for the top two entries in the ranking.  

 

A. 4-issue superscalar with hardware speculation, but without register 

renaming 

 

B. 2-issue superscalar in-order with forwarding and hazard detection 

 

C. 4-issue superscalar with hardware speculation 

 

D. Multi-cycle  

 

E. 4-issue superscalar with dynamic scheduling, but without speculation 

and register renaming 

 

F. Scalar in-order without forwarding and hazard detection (compiler 

inserts NOPs to resolve hazards) 

 

G. Scalar in-order pipeline with forwarding and hazard detection 

 

 

Q2.  Rename the following instructions to eliminate false dependencies. The 

true dependencies must still be respected. The physical registers are {T0, T1, 

T2, T3}. Assume the register file is up-to-date and pipeline is full flushed before 

the first instruction is fetched. 

 

 
 
i1: ADD R0, R1, #8 

i2: ADD R1, R0, R7 

i3: ADD R2, R3, #16 

i4: ADD R3, R2, R7 

 

 

 

 


