ENGN2219/COMP6719
 Computer Systems \& Organization
 Problem Set 1

Note: This problem set is optional for your practice only and not part of the assessment scheme.

Question 1:
Briefly explain how software programmers can write programs in their favorite programming language (e.g., Python) without fully comprehending the physics behind transistors (the fundamental building block of a modern computer). How is the microarchitecture abstraction different from the architecture (or ISA) abstraction? Why do we need a transformation hierarchy in computer systems?

Question 2:

What is the smallest (most negative) 32-bit binary number that can be represented with
(a) unsigned numbers?
(b) two's complement numbers?
(c) sign/magnitude numbers?

Question 3:

Convert the following decimal numbers to 8-bit two's complement numbers or indicate that the decimal number would overflow the range.
(a) 124
(b) -63
(c) 42
(d) -128
(e) 133

Question 4:
Convert the following decimal numbers to 6-bit two's complement binary numbers and add them. Indicate whether the sum overflows a 6-bit result.
(a) $16+9$
(b) $-4+19$
(c) $3+-32$
(d) $-16+-9$
(e) $-27+-31$

Question 5:
Convert the following decimal numbers to 5-bit two's complement binary numbers and subtract them. Indicate whether the difference overflows a 5 -bit result.
(a) 9-7
(b) $12-15$
(c) $-6-11$
(d) $4--8$

Question 6:
Convert the following hexadecimal numbers to decimal:
(a) AB3E
(b) 776 F

