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Total Points: 100 

  
 
Important Instructions: (1) Write down the names and UIDs of each student 
in a group (if applicable) on the first page of your submission. (2) Submit the 
solution as a single pdf file. 
 
 
Instructions for Q12: You can fill out the PowerPoint slide deck and convert it 
to a pdf document. You can then combine the pdf document with a second pdf 
file with responses to all other questions. Alternatively, you can copy and paste 
the main structures from the PowerPoint slide deck to your word document. 
And then submit a single pdf file. You can also print out the slide, fill the 
contents by hand, scan the document, and convert it to pdf.  
 
 
 
Note about MIPS ISA:  The practice questions in this homework assume MIPS 
ISA. Please use your favorite search engines to learn about the differences 
between ARM and MIPS ISA.  It will not take more than 10 minutes to 
understand MIPS if you know ARM. Once you understand one ISA, learning 
about another ISA should be straightforward. 
 
 
Perhaps all you need to know is that MIPS base plus offset addressing specifies 
the base register inside parentheses and offset outside the parentheses. 
 
 
 
 
 
 
 
 
 
 
 
 
 



(2 Points) 
 
Q1. Compilers impact the performance of applications in different ways. For 
a program, compiler X results in a dynamic instruction count of 1 billion 
instructions, and an execution time of one second. A second compiler Y results 
in an execution time of 1.5 seconds, and a dynamic instruction count of 1.2 
billion instructions. For a processor with a clock cycle time of one nano 
seconds, find the average CPI for each of the two programs. 
 
(8 Points) 
 
Q2. We are interested in adding a register-memory arithmetic instruction to 
the MIPS architecture. The new instruction exploits the I-format for load, store, 
and branch instructions. The new instruction has the label ACCM and employs 
an unused opcode in the ISA (the exact opcode is irrelevant). The semantics of 
the ACCM instruction is shown below: 
 
Instruction: ACCM Rt, Const(Rs) 
Interpretation: Reg[Rt] = Reg[Rt] + Mem[Reg[Rs] + Const] 
 
MIPS I-Format (shown for convenience) 

 
A. Draw the datapath and control signals for a single-cycle implementation 

of the ACCM instruction. Your datapath should show the new 
components, control signals, multiplexers, and instruction labels. Your 
illustration must show every logic and memory element on the critical 
path. 
 

B. Identify the critical path for the ACCM instruction. Write the equation 
(like the lecture slides) for the critical path. For example, use tALU and 
tMEM for the latency of ALU and memory. List all your assumptions. 

 
 
 
 
 
 
 
 
 



(10 Points) 
 
Q3. Consider the following instruction sequence: 

 
 

A. Suppose the pipelined in-order processor does not implement forwarding 
or hazard detection. As a programmer, your task is to insert nops to 
ensure correct execution. Insert nops to ensure correct execution. 

 
B. Suppose the processor manufacturer forgot to implement hazard 

detection. The processor still implements forwarding. Explain the 
consequences of executing the above code on the buggy processor. 
 

C. Now consider the following scenario: the processor does not implement 
forwarding. How should we change the hazard detection unit to ensure 
correct execution? List the conditions for detecting hazards. Explain the 
new input and output signals we need to add to our hazard detection unit. 
Note: Use the above instruction sequence as an example to explain why 
each input/output signal is required. 
 

D. Suppose there is an irrelevant instruction between i4 and i5. Is the store 
instruction exposed to a hazard? How can we resolve the hazard (if any)?   

 
 
 
 
 
 
 
 
 
 
 
 



(10 Points) 
 
Q4. Consider an analytics application running on top of the MIPS processor. 
A fraction of instructions in this application exposes a specific type of RAW 
hazard. We identify the type of RAW hazard by the stage that produces the 
result (EX or MEM) and the instruction that consumes the result (1st following 
instruction, 2nd instruction that follows, or both). The type of RAW hazard and 
the fraction of instructions are shown in the table below. Answer the questions 
below with the following assumptions: (1) A register write happens in the first 
half of the clock cycle and a register read happens in the second half, (2) CPI of 
the processor is one if there are no data hazards.  
 
Assume stores are never followed by loads. All other hazards can be resolved 
by other tricks (RF read/write policy). 
 

 
 

 
 

A. What fraction of the cycles does the pipeline stalls with no forwarding? 
 

B. What fraction of the cycles does the pipelines stalls with full forwarding? 
 

C. What is the speedup with full forwarding versus no forwarding? Note: 
Speedup is defined as the ratio of execution times with and without an 
optimization. 
 

D. To avoid the complexity of large-input multiplexers, we need to decide if 
it is better to forward only from the EX/MEM pipeline register or the 
MEM/WB pipeline register. Which option would you choose to minimize 
data stall cycles? (Show your calculation) 

 
 
 
 
 
 
 



(4 points, 2, 2) 
 
Q5. Find the longest chain of dependent instructions in the following code 
sequence. If maximizing IPC is the goal, should a microarchitect consider a 
stall-on-use in-order pipeline over a stall-on-miss in-order pipeline? 
  

name dst src1 scr2 

i1: add r1 r1 r2 

i2: add r1 r1 r3 

i3: sub r1 r1 r4 

i4: load r5 #0 r1 

i5: load r7 #0 r8 

i6: add r9 r5 r7 

 
 
 
(12 Points) 

 
Q6. Assume that a branch has the following sequence of taken (T) and not-
taken (N) outcomes: T,T,T,N,N,T,T,T,N,N,T,T,T,N,N 
 

A. What is the prediction accuracy for a 2-bit counter (Smith predictor) for 
this sequence assuming an initial state is strongly taken? 
 

B. What is the minimum local history length needed to achieve perfect 
branch prediction for this branch outcome sequence?  
 

C. Draw the corresponding PHT and fill in each entry with one of T (predict 
taken), N (predict not taken), or X (does not matter). 

 
 
 
 
 
 
 



(6 points) 
 
Q7.  
 

A. Why does the register read stage must precede the issue stage in an out-
of-order (OOO) processor (core) that uses an architectural register file 
(ARF) plus the reorder buffer to implement register renaming and 
hardware speculation? 

 
B. List the reasons for separate dispatch and issue stages in an out-of-order 

(OOO) processor core that implements dynamic scheduling?  
 
 
 
(6 points) 
 
Q8. Indicate dependences and their types in the following instruction 
sequence. For each of the dependence types, explain the hazards that could 
result in the following microarchitectures: (1) single-cycle in-order, (2) 
pipelined in-order, and (3) pipelined out-of-order. Assumption: No forwarding 
and hazard detection has been implemented yet.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(6 points)  
 
Q9. In this question, consider an out-of-order pipeline with an architectural 
register file (ARF) and a reorder buffer (ROB). The ROB has 32 entries. The 
tail currently points at the eighth entry of the ROB (rob7). The head of the ROB 
is stalled for an additional 100 cycles. The state of the ARF, the rename map 
table (RMT), and the ROB are shown below. Rename the destination and source 
register specifiers in the instruction sequence below. Identify the dependences 
in the original and the renamed sequence. Draw the state of the RMT after the 
instruction sequence is renamed. 

 

 
 
 
 



(8 points, 2.5, 2.5) 
 
Q10. Briefly explain how we can add the following features to the CDC 6600 
scoreboard. (1) Register renaming. (2) Hardware speculation. Start with the 
scoreboard design as we studied in the lectures and briefly explain the steps 
required to add the two features. 
 
 
(8 points, 2, 2, 2) 
 
Q11. The complexity of processor pipelines we have encountered in the 
lectures vary. We rank three different pipelines with increasing complexity as 
follows: (1) stall-on-miss (simple) (2) stall-on-use (moderately complex) (3) 
ARF+ROB (very complex). For each of the following scenarios, pick the 
simplest pipeline that would likely deliver the highest IPC. The in-order 
pipelines do not use branch prediction. The OOO pipeline uses a simple one-bit 
branch predictor. 
 

1. Scenario 1: Frequent RAW hazards, infrequent branches, negligible 
WAR/WAW hazards, infrequent memory operations 
 

2. Scenario 2: Infrequent RAW hazards, frequent hard-to-predict 
branches, frequent independent memory operations, frequency of 
WAR/WAW hazards is unknown 

 
3. Scenario 3: Same as scenario 2, but easy to predict branches, and the 

frequency of WAR/WAW hazards is known to be very high 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



(20 points) 
 
Q12. This question has an associated PowerPoint template slide (see next page) 
that you need to fill three times (for three scenarios) and attach to your final pdf 
submission. Consider the following instruction sequence. Suppose we run this 
sequence on an ARF+ROB pipeline. Your task is to fill the contents of the 
RMT, the issue queue, ROB, the architectural register file, and the multiple-
clock-cycle diagram (bottom of the slide) at three different points in the 
execution of the code sequence. These structures are marked as XXX in the 
template slide.  
 
Questions: Provide the contents of all structures marked XXX in the following 
cycles: (1) when the instruction i2 is in the register read stage (2) when the 
instruction i3 is in the issue stage and (3) when the instruction i4 is in the retire 
stage. In which cycle does the branch instruction sets/resets the misprediction 
bit in the ROB? Provide an itemized list of all the actions that take place in the 
pipeline during that cycle. (You should answer the last question in text, but you 
may fill out the PowerPoint template slide one more time for cycle # 13 and 
attach it to your pdf submission.) 
 
Assumptions: Assume the processor uses the always-untaken branch prediction 
strategy. Also assume that branch i3 is not taken (on resolution). Assume i2 
results in a data cache hit. The data cache hit latency is three cycles. Therefore, 
the load instruction takes one cycle for address calculation and three cycles for 
retrieving the value from the data cache. All other operations take one cycle to 
execute. The initial state of the RMT, the architectural register file, and the 
head/tail pointers of the ROB is shown on the slide. you should infer "when the 
instruction is in the issue stage" as when the instruction enters the issue stage. 
Same for the retire stage. 
  

name dst src1 scr2 

i1: add r2 r3 r4 

i2: load r5 #16 r2 

i3: bnez 
 

r5 i12 

i4: addi r2 r7 #13 

 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Solutions 
 

Q1: 

Cycles(X)=1e+9, Cycles(Y)=1.5e+9, CPI(X)=1, CPI(Y)=1.25 

Q2: 

One approach: (1) There is an extra ALU in the datapath. (2) The second ALU is fed 
data from either data memory or RF. (3) There is a multiplexer in front of the second 
ALU that chooses an operand from either memory (ACCM) or register (other 
instructions). (Note: There are other ways of doing this but a second ALU and 
multiplexer is not avoidable. There are ways to avoid putting the extra multiplexer 
off the critical path. But most correct solutions report the following equation for the 
critical path.) 

The critical path is: Tpc + 2Tmem + Trf-read + 2Talu + 2*Tmux + Trf-setup 

Q3: 

(A) 2 nops b/w i1 and i2, 1 nop b/w i3 and i4, 2 nops b/w i4 and i5  

(B) Code executes correctly. There is no load-use hazard  

(C) We need to detect dependency with first/second youngest instruction. 

The instruction that is currently in the ID stage needs to be stalled if it 
depends on a value produced by the instruction in the EX or the instruction in 
the MEM stage. So we need to check the destination register of these two 
instructions. For the instruction in the EX stage, we need to check Rd for 
R-type instructions and Rd for loads. For the instruction in the MEM stage, the 
destination register is already selected (by the Mux in the EX stage) so we 
need to check that register number (this is the bottommost output of the EX/ 
MEM pipeline register). 

First youngest: 
ID/EX.RegWrite and 
((ID/EX.RegisterRt = IF/ID.RegisterRs) or 
(ID/EX.RegisterRt = IF/ID.RegisterRt)) 

Second youngest: 
EX/MEM.RegWrite and 
((EX/MEM.RegisterRt = IF/ID.RegisterRs) or 
(EX/MEM.RegisterRt = IF/ID.RegisterRt)) 



(D) We now need forwarding from Mem to Ex stage (or insert an extra nop). 

Q4: 

(A) Dependences to the 1st next instruction result in 2 stall cycles, and the stall is 
also 2 cycles if the dependence is to both 1st and 2nd next instruction. 
Dependences to only the 2nd next instruction result in one stall cycle. We have: 1 + 
(7%+18%+10%)*2 + (5%+10%)*1 = 1.85 (46%) 

(B) With full forwarding, the only RAW data dependences that cause stalls are those 
from the MEM stage of one instruction to the 1st next instruction. Even this 
dependences causes only one stall cycle, so we have: 1+(18%)*1=1.18 (15%) 

(C) We first need to compute the execution times using CPI and cycle times. 

Execution time with no forwarding = 1.85 * 250 = 463ps  

Execution time with forwarding = 1.18 * 250 = 295ps  

Speedup = 463/295 = 1.57 

(D) First, we need to calculate the CPI with each option. 

CPI with forwarding from EX/MEM = 1 + (18%)*2 + (10%+10%)*1 = 1.56  

CPI with forwarding from MEM/WB = 1 + (7%+10%)*2 + (18%+5%) = 1.57 

Forwarding from EX/MEM is better. 

Q5: 

i1—i2—i3—i4—i6 

With stall-on-use, we can issue i4 and i5 in parallel 

Q6: 

(A) 7/15 (47%)  

(B) 3 

PHT: 

000: X 
001: T 
010: X 



011: T 
100: T 
101: X 
110: N 
111: N 

Q7: 

A: The values of destination registers reside either in ARF or ROB. If an 
instruction in the rename/register-read stage does not capture the values from 
ROB, then the value may move to the ARF by the time instruction is ready to 
execute. This is the reason why we must have register read stage before the 
issue stage in ARF+ROB. 

B: The issue stage enables dynamic scheduling of instruction out of the 
original program order. The instruction enter the issue queue in program order 
(dispatch) and are selected by the dynamic scheduler (issue) for execution out 
of order. 

Q8: 

(1) no hazards (2) RAW only (3) All hazards are possible (need renaming to 
avoid WAR and WAW) 

i1->i2: RAW (r3) 
i1->i3: RAW (r3) 
i2->i3: RAW (r4) 
i1->i2: WAR (r4) 
i2->i3: WAR (r3) 
i1->i3: WAW (r3) 

Q9: 

No dependences in the renamed sequence (purpose of renaming) 

Dependences in the original sequence:  

i1->i2: RAW (r5)  
i1->i4: RAW (r5)  
i1->i5: RAW (r5)  
i1->i3 WAR (r2)  
i2->i4: WAW (r3)  
i2->i4: RAW (r3)  
i4->i5: RAW (r3) 

Renamed Sequence:  

add rob7, rob3, rob2 



lw rob8, 4(rob7)  
lw rob9, 0(rob3)  
or rob10, rob7, rob8  
sw rob10, 0(rob7)  

RMT: 

r0  
r1 1 rob2  
r2 1 rob9  
r3 1 rob10  
r4  
r5 1 rob7 

Q10: 

Register renaming: (1) Add RMT, (2) Add an extended set of registers (e.g., via ROB) 

Hardware speculation: Use ROB 

Q11: 

(1) Stall-on-miss 

(2) Stall-on-use 

(3) ARF+ROB 
 
 
Q12: 
 
See next few pages. 



 
 
 



 
 
 
 
 
 
 
 
 

 


