
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Shoaib Akram
School of Computing, (Jan 2020 –)
Ph.D., 2019
Teaching: COMP2300, COMP2310, Computer Microarchitecture (3710)
Interests: Hardware/software interaction, storage systems

§ Interesting time to learn and research about computer systems
§ Technology (physical) limits vs. societal demand for more compute power;

cost and energy efficiency; and sustainability
§ Big Data, AI/ML, social media platforms, search engines, communications,

mobile apps, drones, among others.

My current research focus is on efficiently processing big datasets
1

Logistics
§ Course webpage: https://comp.anu.edu.au/courses/comp2300/

§ Lectures (on the website)
§ Lecture slides
§ Lecture videos are available via Echo360

§ Policies
§ General conduct, assignment submissions, support, management,

grading, late submissions

§ Resources
§ Frequently asked questions
§ Writing design documents
§ Stuff needed to finish the assignments

2

https://comp.anu.edu.au/courses/comp2300/

Communication
§ We will use Ed for

§ Announcements

§ Addressing your concerns

§ Answering your questions

§ Students are added automatically
§ If not send an email to comp2300@anu.edu.au

3

mailto:comp2300@anu.edu.au

Communication
§ The course email is an alternative form of communication

§ comp2300@anu.edu.au

4

Tutorials
§ Labs are a critical component of this course (one every week)

§ Handouts should be posted on the website

§ First six labs
§ Assignment 1

§ Next six labs
§ Assignment 2

§ Excellent tutors with deep technical knowledge of the subject
§ Almost all of them have taken multiple courses in the systems &

architecture specialization
5

Lectures
§ Go well beyond what is covered in the tutorials

§ Exam and quiz questions based on lectures

§ Tutorials teach you how to build and program a
simple computer to manage complexity

§ Lectures will systematically build up from simple
to a very complex, state of the art, computer

6

Assignment Submission
§ Assignment submissions are handled via Gitlab

§ You will learn about it in the labs

§ Make a habit of using Gitlab properly!

§ Push often, always pull the latest

§ Extensions
§ https://comp.anu.edu.au/courses/comp2300/policies/#extensions

7

https://comp.anu.edu.au/courses/comp2300/policies/

Textbook

§ Freely available online (check Ed or course webpage)
§ I will post the chapters/sections on the Lectures page after the lecture

8

§ Asks a question

§ Let’s give it a shot!

COMP2300

9

How does a computer
actually work?

COMP2300

10

COMP2300

How does a computer
work under the hood?

11

COMP2300

How does a computer work under the hood?

High abstraction level Low abstraction level
12

COMP2300

How does a computer work under the hood?

High abstraction level Low abstraction level
13

COMP2300

Let’s be more specific
....

14

COMP2300

How does a computer
perform a useful task?

15

COMP2300

How does a computer
perform a wide variety

of useful tasks?
16

COMP2300

How do we make a
computer perform a

wide variety of useful
tasks?

17

COMP2300

How do we make
electrons perform a

wide variety of useful
tasks?

18

COMP2300

How do we make
electrons perform a

wide variety of useful
tasks?

19

How do we make electrons
execute a wide variety of useful

programs?

COMP2300

§ Computer Organization & Program
Execution

20

How do we make electrons do the
work?

Problem Statement: “Save the planet”

21

How do we make electrons do the
work?

Problem Statement: “Save the planet”

The Algorithm

22

How do we make electrons do the
work?

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

23

How do we make electrons do the
work?

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

24

How do we make electrons do the
work?

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

25

How do we make electrons do the
work?

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

26

How do we make electrons do the
work?

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

27

How do we make electrons do the
work?

§ Using a sequence of systematic transformations
developed over six decades

§ Each step must be studied and improved for the
whole “compute stack” to work/operate
efficiently

28

§ We call the steps of the process: Levels of transformation OR
transformation hierarchy

§ At each level of the stack, we have choices
§ Language→ Java, Python, Ruby, Scala, C++, C#
§ ISA→ ARM, x86, SPARC, PowerPC, RISC-V
§ Microarchitecture→ Intel, AMD, IBM, Apple

§ If we ignore any of the steps, then we cannot
§ Make the best use of computer systems
§ Build the best system for a set of programs

Transformation Hierarchy

Problem

Algorithm

Program

Architecture

micro-arch

circuits

devices

29

Program
Execution

Transformation Hierarchy

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

30

Program
Execution

Computer
Organization

Transformation Hierarchy

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

31

Program
Execution

Computer
Organization

Computer
Architecture

Transformation Hierarchy

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

32

Program
Execution

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

2300
2300

2300

❌

Transformation Hierarchy & Us

Computer
Organization

Computer
Architecture

33

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Compiler and Third-Party Libraires/Binaries

Operating System

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

Program
Execution

Computer
Organization

Computer
Architecture2300

2300

2300

❌

2310

2310

Transformation Hierarchy & Us

34

Problem Statement: “Save the planet”

The Algorithm

Program in a High-Level Language

Compiler and Third-Party Libraires/Binaries

Operating System

Instruction Set Architecture (ISA)

Microarchitecture

Circuits

Devices

Hardware and Software

Hardware

Software

ISA = Hw/Sw
boundary/interface

35

§ ISA: Specification of a set of definite instructions that the computer
can carry out

§ All computers (CPUs/microprocessors) perform the same set of
basic instructions

§ ADD, MULTIPLY, DIVIDE, MOVE, BRANCH

§ Two manufacturers might differ in which set of basic instructions

§ Microarchitecture: Implementation of the ISA using circuits

ISA vs. Microarchitecture

36

ISA vs. Microarchitecture

§ ISA: What the driver needs to know as she sits inside the
automobile to make the automobile carry out the driver’s
wishes

§ If the middle pedal (brake) is pressed, the car stops

§ Steering wheel, ignition key, the gears, windshield wipers

§ ISA specifies two things (?)

§ All cars have the same ISA (hopefully). There could be
differences!

§ Microarchitecture: What goes underneath the hood

§ Different cost/performance tradeoffs

§ Some are turbocharged. Some have disc brakes. Some cost a
million $. Some are more fuel efficient than others

§ But you don’t need a separate license to drive a Honda and a
BMW

§ Must not take a Honda to a BMW factory for repair! 37

§ The notion of abstraction

§ Hardware versus software

Two Recurring Themes

38

The Notion of Abstraction
§ Abstraction: Know components from a high level of detail

Apple M1 Chip
Billions of transistors
All working in parallel

No human (programmer) can track
10 billion elements. Computer systems
work because of abstraction!

39

The Notion of Abstraction
§ Abstraction: View the world from a higher level

§ Focus on the important aspects

§ It is a way to enhance productivity and efficiency

40

The Notion of Abstraction

Put pressure on the pedal known as the accelerator

Drive 0.7 KM at an appropriate speed so we don’t get fined

Turn the steering wheel to the left

Press the middle pedal so the automobile comes to a halt

....
41

The Notion of Abstraction

First go straight

Then take a left

Then go straight again

...
42

The Notion of Abstraction

Take me to 108 North Road, please!

43

The Notion of Abstraction
§ Important lesson in the previous example

§ It is efficient to abstract and there is really nothing to be gained from the
ridiculous elaboration to the driver

§ Except when
§ Driver does not know how to drive

§ Driver does not know where is 108 North Road

§ This is where COMP2300 is unique. It teaches you to un-abstract when
the world you are trying to abstract does not work as expected.

44

The Notion of Abstraction
§ Focus on the important aspects

§ What is input? What is output?

§ What is the function: Is X an ADD or MULTIPLY unit

§ If the world below does not work as expected?
§ If the transistors X is built from do not behave as expected (unlikely in

this course)
§ To deal with it, we need to go below the abstraction layer

§ Deconstruction: To un-abstract when needed
§ Important skill
§ If the CPU does not work as expected, first test each of the big sub-

components
§ Then, check to see if the next component in the hierarchy works as

expected

X
input output

45

The Notion of Abstraction

§ We will raise the level of abstraction in this
course every couple weeks

§ We start from the ground (up) because this is
how computers have evolved

§ Each layer in the transformation hierarchy is
an abstraction layer

Problem

Algorithm

Program

Architecture

micro-arch

circuits

devices

46

Hardware versus Software
§ Hardware

§ CPU, memory, storage device, disk, SSD, network card, USB
device, AI accelerator, FPGA, PLA, motherboard, PCI express
bus, SATA drive

§ Software
§ Programs, operating systems, compilers, virtual machines,

device drivers,

§ One view: Ok to be an expert at one of these

47

Hardware versus Software
§ Hardware and Software

§ Two interacting parts of the computer system

§ COMP2300 view: Knowing the capabilities and
limitations of each leads to better overall systems

48

Hardware-Software Interplay

Software
Applications

Hardware
Systems

Requirements

Opportunities

╳

49

Why so many hardware
choices?

50

CPUs

Flexible: Can execute any program
Easy to program & use

GPUs FPGAs ASICs

Efficient & High performance

Cerebras WSE-2Apple M1 Nvidia GTX 1070 Xilinx Spartan

General Purpose Special Purpose

(Usually) Difficult to program & use
Inflexible: Limited set of programs

Domain-specific, special purpose languages
Not the best performance & efficiency
 C/C++/Java/...

Hardware: General Purpose vs. Special
Purpose

Common
building
block of

computers

51

General Purpose vs. Special Purpose
General Purpose Special Purpose

Flexible: Can work with any bolt
Easy to use

Not the best fit, results or efficiency
Efficient & High performance

(Usually) Difficult to use
Inflexible: Only for fitting bolts

52

Modern Software Trends
§ Many important and emerging applications are data-intensive

§ It is easier and convenient to produce data than to process,
analyze, and store it

§ This trend of producing data at high velocity is driving new
applications and correspondingly novel hardware

Software
Applications

Hardware
Systems

Requirements

Opportunities

53

§ Key components of a computer are the same

§ All computers can compute the same things

Two Key Ideas

54

Idea 1: Key components are same

Council Bluffs, Iowa
data center, Google
(115, 000 sq. feet)

Self-flying nano drone
94 milli-watts

Research server for my
students with special memory
& storage devices 55

Main Memory

§ Most computer systems can be viewed as below
§ Key resources: CPU, memory, I/O devices, storage
§ CPU (processor/microprocessor) does the actual computation
§ Processor can access memory much faster than storage

Storage

A Canonical Computer System

I/O Peripherals

56

§ Key Idea 1: All computer systems, big or small, have a few
fundamental components
§ Microprocessor (processor or central processing unit or

CPU) for doing computation
§ Main memory for storing temporary information and

program data close to the processor
§ Storage devices (disks or SSDs) for storing long-term or

persistent information
§ I/O devices to communicate with the external environment

§ Sensors
§ Peripherals

Idea 1: Key components are same

57

§ Key Idea 2: All computers regardless of size, cost, and speed
can compute the same things if they are given enough time
and memory

§ Anything a fast computer can do, a slow computer can do

§ Let’s explore this idea further

Idea 2: They all can solve the same
problems

58

Program Ex.

59

Program Ex.

Software
Hardware

ISA is the boundary
(Contract)

60

Program Ex.

Software
Hardware

ISA is the boundary

C Program

Assembly
compiler

assembler

(Contract)

Memory

01010010
10101010
10101001
10000011

Machine
Code

int z = z + 1;
for (...) {

61

Program Ex.

Software
Hardware

ISA is the boundary

C Program

Assembly
compiler

assembler

(Contract)

Memory

CPU

01010010
10101010
10101001
10000011

Instructions stored as 0’s and 1’s

Machine
Code

int z = z + 1;
for (...) {

62

Program Ex.

Software
Hardware

ISA is the boundary

C Program

Assembly
compiler

assembler

(Contract)

Memory

CPU

01010010
10101010
10101001
10000011

Instructions stored as 0’s and 1’s

Fetch, decode, execute
an instruction every clock cycle

Machine
Code

int z = z + 1;
for (...) {

63

Program Ex.

Software
Hardware

ISA is the boundary

C Program

Assembly
compiler

assembler

(Contract)

Memory

CPU

01010010
10101010
10101001
10000011

Instructions stored as 0’s and 1’s

Fetch, decode, execute
an instruction every clock cycle

Machine
Code

Assignment 1: Build CPU

int z = z + 1;
for (...) {

64

Program Ex.

Software
Hardware

ISA is the boundary

C Program

Assembly
compiler

assembler

(Contract)

Memory

CPU

01010010
10101010
10101001
10000011

Instructions stored as 0’s and 1’s

Fetch, decode, execute
an instruction every clock cycle

Machine
Code

Assignment 1: Build CPU

Assignment 2: Program CPUint z = z + 1;
for (...) {

65

§ Anything that can be computed, can be computed by a
computer

§ Studying computers is studying the fundamentals of all
computing

§ The idea of universal computational device is due to Alan
Turing (1937)

§ He gave the mathematical description of Turing machine

§ A particular kind of machine called the Turing
machine can carry out all computations

§ Let’s build this ultra powerful Turing machine

Computer = Universal Computational Device

66

Computer = Universal Computational Device
§ First, we have two simple example Turing machines

§ One for addition, and one for multiplication

§ What we now call a computer is a Turing machine that can
simulate all Turing machines

§ What does it need as inputs?
§ Inputs and the description of the Turing machine to simulate
§ Can you draw the black box model?
§ We say that Turing machines are programmable

67

§ Anything that can be computed, can be computed by a
computer provided it has enough time and enough memory

§ We instruct the computer how to do X, and it obliges by
interpreting our instructions

§ Instructions are stored in memory like regular data

§ Computer is programmable because we can rewrite
instructions to make it do something else

Universal Computational Device

68

§ Moore’s Law

§ Uniprocessor performance

§ Memory wall

§ Memory hierarchy

Some Technology Trends

69

2X transistors/chip
every two years

70

Today, technologists have internalized it and grown accustomed to believing
that computer speed doubles every 18 months. However, over the last few
years, the semiconductor industry has reached a point where Moore’s Law
is becoming obsolete. In fact, Nvidia’s founder and CEO Jensen Huang has
declared Moore’s Law to be done.

The most recent statement made by Huang was to The Protocol in a recent
interview where he said “the semiconductor industry is near the limit.” He
added, “It’s near the limit in the sense that we can keep shrinking transistors
but we can’t shrink atoms — until we discover the same particle that Ant
Man discovered. Our transistors are going to find limits, and we’re at atomic
scales. And so [this problem] is a place where material science is really
going to come in handy.”

71

https://techhq.com/2022/09/nvidia-brings-a-world-of-ai-innovation-to-enterprise/
https://www.protocol.com/enterprise/nvidia-jensen-lori-huang-osu
https://www.protocol.com/enterprise/nvidia-jensen-lori-huang-osu

72

73

74

§ Navigate the transformation hierarchy

§ Bottom-up ✓

§ Top-down

Course Plan

75

Big Picture

Week 1

Week 2, 3

Week 4

Week 5, 6

Week 7, 8, 9

Week 10, 11, 12
(I/O and Advanced
microarchitecture optimizations)

Assignment 1: Logic simulator

Assignment 2

76

Microprocessor Main Memory Storage (SSD/HDD)

§ Hardware is increasingly heterogeneous
§ Programmers today need a good understanding of what the

hardware offers
Past Systems

Hw/Sw Interaction an Important Skill

77

(General Purpose) GPUs

Heterogeneous
Processors and

Accelerators

Hybrid Main Memory

Persistent Memory/Storage

FPGAs

 Modern systems

Hw/Sw Interaction an Important Skill
§ Programmers today need a good understanding of what the hardware offers

78

§ Programming models are domain-specific
§ New ML/AI accelerators
§ Programming models intertwined with hardware details
§ No luxury of a commodity language

Hw/Sw Interaction an Important Skill

79

§ Traditional metrics to evaluate a computer

§ Performance

§ Energy efficiency

§ Battery life

§ Cost

New Important Metrics

80

§ Today, we care a lot about

§ Reliability

§ Sustainability

§ Security

New Important Metrics

81

§ Sustainability is an important concern

§ ICT contribution to global GHG emissions around 4%, and
increasing

§ Need to understand emissions during manufacturing of
computers and in deployment

§ Sustainability is the latest sub-area in the field of computer
architecture

Sustainability

82

§ Security trumps performance in many environments
§ Recent cyber attacks target vulnerabilities at the bottom
§ Early mitigations handled in software
§ Today’s hardware built for performance

§ Need to build fundamentally secure Hw/Sw systems

Security Demands Robust Hardware

83

§ Writing compilers, operating systems, virtual
machines

Hw/Sw Interaction an Important Skill

84

§ Writing compilers, operating systems, virtual
machines

§ Programming embedded computers
§ Nano drones, IoT devices, wearable computing

Hw/Sw Interaction an Important Skill

85

§ Writing compilers, operating systems, virtual
machines

§ Programming embedded computers
§ Nano drones, IoT devices, wearable computing

§ Debugging performance issues better than the
average programmer

Hw/Sw Interaction an Important Skill

86

§ Characteristics of great code
§ Is easy to read and maintain
§ Well-commented
§ Follows good style guidelines
§ Easy to modify
§ Well-documented
§ Well-tested and correct

Programming Perspective

87

§ Characteristics of great code
§ Is easy to read and maintain
§ Well-commented
§ Follows good style guidelines
§ Easy to modify
§ Well-documented
§ Well-tested and correct
§ Uses the CPU efficiently
§ Uses the memory efficiently
§ Uses system resources efficiently

COMP2300 Emphasizes

88

§ Make you think broadly about computing

§ Make you think critically

§ Give INSIGHT (into the NATURE of things)

Our Ultimate Goals

89

§ COMP2300 is “empowering”

§ “After building the CPU, I know exactly what my program is doing”

§ “When I engage with a computer expert, I know what they are
talking about”

§ “I use the knowledge of modern processors from this course every
single day” Now a Security professional

Some Comments from Last Year

90

91

Representing Information

92

§ Continuous or analog variables can take an infinite
number of values

§ Frequency of oscillation

§ Voltage

§ Position

§ Volume

Representing Information
§ Using continuous variables to represent information

is hard for the computer to deal with

§ Sometimes difficult to measure precisely

§ Difficult to store

§ Difficult to copy

93

Representing Information

§ Mercury’s volume represents temperature
94

Representing Information

§ Position of needle represents weight
95

Representing Information

§ Modulated grooves on vinyl record represent sound
96

Representing Information

§ Chemical properties of film represent captured image
97

Representing Information
§ Measuring things and storing data by analogy has

been the predominant approach in history

§ Engineers call signals that can take an infinite number
of values analog even when they are not an analogy
for something

98

Representing Information
§ If we don’t want to represent data as something with

potentially infinitely varying analog values, what can
we do?

§ Use the Digital approach

99

Representing Information
Digital Systems represent information with
discrete-valued variables

Variables with a finite number of distinct values

100

Representing Information
§ Charles Babbage’s analytical engine used ten

discrete values

§ Used mechanical parts such as gears with ten
positions 0 – 9

101

Representing Information

Modern digital systems use a binary (two-valued)
representation

0 1 0 1 0 1
102

Representing Information
High voltage: Presence of something meaning 1

Low voltage: Absence of something meaning 0

0 1
103

Why Voltage?
§ Mechanical parts are not easy to scale to do large

computations – circa 1850 Babbage engine

§ Some 1964 computers (CDC 6600 & IBM 360)

§ 2020 Apple M1 400 mm2 and 16 billion transistors
104

Representing Information
We need more than 0 and 1 to represent large quantities
and sets

Data is represented using a sequence of symbols where
each symbol is 0 or 1

105

Binary Representation
Digital systems internally use “voltages” for representing
binary variables
 → Low voltage means 0
 → High voltage means 1

B I N A R Y D I G I T
§ A bit is a unit of information
§ A binary variable represents one bit of information
§ To represent discrete sets with more than two elements, we

combine multiple bits into a binary code 106

Binary Codes
Suppose we want to represent four colors: {red, blue, green, black}

§ How many bits of information do I need?
§ (00, 01, 10, 11)
§ The assignment of the 2-bit binary code to colors is ad-hoc
§ Also legitimate is: (10, 11, 00, 01)

How many bits of information do we need to represent the
alphabet set in English?

§ For 26 alphabets, we need 5 bits

107

Information Content in a Binary Code

D = 𝐿𝑜𝑔2	𝑁	𝑏𝑖𝑡𝑠
§ The color set has four states: N = 4, # bits = 2

§ The alphabet set has 26 states: N = 26, # bits = 5

§ Conversely,
§ If D is 2, N = 4
§ If D is 5, N = 32

108

Why do computers use binary?

109

§ Two symbols enable simplified hardware and
improved reliability

§ Keep complexity and cost under control

§ It is easy to use the amazing transistor as a switch!
§ We will see later

TRUE and FALSE

0 1
F T

False
True

Off
On

§ True and False are called logical values
§ Logical variable is one that can be 1

or 0 (True or False)

110

Decimal Number System
§ Base 10 means 10 digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9)
§ Multiple digits form longer decimal numbers
§ Each column of a decimal number has 10 times the

weight of the previous column

9742 = 9 X 103 + 7 X 102 + 4 X 101 + 2 X 100

two
ones

four
tens

seven
hundreds

nine
thousands

1000’s colum
n

100’s colum
n

10’s colum
n

1’s colum
n

coefficient

power of 10

111

Range of Decimal Numbers
§ An N-digit decimal number represents one of 10N

possibilities
§ 0, 1, 2, 3, ..., 10N – 1

§ 3 digits: 1000 possibilities in the range 0 – 999

112

Binary Numbers
§ Base 2 means 2 digits (0, 1)
§ Multiple bits form longer binary numbers
§ Each column of a binary number has 2 times the

weight of the previous column

1001 = 1 X 23 + 0 X 22 + 0 X 21 + 1 X 20

one
one

zero
two

one
four

one
eight

8’s colum
n

4’s colum
n

2’s colum
n

1’s colum
n

coefficient

power of 2

113

Range of Binary Numbers
An N-bit binary number represents one of 2N possibilities

§ 0, 1, 2, 3, ..., 2N – 1

§ 3 bits: 8 (= 2 X 2 X 2) possibilities in the range 0 – 7

§ 4 bits: ?

§ 5 bits: ?

§ 10 bits: ?

114

Powers of 2
Columns # Power of 2 Weight

0 20 1

1 21 2

2 22 4

3 23 8

4 24 16

5 25 32

6 26 64

7 27 128

8 28 256

9 29 512

Columns # Power of 2 Weight

10 210 1024

11 211 2048

12 212 4096

13 213 8192

14 214 16384

15 215 32768

16 216 65536

Kilo

115

Powers of 2
Power of 2 Decimal Value Abbreviation

210 1024 Kilo (K)

220 1048576 Mega (M)

230 1073741824 Giga (G)

What is 224 in decimal?
§ 220 X 24 = 1 M X 16 = 16 M

What is 217 in decimal?
§ 210 X 27 = 1 K X 128 = 128 K

~ 1000
~ 1000, 000

~ 1000, 000, 000

116

Terminology
Byte

§ 8 bits
Nibble

§ 4 bits
Word

§ Machine-dependent
§ 8 – 16 bits (gadgets)
§ 32 – 64 bits (high-end)

0 0 0 11 0 0 0
Most Significant Bit

The bit in the highest position

0 0 0 10 0 0
Least Significant Bit

The bit in the lowest position

1

117

Terminology

0 0 0 10 0 0
Most Significant Byte

The byte in the highest position

0 0 0 10 0 000

0 0 0 10 0 0
Least Significant Byte

The byte in the lowest position

0 0 0 10 0 000

118

Rev: Binary Codes

22 21 20

2 1 0

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

3-bit
8 elements

Column #
Column weight

§ Write combinations in a systematic way
§ Note how often the bit flips in each column
§ Can represent any arbitrary set with a code

119

Rev: Binary Codes
0

1

0 0

0 1

1 0

1 1

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

0 0 0 0

0 0 0 1

0 0 1 0

0 0 1 1

0 1 0 0

0 1 0 1

0 1 1 0

0 1 1 1

1 0 0 0

1 0 0 1

1 0 1 0

1 0 1 1

1 1 0 0

1 1 0 1

1 1 1 0

1 1 1 1

1-bit
2 elements

2-bit
4 elements

3-bit
8 elements

4-bit
16 elements

§ Write combinations in a systematic way
§ Note how often the bit flips in each column
§ Can represent any arbitrary set with a code

120

Decimal to Binary Conversion
Method # 1: Find the largest power of 2, subtract, and repeat

Example: Convert 5310 to binary

53 32 X 1

53 – 32 = 21 16 X 1

21 – 16 = 5 4 X 1

5 – 4 = 1 1 X 1

25 24 23 22 21 20

1 1 0 1 0 1

121

Decimal to Binary Conversion
Method # 2: Repeatedly divide by 2, remainder goes in each
column

Example: Convert 5310 to binary
53/2 = 26 R: 1

26/2 = 13 R: 0

13/2 = 6 R: 1

6/2 = 3 R: 0

3/2 = 1 R: 1

1/2 = 0 R: 1
25 24 23 22 21 20

1 1 0 1 0 1

122

Hexadecimal Numbers
Motivation: Tedious and error-prone to write long
binary numbers

Hexadecimal or base 16: A group of four bits
represent 24 or 16 possibilities

16 digits: 0 – 9, A, B, C, D, E, F

Column weights: 1, 16, 162 (or 256), 163 (or 4096)

123

Hexadecimal
 Numbers

Hex Digit Decimal Equivalent Binary Equivalent
0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

A 10 1010

B 11 1011

C 12 1100

D 13 1101

E 14 1110

F 15 1111
124

Binary to Hexadecimal
Binary 1 1 1 1 0 1 1 1

Hexa F 7

Binary 1 1 1 1 1 1 1 0

Hexa F E

125

Hexadecimal to Binary
Hexa D 7 4 1

Binary 1 1 0 1 0 1 1 1 0 1 0 0 0 0 0 1

126

Binary Addition

1 1
4 2 7 7

+ 5 4 9 9
9 7 7 6

1 1
1 0 1 1

+ 0 0 1 1
1 1 1 0

carries

Decimal
Addition

1 + 1 = 2 (10 in binary), but a binary variable
can either be 0 or 1

§ We record the 1’s digit (0), and carry
the 2’s digit (1) over to the next
column

Binary
Addition

1 + 1 + 1 = 3 (11 in binary), but a binary
variable can either be 0 or 1

§ We record the 1’s digit (1), and carry
the 2’s digit (1) over to the next
column

127

Overflow
1 1 1
1 1 1 1 15

+ 1 1 1 1 15
1 1 1 1 0 30

§ A = 1111 and B = 1111
§ A + B does not fit in the largest value four

bits can represent

§ Overflow: When the result is too big
to fit inside the available bits

§ Detection: If there is a carry bit out of
the most significant column

128

Signed Binary Numbers

129

Signed Binary Numbers
§ We need both positive and negative

numbers to solve real-world problems

§ How do we make a string of 1 and 0
represent both positive and negative
numbers?

§ If we write all possible combinations
of 0 and 1 in a disciplined fashion,
maybe we can find a way

0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

least significant
bitMost significant

bit

130

Signed Binary Numbers
§ Use the most significant bit to

represent the sign: 0 means positive
and 1 means negative

0 0 0 +0
0 0 1 +1
0 1 0 +2
0 1 1 +3
1 0 0 -0
1 0 1 -1
1 1 0 -2
1 1 1 -3

§ N bit sign/magnitude system: 1 bit for
sign and N – 1 bits for magnitude
(absolute)

Decimal

131

Drawbacks of Sign/Mag Rep.

0 0 0 +0
0 0 1 +1
0 1 0 +2
0 1 1 +3
1 0 0 -0
1 0 1 -1
1 1 0 -2
1 1 1 -3

Decimal
§ Ordinary binary addition does not work for

sign/magnitude numbers
§ What is the sum of +3 and -3 and does the result

make sense?

§ Zero has two representations (awkward)

132

One’s Complement
§ 1’s complement was tried in early computers,

such as, Control Data Corporation (CDC) 6600

§ Negative number: Flip all bits of the binary
representation of a positive integer

§ Suffers from the same problems as the
sign/magnitude representation

0 0 0 +0
0 0 1 +1
0 1 0 +2
0 1 1 +3
1 0 0 -3
1 0 1 -2
1 1 0 -1
1 1 1 -0

Decimal

133

Two’s Complement
§ A third system of representation for signed integers

§ Ordinary addition works

§ There is a single representation for zero

§ Used in almost all computers today

134

Binary Decimal
A = 0 1 0 1 ?

+ B = ? ? ? ? ?
C = 0 0 0 0 0

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

135

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

Binary Decimal
A = 0 1 0 1 +5

+ B = ? ? ? ? ?
C = 0 0 0 0 0

136

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

Binary Decimal
A = 0 1 0 1 +5

+ B = ? ? ? ? -5
C = 0 0 0 0 0

137

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

Binary Decimal
A = 0 1 0 1 +5

+ B = 1 0 1 1 -5
C = 0 0 0 0 0

138

What is the relationship between A and B?

Problem: If A + B = C, and A is
known, then find B, such that
C = 0

Binary Decimal
A = 0 1 0 1 +5

+ B = 1 0 1 1 -5
C = 0 0 0 0 0

139

Some Observations
Observation # 1: If A + B = C, and A is +5, and C is 0, then
B must be -5. (We have found a new representation for
negative numbers.)

Observation # 2: To transform A to B (i.e., +5 to -5), we
need to take 1’s complement of A and then add +1. We
say that B is 2’s complement of A

Observation # 3: Like sign/magnitude numbers, positive
numbers have the MSB set to 0, and negative numbers
have the MSB set to 1

140

Some Observations
Observation # 4: Ordinary addition works

§ What is the sum of +3 and -3 in two’s complement
system, and does the result make sense?

§ Since ordinary addition works, a circuit to add
numbers can handle both addition and subtraction
§ Recall that, X – A is equivalent to X + (–A)

1
0 1 1 +3

+ 1 0 1 -3
0 0 0

141

2’s Complement
Circle

142

More Observations
Observation # 5: There is only one representation for zero

Observation # 6: There is one more negative number than
positive number

§ With 3 bits, this number is 100
§ With 4 bits, this number is 1000
§ This negative number has no positive counterpart
§ It is called the weird number
§ The 2’s complement of the weird number is the

weird number (verify!)

143

2’s Complement to Decimal
§ If MSB is 0

§ It is a positive number. The magnitude is
represented by the remaining N – 1 bits

§ If MSB is 1
§ It is a negative number. Take the two’s complement

of the (binary) number. The magnitude of the
negative number) is represented by the N – 1 bits

Practice and test your understanding using the two’s
complement circle

144

Overflow in 2’s Complement
1 1

0 1 0 0 1 +9
+ 0 1 0 1 1 +11

1 0 1 0 0 -12

§ Suppose we have two 5-bit numbers
§ A = 01001 and B = 01011
§ What is A + B?
§ What is the largest value 5 bits can

represent in 2’s complement?
§ Overflow

§ The result is too big to fit inside the
available bits

§ Sum of two positive integers cannot
produce a negative integer!

146

Overflow in 2’s Complement
§ Suppose we have two 5-bit numbers

§ A = 10100 and B = 11010
§ What is A + B?
§ What is the smallest value 5 bits

can represent in 2’s complement?

1 0 1 0 0 -12
+ 1 1 0 1 0 -6

0 1 1 1 0 14

§ Overflow
§ The result is too big to fit inside the

available bits
§ Sum of two negative integers cannot

produce a positive integer!

147

Overflow in 2’s Complement
Observation # 1: If two number being added have the
same sign bit and the result has the opposite sign bit
(easy!)

Observation # 2: Unlike unsigned numbers, a carry out of
the most significant bit does not indicate overflow

Observation # 3: The sum of a negative number and a
positive number never produces an overflow (prove
yourself!)

148

Number System Minimum Maximum

Unsigned 0 2N – 1

Sign/Magnitude -2N-1 + 1 2N-1 – 1
Two’s Complement -2N-1 2N-1 – 1

Range of Number Systems

N = 3
Unsigned: 0 to 7
Sign/Magnitude: -3 to 3
2’s Complement: -4 to 3

N = 4
Unsigned: 0 to ?
Sign/Magnitude: -? to ?
2’s Complement: -? to ?

149

Binary Representation Decimal Value Represented

Unsigned
Signed

Magnitude
1’s

Complement
2’s

Complement
000 0 0 0 0

001 1 1 1 1

010 2 2 2 2

011 3 3 3 3

100 4 -0 -3 -4

101 5 -1 -2 -3

110 6 -2 -1 -2

111 7 -3 -0 -1

Comparing Number Systems

150

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Unsigned Signed 1’s Comp. 2’s Comp.
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

0
1
2
3
4
5
6
7
-0
-1
-2
-3
-4
-5
-6
-7

0
1
2
3
4
5
6
7
-7
-6
-5
-4
-3
-2
-1
-0

0
1
2
3
4
5
6
7
-1
-2
-3
-4
-5
-6
-7
-8

Quiz: See any errors?

151

Sign Extension
Question: What is the difference between the 16-bit and 4-bit
numbers below?

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 116-bit number

0 1 0 14-bit number

Answer: None. They both represent the positive number 5
Leading zeros do not impact the magnitude of a binary number

There are times when it is useful to allocate a small number of
bits to represent a value

152

Sign Extension
§ What value does the two numbers below represent?

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 116-bit number (A)

1 1 0 14-bit number (B)

§ What is the sum of A and B?

§ Scenario # 1: Assume the absence of bits in B to be 0

§ Scenario # 2: Assume the absence of bits in B to be 1
153

Scenario # 1

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1+

☓

+13
-3

The assumption that appending 0’s will lead to correct addition
was wrong

154

Scenario # 2

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1+

✓
The assumption that appending 1’s will lead to correct addition
was right

+13
-3

155

Sign Extension
§ Leading 0’s do not change the magnitude of the

positive number

§ Leading 1’s do not change the magnitude of the
negative number

When a 2’s complement number is extended to more bits, the
sign bit must be copied into the most significant bit positions.
We refer to the operation as Sign-EXTension or SEXT

156

Building Block of Computers
 Transistors

157
157

We are Here.

158

Transistors

Microarchitecture
ISA (Architecture)

Program in C/Java
Algorithm
Problem

Logic
Devices

Runtime System
(Operating system)

Electrons

§ Computers are built from billions of small and simple
structures called transistors
§ 1970: Few 1000s of transistors
§ Apple’s M2 Max: 50+ Billion transistors
§ Moore’s Law:Transistor count double in 18 months
§ Computers with improved capability over time due

to a large # transistors at the device level

§ We will cover
§ How MOS transistor works (as a logic element)?
§ How transistors are connected to form logic gates?
§ How logic gates are interconnected to form larger

units that are needed to construct a computer
159

2X transistors/chip
every two years

160

Transistors
§ Sections 1.6 and 1.7 in Harris & Harris provide

more technical explanations than what we will
cover

161

MOS Transistor
§ MOS stands for

§ Conductors (Metal)
§ Insulators (Oxide)
§ Semiconductors

§ MOS transistor has three terminals

§ We can combine many of these to form logic gates
§ The electrical properties of metal-oxide semiconductors are well beyond the

scope of what we want to understand in this course
§ They are below our lowest level of abstraction
§ If transistors misbehave, an architect is at their mercy (unlikely to happen)

Gate
Source Drain

162

Two Types of MOS Transistors
§ Two types: n-type and p-type

§ They both operate “logically,” very similar to the way wall switches
work

n-type p-type
163

Power Supply

Wall Switch

Power Supply

Wall Switch

§ For the lamp to glow, electrons must flow
§ For electrons to flow, there must be a closed circuit from the

power supply to the lamp and back to the power supply
§ The lamp can be turned on and off by simply manipulating the

wall switch to make or break the closed circuit

How Does a Transistor work?

164

How Does a Transistor work?
§ Instead of the wall switch, we could use an n-type of a p-type

MOS transistor to make or break the closed circuit

Drain

Source

Gate

Schematic of an n-type
MOS transistor

If the gate of the n-type transistor is supplied with
a high voltage, the connection from source to drain
acts like a piece of wire (we have a closed circuit)

If the gate of the n-type transistor is supplied with
zero voltage, the connection between source and
drain is broken (we have an open circuit)

§ Depending on the technology, high voltage can range from 0.3V
to 3V 165

How Does a Transistor work?
§ The n-type transistor in a circuit with a battery and a bulb

Power Supply

3 Volt

Power Supply

0 Volt

Shorthand notation

Gate

166

How Does a Transistor work?
§ The p-type MOS transistor works in exactly the opposite

fashion from the n-type transistor

The circuit is open when the gate is supplied with
3V

The circuit is closed when the gate is supplied with
0V

§ Depending on the technology, high voltage can range from 0.3V
to 3V

Drain

Source

Gate

167

Some Examples of
Transistors as Building Blocks

168
168

Cerebras WSE-2
2.6 Trillion transistors

46,225 mm2

Largest GPU
54.2 Billion transistors

826 mm2

n The largest ML
 accelerator chip (2021)

n 850,000 cores

NVIDIA Ampere GA100
https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning

https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Modern Special-Purpose ASIC

169

https://www.anandtech.com/show/14758/hot-chips-31-live-blogs-cerebras-wafer-scale-deep-learning
https://www.cerebras.net/cerebras-wafer-scale-engine-why-we-need-big-chips-for-deep-learning/

Apple M1 Ultra (2022)

https://stadt-bremerhaven.de/apple-neuer-m1-ultra-chip-ist-offiziell/
170

Modern General-Purpose Microprocessor

Intel Alder Lake,
2021

171

Logic Gates

172

One Level Higher in Abstraction
§ Now, we know how a MOS transistor works

§ How do we build logic structures out of individual MOS transistors

§ We called these logic structures logic gates and they implement
simple Boolean functions

Microarchitecture
ISA (Architecture)

Logic
Devices
Electrons

173

Boolean Logic
§ A system for describing logical statements/expressions

where variables are TRUE or FALSE

§ Defines important but simple logical operations on binary
logical variables

§ Boolean algebra defines manipulation rules similar to
elementary algebra

174

Logic
§ Logic comes from reasoning or thinking

§ When presented with some facts, how to derive a valid
conclusion

§ A statement is either TRUE or FALSE

§ When many statements are combined, what is the
conclusion?

175

Origin of Logic Functions
§ Canberra is the CAPITAL of Australia
§ AND today I am in Canberra
§ Therefore, today, I am in the CAPITAL city of Australia

§ When it rains, I am NOT in office
§ AND today it is raining
§ Therefore, today, I am NOT in office

176

Boolean Logic Functions
§ Logical operations are the steppingstone for

composing sophisticated digital circuits for
performing arithmetic

§ Boolean logic is a system of logic for describing
statements consisting of binary variables
§ Operations, rules, axioms, etc

177

Logic Functions vs Gates
§ Logic gates are digital circuits that take one or more inputs and

produce a binary output

§ Logic gate is the physical realization of a logical function built
with transistors

§ The inputs are to the left, and the output is to the right

§ The relationship between inputs and the output is described by
a truth table or a Boolean equation

178

Truth Table
§ A convenient way to describe the behavior of logical functions

§ Suppose A and B are input operands and Y is the output
§ A can be 0 or 1
§ B can be 0 or 1
§ Four combinations (rows)
§ Three columns (2 inputs and an output)

§ The Boolean equation for Y: Y = 0
§ The values of A and B does not matter

A B Y
0 0 0
0 1 0
1 0 0
1 1 0

179

Truth Table with More Inputs
A B C Y
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

§ Boolean Equation for output Y: Y = 1
Note: Soon we will see more interesting
logic functions than Y = 0 and Y = 1

180

181

Making Logic Gates Using CMOS
Technology
§ Modern computers use both n-type and p-type transistors, called

Complementary MOS (CMOS) technology
§ nMOS + pMOS = CMOS

182

CMOS Technology Fundamentals
§ Let’s look at the simplest logic structure that exists in a modern

computer
§ What does this circuit do? 3V

0V

Out (Y)In (A)
n-type

p-type

183

CMOS Technology Fundamentals
§ What happens when the input is connected to 0V?

3V

0V

Out (Y)0V

3V

0V

Y = 3V

p-type transistor pulls
the output up

184

CMOS Technology Fundamentals

§ p-type transistors are good at pulling up the
voltage

185

CMOS Technology Fundamentals
§ What happens when the input is connected to 3V?

3V

0V

Y = 0V

n-type transistor pulls
the output down

3V

0V

Out (Y)A= 3V

186

CMOS Technology Fundamentals

§ n-type transistors are good at pulling down the
voltage

187

CMOS NOT Gate (Inverter)
§ We have seen a NOT gate at the transistor level

§ If A = 0V then Y = 3V
§ If A = 3V then Y = 0V

§ Interpretation of voltage levels
§ Interpret 0V as logical (binary) 0 value
§ Interpret 3V as logical (binary) 1 value

A P N Y

0 ON OFF 1

1 OFF ON 0
𝑌 = �̅�

3V

0V

Out (Y)In (A)

188

A Y
0 1
1 0

NOT Function: The output Y is the inverse of the input A

Truth Table NOT Logic Gate Boolean Equation

Y = A’
Y = A

The NOT gate has only one input (unary)

–

bubble à invert

CMOS NOT Gate (Inverter)

189

Another CMOS Gate: What is this?
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

190

CMOS NAND Gate
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y

§ P1 and P2 are in parallel; only one must be ON to pull up the
voltage to 3V

§ N1 and N2 are connected in series; both must be ON to pull down
the voltage to 0V

191

CMOS NAND Gate
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1

§ P1 and P2 are in parallel; only one must be ON to pull up the
voltage to 3V

§ N1 and N2 are connected in series; both must be ON to pull down
the voltage to 0V

192

CMOS NAND Gate
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1

§ P1 and P2 are in parallel; only one must be ON to pull up the
voltage to 3V

§ N1 and N2 are connected in series; both must be ON to pull down
the voltage to 0V

193

CMOS NAND Gate
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1

§ P1 and P2 are in parallel; only one must be ON to pull up the
voltage to 3V

§ N1 and N2 are connected in series; both must be ON to pull down
the voltage to 0V

194

CMOS NAND Gate
3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

A B P1 P2 N1 N2 Y
0 0 ON ON OFF OFF 1
0 1 ON OFF OFF ON 1
1 0 OFF ON ON OFF 1
1 1 OFF OFF ON ON 0

§ P1 and P2 are in parallel; only one must be ON to pull up the
voltage to 3V

§ N1 and N2 are connected in series; both must be ON to pull down
the voltage to 0V

195

A B Y
0 0 1
0 1 1
1 0 1
1 1 0

Y = (AB)’

NAND Function: The output Y is 1 unless both inputs are 1

Truth Table NAND Logic Gate Boolean Equation

CMOS NAND Gate

Y = AB

196

CMOS AND Gate
3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

§ We make an AND gate using one NAND gate and one NOT gate
§ Homework: Can we not use fewer transistors for the AND gate?

197

CMOS NOT, NAND, and AND Gates
A

Y
B

A B Y
0 0 0
0 1 0
1 0 0

111

A B Y
0 0 1
0 1 1
1 0 1

011

A
Y

B
A Y

NOT

Y = A

A Y
0 1
1 0

A Y

3V

0V

Out (Y)In (A)

P

N

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

3V

0V

Out (Y)

In (A)

In (B)

P2

N1

P1

N2

198

General CMOS Gate Structure
§ We have a general form to construct any inverting logic gate,

such as, NOT, NAND, NOR
§ The networks may consist of transistors in
 series of in parallel
§ When transistors are in parallel, the
 network is ON if one of the transistors
 is ON
§ When transistors are in series, then
 network is ON only if all transistors
 are ON

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

pMOS transistors are used for pull-up
nMOS transistors are used for pull-down

199

General CMOS Gate Structure
§ Exactly one network should be ON, and the other network

should be OFF at any given time

§ If both networks are ON simultaneously,
 there is a short circuit à incorrect operation

§ If both networks are OFF simultaneously,
 the output is floating à undefined

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

pMOS transistors are used for pull-up
nMOS transistors are used for pull-down

200

Why This Structure?
§ MOS transistors are imperfect switches

§ pMOS transistors pass 1’s well but 0’s poorly
§ pMOS transistors are good at “pulling up” the output

§ nMOS transistors pass 0’s well but 1’s poorly
§ nMOS transistors are good at “pulling down” the output

pMOS
pull-up
network

output
inputs

nMOS
pull-down
network

3V

0V

Out (Y)

3V

0V

In (A)

In (B)

P2

N1

P1

N2

N3

P3

201

Latency
§ Which one is faster?

§ Transistor in series
§ Transistors in parallel

§ Series connections are slower than parallel connections
§ More resistance on the wire

§ Remember: Latency of series vs. parallel circuits extend from transistors
to gates and larger circuits

§ See Section 1.7.8 for more details

202

Gates with More Than Two Inputs
§ We can create larger gates with more than 2 inputs

§ 3-input NOR gate or 11-input NAND gate

203

Manufacturing Tech is the Enabler

https://www.youtube.com/watch?v=Jv40Viz-KTc

§ Precision
Manufacturing
§ Extreme

Ultraviolet
(EUV) light to
pattern <10nm
structures

204

https://www.youtube.com/watch?v=Jv40Viz-KTc

We are here

205

The AND Function
A B Y
0 0 0
0 1 0
1 0 0
1 1 1

Y = AB
Y = A.B
Y= A∩B

AND Function: The output Y is 1 if and only if both A and B are 1

Truth Table AND Logic Gate Boolean Equation

(product)
(intersection)

206

The OR Function
A B Y
0 0 0
0 1 1
1 0 1
1 1 1

OR Function: The output Y is 1 if either A or B are 1

Truth Table OR Logic Gate Boolean Equation

Y = A + B
Y = A ∪	B

(sum)
(union)

207

The XOR Function
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

XOR Function: The output Y is 1 if A or B, but not both, are 1

Truth Table XOR Logic Gate Boolean Equation

Y= A ⊕ B

eXclusive-OR

208

OR and XOR
§ The term exclusive is used because the output is 1 if only

one of the inputs is 1 (mutually exclusive)

§ OR produces an output 1, if only one of the two sources is
a 1, or both sources are one (inclusive OR)

209

The NOT Unary Function
A Y
0 1
1 0

NOT Function: The output Y is the inverse of the input A

Truth Table NOT Logic Gate Boolean Equation

Y = A’
Y = A

The NOT gate has only one input (unary)

–

bubble à invert

210

Inverting a Gate’s Operation
Any gate can be followed by a bubble to invert its operation

NOT AND à NAND

NOT OR à NOR

NOT XOR à XNOR

NOT NOT à BUF

211

In Boolean logic, two wrongs make a
right!

We say that two bubbles cancel each other’s effect

leads to

212

The NAND Function
A B Y
0 0 1
0 1 1
1 0 1
1 1 0

Y = (AB)’

NAND Function: The output Y is 1 unless both inputs are 1

Truth Table NAND Logic Gate Boolean Equation

213

The NOR Function
A B Y
0 0 1
0 1 0
1 0 0
1 1 0

Y = (A + B)’

NOR Function: The output Y is 1 if neither A nor B is 1

Truth Table NOR Logic Gate Boolean Equation

214

The XNOR Function
A B Y
0 0 1
0 1 0
1 0 0
1 1 1

Y = (A ⊕ B)’

XNOR Function: The output Y is 1 if both A and B are 1

Truth Table XNOR Logic Gate Boolean Equation

215

XOR and XNOR are special
A B Y
0 0 0
0 1 1
1 0 1
1 1 0

XOR

XOR: Output is 1 when inputs are
not equal (odd number of 1’s)

A B Y
0 0 1
0 1 0
1 0 0
1 1 1

XNOR

XNOR: Output is 1 when inputs are
equal (even number of 1’s)

Equality GateParity Gate
216

Buffer (BUF)

Y = A

Buffer: The output Y is equal to the input A

Truth Table BUF Logic Gate

A Y
0 0
0 0
1 1
1 1

Boolean Equation

217

218

Multiple-Input Gates
A B C Y
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

Looking at the truth table, can you guess
the 3-input gate?

Y = ABC

Gates with multiple inputs are possible

219

Multiple-Input Gates
A B C Y
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 0

Y = (A + B + C)’

Looking at the truth table, can you guess
the 3-input gate?

Gates with multiple inputs are possible

220

Bitwise Operations
§ All logical operators are applicable to two bit-patterns (group of

bits or bit vectors) of m bits each, m is any # bits (8, 16, ...)
§ We apply the operation individually to each pair of bits
§ If A and B are 8-bit input sources (or source operands), then their AND or

product, C, is also 8 bits

A
B
C 0 0 0 0 1 1 0 1

C = AB (bit-wise AND)
0 0 0 0 1 1 0 1
1 1 1 1 1 1 1 1

A
B
C 0 0 0 0 1 1 0 1

C = A + B (bit-wise OR)
0 0 0 0 1 1 0 1
0 0 0 0 0 0 0 0

221

Bit Masks

0 1 1 0 1 1 0 1
user idpasswd

Packet

0 1 1 0 1 1 0 1

A B

§ B wants to create a new packet with user id set to A’s id and
passwd bits set to 0 (e.g., to send a packet to another computer)

222

Bit Masks

A
B
C 0 0 0 0 1 1 0 1

C = AB (bit-wise AND)
0 1 1 0 1 1 0 1
0 0 0 0 1 1 1 1

§ Bit mask: A binary pattern (B) that separates the bits of A into two halves

§ Suppose we are interested in extracting the least significant four bits
from A, while ignoring the right-most four bits

§ If we AND A with B, and choose B as 00001111, then we get the desired bit
pattern in C

223

Exercises
§ Suppose, A = 11000010, and the rightmost two bits are of

particular significance. Find a bitmask and a logical operation
to mask out the values in the rightmost positions in a new bit
pattern B. (All other bits in B are set to 0.)

§ Suppose, A = 10110010, and the leftmost two bits are of
particular significance. Find a bitmask and a logical operation
to mask out the values in the leftmost positions in a new bit
pattern B. (All other bits in B are set to 1.)

224

Exercise
§ How can we find out if two bit-patterns A and B are identical?

§ Verify that, 1 AND X = X, where X is a binary variable. Also,
verify that, 0 OR X = X.

§ Verify that, B AND B = B, where B is a binary variable. Also,
verify that, B OR B = B.

§ Verify that, B AND B’ = 0, where B is a binary variable. Also,
verify that, B OR B’ = 1.

226

A Useful Circuit

227

§ What does this circuit do?

§ Multiplexer
§ Used for decision making and often found inside

control logic

Another Useful Circuit

228

§ What does this circuit do?

§ Half adder (no carry input)
§ Used for making an ALU – Arithmetic & Logic Unit

Coming Attractions

229

§ We will learn to systematically build circuits from a
specification

§ We will look at many useful circuits

§ We will study two types of logic circuits –
Combinational and sequential

