COMP2300-COMP6300-ENGN2219
Computer Organization &
Program Execution

Convener: Shoaib Akram
shoaib.akram@anu.edu.au

“ Australian
‘ » National

Plan of Week 2

= Week 1: Digital abstraction and binary digits
= Week 1: Number systems for binary variables
" This Week: Boolean logic & Logic gates (contd)

" This Week: Combinational logic (more than just gates)

Application [>"hello R
Software world!” 9
Operating Device
Systems Drivers
: NI |nstructions
Architecture = — .
s | Registers
Micro- H:::H Datapaths
architecture Controllers
; Y Y Adders
+
Hogle - — ° | Memories
Digital AND Gates
Circuits Z'O NOT Gates
Analog Amplifiers
Circuits Filters
Devices Transistors
Diodes
Physics % Electrons

Broadening our horizon
“one layer at a time”

Classification of Digital Circuits

= Combinational Circuit: Output depends only on the
combination of input values
= Memory-less (a distinct and critical feature)
= All logic gates are combinational

= Sequential Circuit: Output depends on the current and
history of inputs
" The sequence of inputs over time determine the output
= Sequential circuits have a state or memory
= Example: Elevator controller (State: on the ground, in

transit, at the top)
Section 2.1 of H&H

Combinational Behavior

= Example: Suppose a combinational circuit, consisting of an
AND gate, with two inputs, A and B

time 2 to t1 t2 t3 t4 t5 t6
A 0 1 1 0 1 0 1
Output 0) 1 0 0) 1 0 1

" At time t6, the sequence of changes to A and B between t0 —t5
is irrelevant.

" Qutputis strictly determined by the values of A and B at t6

Combinational Circuits

r A
| Functional Spec

Timing Spec
\ y,

_ outputs

Inputs

" Functional specification: What is the behavior of the circuit?
» What is the output for a given combination of input values?

" Timing specification: How long does the circuit takes to produce

the output?
= Worst-case: 10 nanoseconds

= Best-case: 1 nanoseconds

Combinational Circuits

C,
4)
> \n1

inputs CL, CL, _ outputs
N y

* Hierarchy: The top-level circuit, C, is made up for of two
combinational sub-circuits, CL; and CL,

"= Nodes: nlis an internal wire or node

= Abstraction: The input and output interface, and the
functional and timing specification is enough for someone

to use C,

Implementing Combinational
Logic

= Steps in implementing combinational Logic

Initial specification (e.g., in English)
_Functional

Construct the truth table specification

Derive the Boolean equation

—

Simplify the Boolean equation (use Boolean algebra)

Implement the equation using logic gates

Specification

[Happiness detector] Alex is not happy if there is a work-related deadline
or the beach is closed due to bad weather. Design a circuit that outputs 1
only if Alex is happy.

[Multiplexer] Design a circuit with three inputs: D,, D, select; and one
output. The output is D, if select is 0, and D, if select is 1.

[Half Adder] Design a circuit that adds two binary variables: A and B.
The circuit has two outputs: sum and carry-out (C,).

[Full Adder] Design a circuit that adds three binary variables: A, B, and a
carry-in (C;,). The circuit has two outputs: sum and carry-out (C_.).

Constructing Truth Tables

» |dentify inputs and outputs (interface)
" The interface may be implicit or require some thought

= Write all the possible combinations of input values
" For each input combination, determine the output
= All inputs to the left, outputs to the right

Truth Table: Happiness Detector

Specification: Alex is not happy if there is a work-related deadline or the
beach is closed due to bad weather. Design a circuit that outputs 1 only
if Alex is happy.

Interface Truth Table
= Deadline? (D)
D B H
= (O: thereis not a deadline
= 1: thereis a deadline 0 O 1
= Beach is closed? (B) 0 1 0
= (0: open 1 0 0
= 1: cl
closed 11 0
= Happy(H):12 O, 0> ®

Truth Table: Beach

Specification: IF it is warm and sunny, OR it is my birthday, THEN | am

going to the beach. Write the truth table where the output is 1 when |
am going to the beach

Deriving a Boolean Equation

" The truth table is the unique signature of a
Boolean function
= But it is an expensive representation

= Why is that?

Deriving a Boolean Equation

" Boolean equation is an alternative way to represent the
function of a combinational logic block

" Enables the systematic transformation of the function into

simpler functions (using Boolean algebra, we will see later)

= Different hardware implementations
= The simplification process can be automated via Computer-Aided
Design (CAD) and Electronic Design Automation (EDA)

= Different Boolean expressions of the same Boolean function

lead to different logic gate-level implementations
= Different hardware area, cost, latency, energy properties

Definitions

Complement: variable with a bar or prime (’) over it
A,B,C NA,B,C

Literal: variable or its complement
A,A,B,B,C,C

Implicant: product (AND) of literals

Minterm: product (AND) that includes all input variables
(A-B-C) ,(A-B-C) ,(A-B-C)

Maxterm: sum (OR) that includes all input variables
(A+B+C) ,(A+B+C) ,(A+B+0)

Section 2.2 of H&H

Minterms

Minterms
X y z Term Designation
0 0 0 Xyt my
0 0 1 XV'z my
0 1 0 x'yz’ my
0 1 1 x'yz ms
1 0 0 xy'z’ 7
1 0 1 xy'z ms
1 ! 0 xyz' M
1 1 1 XyZ my

" Each minterm is obtained from an AND term of n variables
= Use prime of the variable if the bit is 0 and unprimed if 1
= The subscript/ in the symbol for each minterm () denotes the decimal
equivalent of the binary number of the minterm designated

Maxterms

Minterms Maxterms

P y z Term Designation Term Designation

0 0 0 X’y’Z/ my X+ty+2z M()

0 0 1 Xv'z my X+ YT M,

0 1 0 x'yz’ my X+ P .2 M,

0 1 1 x'yz ms Xyt ok gf M,

1 0 0 xy'z’ my x' Fyekz M,

1 0 1 xy'z ms x'+y+7 M;

1 1 0 xyz' Mg Xt + gt £ .2 M,

1 1 1 XyZ ms \ X' +3y + .2 M; /

N

S

= Each maxterm is obtained from an OR term of n variables

Operation Precedence

* NOT has the highest precedence

= Nextis AND
m |astis OR

" Example: Y=A+BC’
= First, we find C’
= Then, we find BC’ (product/AND)
* Finally, we perform A + (the result of BC’)

Standardized Representations

= Enable a single, universally agreed on way of
representing a Boolean function from its truth
table

" Also called canonical representations

= Sum of Products (SOP) form

" Product of Sums (POS) form

Sum of Products (SOP)

= Sum of Products Form (SOP)
= Also known as disjunctive normal form or minterm expansion
= SOP is canonical/standard form of a Boolean function

= We have a truth table of a Boolean Function F and we need to

express the function in terms of inputs in a standard manner
= Give it a unique algebraic signature

" Truth table is an expensive representation
= More compact and unique signature of a Boolean function

= All Boolean equations can be written in SOP form

Key Idea of SOP

= Express the truth table as a two-level Boolean expression

= contains all input variable combinations that resultina 1
output

= if ANY of the combinations of input variables that result in
a 1is TRUE, then the outputis 1
= F=0R of all input variable combinations that resultina 1

" Why does it work?
= Qutputis 1 whenever the corresponding mintermis 1

= Minterm is 1 when the corresponding input combinations
result in the minterm evaluating to 1

Two-Level Canonical Forms: SOP

Sum of Products Form (SOP)

Also known as disjunctive normal form or minterm expansion

011 100 101 110 11 1
F=ABC + ABC + ABC + ABC + ABC

_/

D O O|=

MO OO
OO KKOO|w
HOKOKOEKO|n

Each row in a truth table has a minterm
A minterm is a product (AND) of literals
Each minterm is TRUE for that row (and only that row)

All Boolean equations can be written in SOP form

Find all the input combinations (minterms) for which the output of the function is TRUE.

SOP Form — Why Does it Work?

t
A B C|F 011 100 =10 111
o 0 olo F=ABC + ABC +,ABC |+ ABC + ABC
0 0 110 Activates
0 1 0|0 this ter
0O 1 1)1
1 0 0f1*

(1 0 11|
1 1 01
1 1 1)1

Only the shaded product term — ABC =1-0 - 1 — will be 1
No other product terms will “turn on” — they will all be 0

So if inputs A B C correspond to a product term in expression,
o Weget 0+0+...+1+...+0+ 0 =1 for output

If inputs A B C do not correspond to any product term in expression
o Weget0+ 0+ ...+ 0 =0 for output

The function evaluates to TRUE (i.e., output is 1)
if any of the Products (minterms) causes the output to be 1

Standard Notation for SOP Form

Standard “shorthand” notation

o If we agree on the order of the variables in the rows of truth
table...

then we can enumerate each row with the decimal number that
corresponds to the binary number created by the input pattern

A B C|F
0 0 OO
0 0 1]0
01 0]0
01 1|1
1 0 0|1 100 = decimal 4 so this is minterm #4, or m4
10 1|1
11 011
1 1 111 111 = decimal 7 so this is minterm #7, or m7

We can write this as a sum of products

—h
|

Or, we can use a summation notation

Canonical SOP Form

A B C| minterms F tn canonical form:

0 0 0| ABC =m0

0 0 1| 4ABc =mi1 F(A,B,C) = Ym(3,4,5,6,7)

0 1 0 ABC = m2 = m3 + m4 + m5 + m6 + m7
0 1 1| ABC =m3

1 0 0| ABC =m4 F =

1 0 1| ABC =m5

1 1 0| ABC =m6

1 1 11 ABC =m7

canonical form # minimal form

Shorthand Notation for
Minterms of 3 Variables F

2-Level AND/OR
Realization

More SOP Examples

SOP: Simple Example (1 minterm)

To write the Boolean equation for a truth table, sum each of
the minterms for which the outputis 1

Boolean Eqg

A B | Y1 minterm name
0O O 0 A’B’ m,
0 1 1 A’B m,
1 0 0 AB’ m,
1 1 0 AB m;

Y1=AB
Ylis1lonlywhenA=0andB=1

Conversely, when A’=1and B =1

SOP: Example (2 minterms)

To write the Boolean equation for a truth table, sum each of
the minterms for which the outputis 1

A B | Y1 minterm name
0O O 0 A’B’ m,
0 1 1 A’B m,
1 0 0 AB’ m,
1 1 1 AB m;

Boolean Eqg

Y1=A'B+ AB
Y1is 1 either when A=0andB=1
OR,when A=1andB=1

Y1 =Y(1,3)

SOP Summary

" A Boolean function can be expressed algebraically from a
given truth table

= by forming a minterm for each combination of the variables
that produces a 1 in the function

= and then taking the OR of all those terms

= The minterms whose sum defines the Boolean function are
those that give the 1’s of the function in a truth table

" The sum of products canonical form can also be written in
sigma notation using the summation symbol,),(m1,m2, ...)

Equation: Happiness Detector

Specification: Mr. X is not happy if there is an assignment deadline, or
their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X

is happy.

Truth Table Boolean Eqg
D B H H=D'B’
0 0 H = (D) AND (B’

1
0
0
0

~ R, O
_) O K

From Equation to Gates

Schematic: A diagram of a digital circuits with elements (gates) and the
wires that connect them together

Example Boolean Eq A B C
Y=AB' + B'C’ VARV,
Schematic

Inputs are on the left (or top) side
Outputs are on the right

Gates flow from left to right

Use straight wires

Wires connect at a T junction Y
A dot where wires cross indicates a

connection

U

ousEwWwN e

From Equation to Gates

= Another example
Y=(A4-B-C)+(A-B-C)+(A-B-C)
c

A B

Vi Vs Vo

—— minterm: ABC

Y

minterm: ABC

w minterm: ABC

Y
Key to remember: SOP form does NOT directly lead to minimal logic (next lecture)

JU

Schematic: Happiness Detector

Specification: Mr. X is not happy if there is an assignment deadline, or
their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X

is happy.

Truth Table Boolean Eqg Logic Gate Implementation
D B| H H=D'B’ D | >o—
0 0 1 H = (D) AND (B)’ >CH :}H
B |
0 1 0
1 0 0
1 1 0

Schematic: Happiness Detector

Specification: Mr. X is not happy if there is an assignment deadline, or
their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X

is happy.

Truth Table Boolean Eqg Logic Gate Implementation
D B [H H=D'B’ D | >o—
0 0 1 H = (D) AND (B)’ >CH :}H
B —]
0 1 0
1 0 0 Which (monolithic) gate
1 1 o Iisthis?

Schematic: Happiness Detector

Specification: Mr. X is not happy if there is an assignment deadline, or
their favorite bar is closed. Design a circuit that outputs 1 only if Mr. X

is happy.

Truth Table Boolean Eqg Logic Gate Implementation
D B [H H=D'B’ D | >o—
0 0 1 H = (D) AND (B)’ >% :}H
B —]
0 1 0
1 0 0 Which (monolithic) gate >
1 1 | o Iisthis? Answer: NORgate B DH

Schematic: Happiness Detector

Why does the happiness detector lack an OR gate in the two-
level representation as a gate-level schematic?

Combinational Building Blocks
used in Modern Computers

Multiplexers

Multiplexer: T. Table + Eq

Truth Tab

Specification: Circuit with three inputs: D, D,

select (S), and one output (Y). The output is D if > Dy Do ¥
selectis 0, and D, if select is 1. O 0 O] O
O 0 1 1
Y=SD,'D,+ S’D,D, + SD,D,” + SD,D,

(Y=5'Dy (D, +D,) + SD, (Dg' +Dg) 0 1. 010
— - O 1 1 1
g =1 =1 / 1 0 0| O

Y = S’DO (1) + SD, (1) Boolean algebra:
Y = S'DO + SD, Distribution of 1 0 1 0
product over sums 1 1 0 1
Section 2.8.1 of H&H 1 1 1 1

The minimum you can do is write the
fruth table systematically and express
the Boolean function using the SOP
canonical form

But, remember, ...
canonical form ¥ minimal form

Multiplexer: Gate-Level Schematic

Specification: Design a circuit with three inputs:

Dy, D4, select (S); and one output (Y). The output > Dy Do| ¥
is D, if selectis 0, and D, if select is 1. O 0 O O
Y=SD, + SD, Gate-Level Schematic 0 0 1 1
O 1 O 0

D, -
%l% - 0 1 1 1
1 0 O 0
— 1 0 1 0
@ 1 1 O 1
' 1 1 1 1

2:1 Multiplexer (Mux)

" A 2:1 multiplexer (mux)
= Two data inputs (Dyand D,)
= Another input called the select signal
" Qutputis either Dyor D, depending on the value of select

S
o . | L
We will use the high-level schematic for 2:1 Dy — 0
mux and ignore the gate-level implementation —Y
: Dy — 1
details |

High-level Schematic

Multiplexer Applications

= Heavily used in control circuitry
= Decision making
= Which of the many competing outcomes to select?

= Select one of the many signals and send it to
another unit

= Think of if/else blocks in high-level programs

Wider (4:1) Multiplexer P

Dy —00
D1 — 01 Yy
= A4:1 mux has two select signals Syand S; 22 "
.

= A/and 2 implies a bus width of 2 to contrast with 1-bit wire
or input

" One option is to construct the truth table and derive the
Boolean equations

= How many rows will there be in the table? (tedious!)

= | et’s use intuition to build a 4:1 mux from two 2:1
multiplexers

Wider (4:1) Multiplexer

= O |+, O

-, O O
O
[N

Wider (4:1) Multiplexer

= O |+, O

-, O O
O
[N

Wider (4:1) Multiplexer

= O |+, O

-, O O
O
[N

Wider (4:1) Multiplexer

= O |+, O

-, O O
O
[N

Wider (4:1) Multiplexer

= O |+, O

-, O O
O
[N

Logic using Multiplexers

Logic Using Multiplexers

" Any truth table can be seen as a lookup table (LUT)
= Lookup 00, and we see eitherOor 1
= |tis like looking up a dictionary

" Muxes are used as LUTs to perform logic functions
= Connect the data inputstoOor 1

= Use inputs (A/B) as select lines

A BI|Y /B

0 0[O R‘)\L

0 1[0

Mk o Y
= AB -

Logic Using Multiplexers

Logic Using Multiplexers

" Multiplexers can implement logic gate
= For example, we can build a 2-input AND gate from a 2:1 multiplexer

" Can be (re)programmed to perform any N-input logic function

= Key idea: Connect multiplexer inputs to O (zero/ground) or 1
(high) by inspecting the truth table

A 2N-input multiplexer can be programmed to perform any N-input
logic function by applying 0’s and 1’s to the appropriate data inputs

M

A B C1lY
0 0 o0 |1
o 0o 1]o0
o 1 oo
o 1 1|1
1 0 o |1
1 0 1|1
1 1 oo
1 1 1] o

Y=AB+BC+ ABC

ultiplexer Logic: 3-Input Example

ABC

L]

000

001

010

011

00

101

110

111

/

3-Input Lookup Table (LUT)

" LUTs are building blocks of Field Programmable Gate
Array (FPGA)

* Many LUTs in an FPGA chip to implement logic functions
with many variables

" The data inputs are stored as configuration memory

3-Input Lookup Table (LUT)

3-bit input LUT (3-LUT)

- Data Input

000 ‘
001 Configuration Memory
010
011 _
output (1 bit)

100

Multiplexer (Mux):
101 ” Chooses one of the 8
110 =~" data inputs that

corresponds to the 3-bit
111 select input

input (3 bits)

3-Input Lookup Table (LUT)

3-bit input LUT (3-LUT)

- Data Input

000 0 l
001 1 Configuration Memory
010 1
011 1 _
output (1 bit)

100 0

Multiplexer (Mux):
101 0 ” Chooses one of the 8
110 1 =~" data inputs that

corresponds to the 3-bit
111 1 select input

input (3 bits)

Modern FPGA

v By

Ta

-1
<1l @
B B
. m
S |
3,3 O
= O]
;10
gt o]
: 10
b, 5 (O

Modern FPGA

" Each 3-LUT performs the subset of the logic function (N is large)
= Signals are routed b/w CLBs using reconfigurable connections

Configurable Logic Block

Ji0ioig - o

— — —

|_|’ :I |:\ r:é — LuT _}—QUT
I:' . I:l \\\ .. [{/ _j—> qu—

Switch Matrix
Reconfigurable
interconnect

e
R
-~

LI

CLK

Topics Covered So Far

Binary number system
Transistor (basic building block)
Logic gates
Combinational circuits

" English specification

" Transformation to truth

tables

= Sum of Products (SOP)

= Two-level implementation
Multiplexers & lookup tables

Application |[>"hello

Software world!” FDgrams
Operating Device
Systems Drivers
: NN nstructions
Architecture = — :
usmmmmmm Registers
Micro- H:::H Datapaths
architecture Controllers
O O
: Adders
+
el 0 — > Memories
Digital AND Gates
Circuits Z'O NOT Gates
Analog Amplifiers
Circuits Filters

Devices

Physics %@

Transistors
Diodes

Electrons

Continuing

= More combinational circuits

= Timing issues in combinational

Adders

ALU

Decoder
Comparator
PLA

Tri-state buffer

circuits

= Logic minimization with Boolean

algebra

Application |[>"hello

Software world!” FDgrams
Operating Device
Systems Drivers

: NN nstructions
Architecture = — :

usmmmmmm Registers
Micro- H:::H Datapaths
architecture Controllers
O O
: Adders
+

el 0 — > Memories
Digital AND Gates
Circuits z.*’ NOT Gates
Analog Amplifiers
Circuits Filters

Devices

Physics %@

Transistors
Diodes

Electrons

Adders & Timing in
Combinational Circuits

Half Adder

Specification: Design a circuit that adds two binary variables: A and B.
The circuit has two outputs: sum and carry-out (C,).

Boolean Eq

Truth Table

A B C, S
0 O 0O O
0 1 0o 1
1 0 0o 1
1 1 1 0

S=A'B+ AP’
S=AE@PB

C,,: = AB

Section 5.2.1 of H&H

v

Schematic

O‘
O‘

O S

—]_D—@ Cout

A B

Full Adder

* Limitation of half adder: No carry input Cw

S

1

= Problem: Adding multiple bits requires the need to add | (1)(1)8]

carry out from the previous column to the next column 1110

" Full adder solves the problem A B
" Accepts three inputs, including a carry input s

= Signals flow from right to left reflecting the carry
propagation in arithmetic circuits

Full Adder: T. Table + Eq

=Da C, A B Cpy S
8) unused minterm

= 0 0 1 o0 1
} D 0 1 O 0o 1

'_33 0 1 1 1 0

.)_ | 1 0 O 0 1
. ”_O} ? 1 0 1 1 0
= 1 1 0 1 0

) — 1 1 1 1 1

Sum of products form != minimal form

Full Adder: T. Table + Eq

S=C,/AB+C_/AB"+C _A'B"+C AB
C,.i=C.,/AB+C _A'B+C AB +C _AB

C, A B | Cpy S
O 0 O 0 0
O 0 1 0 1
O 1 O 0 1
O 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 O 1 0
1 1 1 1 1

Full Adder: T. Table + Eq

S=C,/AB+C_/AB"+C _A'B"+C AB
C,.i=C.,/AB+C _A'B+C AB +C _AB

Simplification via Boolean algebra

S=A@BDC,
C...=C.(AE B)+AB

C, A B | Cpy S
O 0 O 0 0
O 0 1 0 1
O 1 O 0 1
O 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 O 1 0
1 1 1 1 1

Full Adder: T. Table + Eq

O

=

@

@)
c
~

Coui =C,AB+C AB+C AB +C_AB

out

o

Insight about C

out

~ o ol”®

= 1whenbothAandBarel
= Carry Generation (G)

R, O O O O

Hio

=
=
= lol~lol~r]lo o|@®

* 1whenthereisaC, A andoneof AandBis1
= Carry Propagation (P)

= Rl |JO]l—~, O O

[EN
[EN

b O O b O P kP O W,

Full Adder: Schematic

S=ADBPC,

C...=C.(AE B)+AB

Half Adder

Half Adder

J U

C, A B | Cpy S
O 0 O 0 0
O 0 1 0 1
O 1 O 0 1
O 1 1 1 0
1 0 O 0 1
1 0 1 1 0
1 1 O 1 0
1 1 1 1 1

Ripple Carry Adder

= What if we want to add two N-bit numbers?

1001
+ 0101

1110

Ripple Carry Adder

= What if we want to add two N-bit numbers?
= Connect a chain of full adders from right to left

Az1 Bsy Also Blso ';41 |B1 "[‘o [Bo

= Ripple carry adder has a critical drawback!

Timing in Combinational Circuits

" Every combinational circuit has a delay (seconds)

= The time it takes for the output to reach a final stable value when the
input changes (typically nanoseconds or picoseconds)

A—[>—Y

propagation delay
—p| delay [€——

/
e /

Time s
Section 2.9 of H&H

Examples

" |nputs of the AND gate change from (0,0) to (1,1)
" Qutput of AND gate change fromOto 1
" How long does it take to for the output to change?

= When A, B, and C, are inputs to a full adder
" How long does it take to observe the final (and stable) S
and C_,.?

Examples of Timing/Delay

o
D

> “

! tXOR t|NV tpathl = tpach

Each gate has Chain of gates: Multiple paths from

a delay Sum the delay of input to output
eaCh gate Il’l the tpathl - thVl + tAND

chain 2 X t,, tpath2 = tinv2 + Tanp

Critical and Shortest Path

" Most useful combinational circuits have multiple paths
from input to output
= Critical path: The slowest path (with longest delay)
= Critical path limits the speed at which the circuit
operates
" |n contrast, the shortest path is the fastest

* For simplification, we will ignore the delay of nodes (wires)
= Although the delay is non-trivial, it is studied best at
the analog level of abstraction

Section 2.9 of H&H

Multiplexer and Adder Delay

= Assume component-level delay and don’t worry about delay
of individual gates (unless necessary)

S
—L_ L0
DO_O C j_\'/_/LC'
_Y out + in
Dy —1 s
-l

Example (1)

Critical Path
SV
B = n2
C
Y
D X 3
\\
Short Path

" The propagation delay of a combinational circuit is the sum of
the propagation delays through each element on the critical

path

Example (2)

Example Circuit

Critical Path

Shortest Path

sl 1

y

Drawback: Ripple Carry Adder

= |f we abstract the delay of full adder as t,, then what is the
delay of the ripple carry adder, t

rlpple
P tFA o
A131 5131 /}30 Blso "1‘1 151 "l‘o 180
COUt - l/ - - M - B b M - _[- Cin
= Cyo\— Co Ci T Co\—+
Sa1 S30 S So
rlpple =N X tFA

" The critical path consists of N full adders (slow when N is large)

= The critical path runs through the chain of full adders
= Every full adder is on the critical path
Section 5.2.1 of H&H

Carry-Lookahead Adder

= Motivation: When the delay of a circuit grows with the number
of input bits, the design is not scalable
= We try to find a way to optimize the circuit to reduce the

delay

= |deally, we want circuits that take constant time regardless of
the input size

= Optimization: We try to optimize the circuit using intuition and
insight and keep the delay reasonable
= There is aways a tradeoff (nothing is free

Section 5.2.1 of H&H

Carry-Lookahead Adder (CLA)

Another one in the class of carry propagate adders that
accelerates carry generation

Insight of CLA: As soon as C, is known, C
carry adder can be calculated

for an k-bit ripple

out

When do we have a carry out from a column?

= A=1ANDB=1,C,,is1-> Carry Generation
= C,=1,A=10RB=1,C,,is1-> Carry Propagation
= Recursively combine G and P signals to compute the carry out

Section 5.2.1 of H&H

CLA Equations

¥ C;=A;Bi+ (Ai+B;)Ci.1 = G; + P;Ci4

one column -
G3:0 - G3 +P3(Gz+P2(Gl +P1Co))

P30 = P3P, PPy = 4-bit block

Ci = G;;j + P;;;Ci_4

—

A block generates a carry if the most significant column generates a
carry, or if the most significant column propagates a carry and the pre-
vious column generated a carry, and so forth. For example, the generate
logic for a block spanning columns 3 through 0 is

Section 5.2.1 of H&H

CLA Design

B74 A74 BSO A30

BS1 28 A31 28 827 24 A27 24

4bitCLA | 27| abitcLa Gz C7 | abitcLA | © | abitcLA c
out Block Block Block Block n

S3:0

31 28 27 24

(a)

[Vlcelv C1lvlcolvl |
\T/_\T/_\T/_\T/Lcm

Sg 82 31 SO

Cﬂé Pa
_ Cin

(b)

Specialized logic for
fast carry generation

Optional study: Section 5.2.1 of H&H

Things to Consider

= Each CLA block is busy generating a carry for the next block
simultaneously (in parallel)

= |s there still a bottleneck in the design?

» Whatis the propagation delay of an N-bit carry-lookahead
adder?

N
tcLA = tpg F1lpg block T+ (?_l)tAND_OR + kit

Lessons from CLA

= Speed-Area Tradeoff: In digital systems, there is a tradeoff
b/w performance (speed) and hardware cost (area/power)
" CLA speeds up addition but requires extra logic gates
that take up additional area and dissipate more power

" Logic Specialization: Logic specialization for frequently used
but slow tasks is often necessary
" CLA uses specialized logic for fast carry generation

Decoders

85

Decoders

= N inputs and 2N outputs
" For each input combination, only one of the outputs is 1 (one-hot)
" |t detects an input pattern and outputs a 1 corresponding to it

2:4
Decoder
M—Y,
Ay — 10—,
A, — 01—Y,
00—,

Section 2.8.2 of H&H

Decoders

= N inputs and 2N outputs
" For each input combination, only one of the outputsis 1
" The outputs are affectionately called one-hot

2:4 Decoder Truth Table

2_4 A ALY, v, v, v |0
Inputs Decoder 0 O 0O 0 o0 1
11—,
A1] 10 — y2 0 1 0] 0] 1 0
YooY 10 0o 1 0 o
1 1| 1 0 0 O

Decoders

= N inputs and 2N outputs
" For each input combination, only one of the outputsis 1
" The outputs are affectionately called one-hot

2:4 Decoder Truth Table and Boolean Equations

AL Ayl Ys Y, Y, Y
> 1 Po 3 2 1 0 Y, = A/A/
Decoder O O 0 0 0 1 v oA
A oY 0 1| 0 0 1 O P
- Y Y, = AA
Ao o—y 1 0/ 0 1 0 O Y A
1 1| 1 0 o0 O P

Decoders

= N inputs and 2N outputs
" For each input combination, only one of the outputsis 1

Ay Ao

Y| Y

2:4 : Y3 YO = AllAO’
Decoder j y y AA

PR LT

17— — _)
A 01 \\;f Y, Y, =AAg
0 j Y.=AA

Y, 3 170

Uses of Decoders

" For each input combination, only one of the outputsis 1

-.

2:4 Device
Decoder
1— 18 Violet
1_ 01 Device
00 Orange
en

Blue
0

Uses of Decoders

" For each input combination, only one of the outputsis 1

-.

2:4 Device
Decoder
1— 18 e Viol.et
1— 01 Device
00 Orange
en

‘ Blue
1

Uses of Decoders

" For each input combination, only one of the outputsis 1

-.

2:4 Device
Decoder
11
Violet
(])'_ g)? e Device
00 Orange
en

‘ Blue
1

Uses of Decoders

" For each input combination, only one of the outputsis 1

-.

2:4 Device
Decoder
0— 18 Violet
1_ 01 ' Device
00 Orange
en

Blue
1

Uses of Decoders

" For each input combination, only one of the outputsis 1

-.

2:4 Device
Decoder
0— 18 Violet
O_ 01 Device
00 Orange
v %00

‘ Blue
1

Uses of Decoders

= Think of 00, 01, 10, and 11 codes as instructions to four
different devices
" Each device reacts to a specific instruction in a
specific way

" We have created a new 2-bit language
» With an interpreter or decoder

= We will need the decoder for building the control unit of
our QUAC computer that decodes instructions

Logic Using Decoders

" Decoders can be combined with OR gates to build logic
functions

2:4
Decoder Minterm
11 AB
A 10 AB
B 01 AB
00 AB
Y=A®B

Y

Figure 2.65 Logic function using
decoder

PLA

Programmable Logic Array (PLA)

= SOP (sum-of-products) leads to
two-level logic

Val Vs | Vo

—— minterm: ABC

Y

= Example:Y=A'B’C’ + AB’C’ + AB’C

minterm: ABC

Rj minterm: ABC

Y

U

" We can use a PLA to implement any N-input P-output function
" PLA s built once in the factory and programmed later in the
house to implement any logic function

Section 5.6.1 of H&H

Programmable Logic Array (PLA)

= Common building block for implementing any collection of logic
functions

A ———

—" 5
" An array of AND gates followed by ? ﬁr}%
C o
an array Of OR gates OD— Connections §>Y7
H AND gates? == ——
. OW many gates:) ,
= Recall SOP: the number of possible minterms [H=
[~
= How many OR gates? Q

= The number of output columns in the truth table

Section 5.6.1 of H&H 99

Programmable Logic Array (PLA)

How do we implement a logic
function?
" Connect the output of an AND

gate to the input of an OR gate if

C

the corresponding minterm is

included in the SOP

Programming a PLA: we program the
connections from AND gate outputs
to OR gate inputs to implement a

desired logic function
Section 5.6.1 of H&H

b sssslole

Connections

Programmable Devices

" Programmable devices we have talked about

= CPU/processor (programmed using instructions
stored in memory, aka, executable file)

" FPGA (programmed by storing bits inside LUTS,
aka, bit file)

" PLA (programmed by burning fuses)

101

PLA Example (I)

Inputs
fu
p |
AND
Array
.

Implicants

“N

M inputs, N implicants, and P outputs
Chips are manufactured in bulk with the same layout (low cost)

Programmed once to implement the required function by programming connections

OR
Array

1p
Outputs

102

PLA Example (ll)

Dot Notation A

B

s

Fuse to burn

Section 5.6.1 of H&H

N

OR Array
v | v [v (
¢ - - ABC -
\ @ @ L ABC -
)\)\ AB
J .
AND Array

103

PLA Example (lll)

OR ARRAY
4 N\ 4 N\
™ ABC
|/
N ABC
|/
N\ AB
|/
1\ J N\ J
AND ARRAY I
X Y

Implementation: Pick the literals & implicants by programming connections

FuII Adder Implementation w/t PLA

—
J:)— %:D_
1 -
—qu_ Connections %:)Y_
S S
V4
=
=D,
Truth table of a full adder
a; b; carry;|carry.; S;
0 0 O 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

This input should not be

connected to any outputs We do not need
this output
a; | |
= e
. I
b; 4) |
T | |
Ci o/ | |
O+ =lDs
T\ |
*—O J I I
O }—H | S:
1T
._o_\ | |
1

Implementation: Pick the implicants by programming connections -

Lessons from PLA

" Programmability: Programmable devices incur a cost

= Some logic in PLA is redundant if a subset of minterms
are needed

" On the other hand, PLAs can be programmed after bulk

manufacturing which is their key programmability
advantage

106

ALU

Arithmetic and Logic Unit (ALU)

" The circuits we have looked so far can do one useful thing

= XNOR gate performs equality testing
= Adder performs addition
= Multiplexer performs selection

A B
AN AN
\ \/ > ALUControl

. . . . ALU
" ALU is our first general purpose circuit TN Ja
= Performs a variety of arithmetic/logical operations nesill, o Srads

= ADD, SUB, AND, OR, XOR,
N-bit ALU

" |t has a 2-bit control input

= The language ALU speaks or the instructions it understands
Section 5.2.4 of H&H

ALU Interface/Instructions

" N-bit data inputs and outputs

ALUControl;,, Function

" 2-bit control input (ALUControl) 00 Add
. . 01 Subtract
= Specifies one of four functions
= Setting ALUControl to 00, 01, 10, and 11 |10 AND
is giving ALU instructions 11 OR

" The assignment of binary codes to
ALU functions is not arbitrary

= J|tisclever (01 for Subtract in particular)
as we will reveal

ALU Implementation

data inputs/signals
A B

ALUControl,., Function N " N-bit Add-subtract
00 Add circuitry
01 Subtract
10 AND N |
>
11 OR . <
S | signals
C., \ S contro
+ =
: L S
N-bit Logic circuitry —
AND, OR
. 11 10 01 00
4:1 multiplexer \ 51— ALUControl

Result

Add-Subtract Circuitry

= A+B
= Normal addition

= A-B
= A+ (-B)
" |n2’scomplement,-B=B"+1
= Aninverter performs B’
= We send ALUControl,as the carry input of the adder
= ALUControl,is 1 when the ALU function is Subtract

The Nature of Hardware

= Parallelism: Hardware is inherently parallel

= All logic gates in the ALU work in parallel when the circuit is presented
with valid input

* Redundancy: Generality leads to redundancy

= ALU is a general-purpose circuit that can perform a variety of operations.
Some work/effort is wasted

= The output of OR/AND is wasted when ALUControl is 01

= Control: Control circuitry comes with a cost

= ALU consumes more area than the individual functional units it combines
(4:1 multiplexer is for controlling output)

ALUFLAGS EEED

= We need meta-information about the ALU result
= |sthe result negative (N)?
= |sthe result zero (7)?
= |sthere acarry out (C)?
= |sthere an overflow (V)?

" Many scientific algorithms rely on flags for the next step
= |f overflow: discard result, and redo
= Carryoutis the carry in for another operation
= |f the result is negative: do {...}; else do {...}

Flags are only relevant for arithmetic operations
(ALUControl, = 0)

ALUFLAGS EEED

= Negative
= Check the MSB of result

= /ero
= NOR all bits of the result (same as invert then AND)

= Carry
= AND ALUControl, with C_ from the adder

= Qverflow

= Option#1: Use A and B to compute overflow

= Option # 2: Use A and the output of 2:1 multiplexer to compute
overflow

Option # 1 for Overflow

" The following scenarios generate overflow: overflow flagis 1
ALControl, A;; Bs; Sy

Scenario#1 | 0 (Add) 0
Scenario#2 | 0 (Add) 1
0
1

Scenario #3 | 1 (Subtract)
Scenario#4 | 1 (Subtract)

o = = O
© O

Case # 1 in plain English: When doing A + B, if A and B are +ve, and the sum is —ve
Case #2: A+ B, if Aand B are —ve, and the sum is +ve
Case#3: A-B, if Ais +ve and and B is —ve, and the sum is —ve

Case#4: A-B, if Ais—ve and and B is +ve, and the sum is +ve

Option # 1 for Overflow

" The following scenarios generate overflow: overflow flagis 1
ALControl, A;; Bs; Sy

Scenario#1 | 0 (Add) 0
Scenario#2 | 0 (Add) 1
Scenario#3 | 1 (Subtract) O
Scenario#4 | 1 (Subtract) 1

o = = O
© O

= Qverflow is 1 whenever there is an even number of 1’s among ALUControl,, A;;, and Bs;
= XNOR ALUControly, As;, and By,

= Qverflow is 1 whenever A;; and S;; are different
= XOR A;z; and S

Option # 1 for Overflow

A31 N N
Bg1

ALUControk, Sumg; ALUControl,
NIEPAN P

v

CO ut

Yonuonniy

N N N

N
11 10 01 00
5 ALUControl
Results; N
NzCV
F4
% C N Z

Result ALUFlags

Option # 2

= Use A and the output of 2:1 mux
= B if the instruction is an Add and —B if the instruction is a subtract

" Easy to reason conceptually

= |[f A—Bisthe same as A + (—B) then everything is an add
= There is no need to consider subtract separately when reasoning about
overflow generation

" The circuitry is also much simpler

= Homework assignment: Figure out the circuitry for overflow generation
with option # 2

ALU Timing Analysis

Homework A o
picoseconds (10722 seconds) = ps B
Element DEIay ALUControl, <|/ Sumg, ALUControl,
NIIPN P
Inverter |ty =1 ps QU

Cout

Yosu0pN 1Y

2:1 Mux | t,ue =5 ps
4:1 Mux | tuxa = 8 pS

!

11 10 o1 00
Adder tadder = 14 pS &ﬁ] lt\ N /L‘Q——ALUControl
AND tAND=2 PS @ NZCV
OR tOR =2 PS v c N z Result AI:l‘J_/IEIi_g‘s

" Find tgeycin ps for the four ALU functions. (Ignore overflow generation)
= Which function takes the longest time (and is the critical path)? Ignore wire delay
" Express tg.q: iN the form of an equation for Add and Subtract. What is the difference?

Comparator

120

Comparator (Equality Checker)

" Checks if two N-input values are exactly the same
= Example: 4-bit Comparator

— Equal

Equal

* What about magnitude comparison
(relative values of A and B)?

Tri-State Buffer

Tri-State Buffer

= A tri-state buffer enables gating of different signals onto a

wire Tristate
Buffer

E

-

R~ o olm

R o R olb
H o N N|<

Figure 2.40 Tristate buffer

Section 2.6.2 of H&H

A tri-state buffer acts
like a switch but can
pass both 0’s and 1’s if
E is asserted

Tri-State Buffer

= A tri-state buffer enables gating of different signals onto a

wire Tristate
Buffer

E

A% > Y
A tri-state buffer

acts like a switch

o o|lm

H OfN N|<

A
0
1
0
1

I

Figure 2.40 Tristate buffer

= When E is HIGH, the output Y is whatever A is
= Same behavior as a regular buffer

Tri-State Buffer

= A tri-state buffer enables gating of different signals onto a

wire Tristate
Buffer

E

A<, > Y
A tri-state buffer

acts like a switch

o|m

= Rjo
F ofN Nj<

A
0
1
0

1
Figure 2.40 Tristate buffer

" When E is LOW, output is a floating signal (Z)
= Floating: Signal not driven by any circuit (open circuit, floating wire)

Use of Tri-State Buffers

" |magine a wire shared by the CPU and memory or two |I/O
peripherals

= At any time, only one of them can place a value on the
wire, but not both

" Use two tri-state buffers
" Onedriven by CPU, and one driven by memory
" Ensure at most one is enabled at any time

Example: Use of Tri-State Buffers

GateCPU

a)
CPU
_ _J
GateMem
a)
Memory
Shared Bus

Another Example

p
Processor ent

to bus

from bus

AYE

.

.

. N\
Video en2

to bus

AY

from bus

.

\

shared bus

(Ethernet en3

to bus

Ayt

from bus
.

.

-
Memory en4

to bus

from bus
. Y,

Ayt

Recall: A 4:1 Multiplexer

S, S,
So S,
Y|V
o fi e
o LG an==0
:[I D,)
i ErEE)

Multiplexer Using Tri-State Buffers

S
DO ‘Iié&* DO
— Y
D1
D1 ‘W
Y=D,S+D,S D,

Figure 2.56 Multiplexer using
tristate buffers

S,S,

S$,S,

VEY

5:S,

v

Combinational
Composition Rules

Combinational Composition Rules

= Every circuit element is itself combinational

" Each node is either an input to the circuit or connects to
exactly one output terminal of a circuit element

" The circuit contains no cyclic paths. Every path through the
circuit visits each circuit node at most once

Which circuits are combinational?

—14
0 n5 Assume n5is 0
nA — and the other
input of XOR is 1

v

no6

1
D,

We Study Boolean Algebra for
Logic Minimization

Because we care about minimizing area, cost, logic complexity, energy, footprint,léé.}.

Boolean Algebra (Logic Minimization)

The sum-of-products (SOP) canonical form does not lead
to the simplest logic gate implementation

We can eliminate some minterms = Less # logic gates
We can reduce the # literals in minterms = Smaller gates

We use Boolean algebra to simplify Boolean equations
= Similar in spirit to simplification in ordinary algebra except we are
dealing with 0 and 1 (much easier)

Section 2.2 of H&H

Boolean Algebra

" Boolean algebra consists of
= Axioms (correct by definition)
= Theorems of one variable
= Theorems of several variables

" Any theorem can be proved via the axioms
= An axiom is the ground truth and cannot be proven wrong

" The Principle of Duality
= |f the symbols 0 and 1 and the operators AND and OR are
interchanged, the statement will still be correct

Boolean Axioms

Number Axiom

Al B=0ifB#1 B=1ifBz0 Binary Field
A2 0=1 1=0 NOT

A3 0e0=0 1+1=1 AND/OR
Ad lel=1 0+0=0 AND/OR
A5 Oel=1¢0=0 [1+0=0+1=1 |AND/OR

Dual: Replace: e with +
0O with 1

137

Boolean Theorems of One Variable

Number Theorem Dual Name

T1 Bel=B B+0=8B Identity

T2 BeO=0 B+1=1 Null Element
T3 BeB=B B+B=8B ldempotency
T4 B=B Involution

T5 BeB=0 B+B=1 Complements

Dual: Replace: e with +

O with 1

138

Theorems: Several Variable

Theorem Dual Name

T6 BeC=CeB B+C =C+B Commutativity
T7 (BeC) e D=B e (CeD) (B+C)+D=B+(C+D) Associativity
T8 Be(C+D)=(BeC)+(BeD) B + (CeD) = (B+C) (B+D) Distributivity
T9 Be(B+C)=B B+ (BeC)=8B Covering

T10 |(BeC)+(BeC)=B (B+C) e (B+C) =B Combining
T11 |(BeC)+ (BeD) + (CeD) = (B+C) o (B+D) o (C+D) = Consensus

(BeC) + (BeD)

(B+C) ¢ (B+D)

Warning: T8’ (dual of T8) differs from traditional algebra: OR (+)
distributes over AND (e)

139

Proving Theorems

= Method 1: Perfect induction

= Proof by exhaustion: Check all possible input combinations
= Two expressions are equal if they produce the same value for every
possible input combination

= Method 2: Use other theorems/axioms to simplify

equations
= Asinordinary algebra, make one side of the equation look like the
other side of the equation

Example: Perfect Induction

Number Theorem

T6 BeC=CeB Commutativity

B C/ BC CB
0 0 0 0
0 1 0 0
1 0 0 0
1 1 1 1

141

Example: Perfect Induction

Number Theorem

T9 Be (B+C) =B Covering
B C| (B+C) |B(B+C)
0 0 0 0
0 1 1 0
1 0 1 1
1 1 1 1

142

Method 2: T9 (Covering)

Number Theorem

T9 Be (B+C) =B Covering

Method 2: Prove true using other axioms and theorems.

Be(B+C) =BeB+BeC T8: Distributivity
=B+ BeC T3: Idempotency
= Be(1 + C) T8: Distributivity
= Be(1) T2: Null element

=B T1: Identity

143

Method 2: T10 (Combining)

Number Theorem

T10 (BeC) + (B*C) = B Combining

Prove true using other axioms and theorems:
BeC+ BeC =Be(C+C) T8: Distributivity
= Be(1) T5": Complements
=B T1: Identity

144

Simplifying Boolean Equations

= A basic principle for simplifying sum-of-product equations
= PA+PA' =P
= Pisanyimplicant
= Y=A'B+AB=B(A+A)=B(1)=B

= An equation is minimized if
" it uses the fewest number of implicants
= if there are multiple equations with the same number of
implicants, then the one with the fewest literals

Section 2.2 of H&H

Simplification Example — 1
Y=AB + AB’
Y=A T10: Combining

or
= A(B + B’) T8: Distributivity
= A(1) T5": Complements
=A T1: Identity

Simplification Example — 2

Y = A(AB + ABC)
= A(AB(1 + C))
= A(AB(1))
= A(AB)
= (AA)B
= AB

T8: Distributivity
T2’: Null Element
T1: Identity

T7: Associativity

T3: I[dempotency

Simplification Example — 3A
Y = AB’C + ABC + A’BC

= AC(B + B’) + AABC T8: Distributivity
= AC(1) + A'BC T5: Complements
= AC + A'BC T1: Identity

" The two implicants AC and BC share the minterm ABC

" Are we stuck with simplifying only one of the minterm pairs?

148

Simplification Example — 3B

Y =AB’C+ ABC + A'BC
= AB'C+ ABC+ ABC+ A'BC T3’: Idempotency
= (AB'C+ABC) + (ABC+A'BC) T7’: Associativity
= AC + BC T10: Combining

" The two implicants AC and BC are called prime implicants

" They cannot be combined with any other implicants in the
equation to get a new implicant with fewer literals

Simplification Example — 4
Y = A’'B’C’ + AB’C’ + AB’C

150

De Morgan’s Theorem

H Theorem
T12 B,*B,*B,... =
B,+B,+B,...

VE]

B,+B;+B,... =

B,*B,*B,...

VETul=

DeMorgan’s
Theorem

* The complement of the product is the sum of the

complements

" Dual: The complement of the sum is the product of the

complements

Section 2.2 of H&H

151

De Morgan’s Theorem

vag-avs G e

.Y=A+B=A°B ggjy

Bubble Pushing Rules

= Pushing bubbles backward/forward changes the body of
the gate from AND/OR to OR/AND

" Pushing a bubble from output back to inputs put bubbles
on all gate inputs

" Pushing bubbles on all gate inputs forward towards the
output puts a bubble on the output

Section 2.5.1 and 2.5.2 of H&H
153

Bubble Pushing Example

no output
B
a D

bubble on

DQ__L input and output

|

OO >

no bubble on

A input and output
5o)

Priority Circuit

Priority CirCUit Requestors Grant Signals

A A
l \ |

= Priority circuit Az A A1 Ao Ys Yo Vi Yo
" [nputs: “Requestors” with priority levels 8 0 X 8 8

= Qutputs: “Grant” signal for each requestor o ™l o o .

= Example: n-bit priority circuit : | :
= Room reservation system 0 o 1|]off1f00 o

= Computer bus demanded by four CPUs 0 oot pgo 0

0 11| 0 0

10 o of1fQo o o

— 14 Yo 180 0o 1Q§1Q0 0 O

.\ y 10 1 of1fo o o

2 2 1o 1 1fQ1fQ0 o o

A, v, 11 o of1fQo o o

11 o 1fQ1fQ0 o o

A g — 181 1 of1fo o o

Circuit

Example 2.7 of H&H 156

Priority Circuit

A3 A2 A1 Ao Y3 Y2 Y1 YO A3 A2A1 AO
o 0 O Oo0]lo o o© 0 Y
o o o 1|0 o o 1 A A A A v v v v 3
o o 1 o]lo o 1 o0
o o0 1 110 o 1 @ 3 2 1 0 3 2 1 0 O Y,
o 1 0o olo 1 o0 o 0 0 0 0 0 0 0 0 2
o 1 0 1]o0o 1 0 o0
o 1 1 olo 1 o o 0 0 0 1 0 0 0 1
o 1 1 10 1 0 O 0 0 1 X 0 0 1 0 Q Y
1 0o 0 o]1 o 0 O
1 o0 o 111 o o o 0 1 X X 0 1 0 0 & 1
17 0 1 o0o|l1 0 0 O 1 X X X 1 0 0 0
1 0o 1 1|1 o 0 o0 =
1 1 0 o1 o o o) o .) . <
1 1 0 111 0 0 0 Figure 2.29 Priority circuit truth table with e — Yo
1 1 1 o]l1 o 0 o0 \»
1 1 1 1|1 0 0 0 don’t cares (X’s)
Y3 =As
_ ’
Y, =A3A;

X (Don’t Care) means We don’t care what the
value of this input is Y1 =AsA A

Yo = AsAArA {57

Logical Completeness

" Any logic function can be implemented with a PLA

" PLA needs only AND, OR, and NOT gates

= The set of gates {AND, OR, NOT} is logically complete
because we can build a circuit from a truth table without
needing any other gate

158

Logical Completeness of NAND

= Can we implement a NOT gate using a NAND gate?
* What about implementing AND gate using NAND gate ?
* What about implementing OR gate using NAND gate?

= |f all of above is true, then we can build computers from
one gate only, the NAND gate

" Prove yourself that NAND is logically complete
" Most computer today are built using billion of NAND gates

159

Optional Self-Study
* Product of Sums (POS)

" Interesting but not entirely needed if you understand
SOP well

" Follows from Demorgan

Section 2.2.3 of H&H

Alternative Canonical Form: POS
" Product of Sums (POS)
= DeMorgan of SOP of F

" Find all the input combinations (maxterms) for which the
output of the function is FALSE

= The function evaluates to FALSE (i.e., the output is 0) if any
of the Sums (maxterms) causes the output to be O

Alternative Canonical Form: POS

Product of Sums (POS)

Each sum term represents one of the
“zeros” of the function

F = (A+B+C)‘(£r:cgit\fiy,+§+6)

T~

This input
sums

0 00 0 01 0 1 o/
F=(A+B+C) (A+B+C) (A+B+0)

OGN el = == I

= = OO0 R R O O|W

R OR OFR O R O|IM

) el

Activates this term

For the given input, only the shaded sum term
will equal 0

A+B+C=0+1+0

N R S

Anything ANDed with 0 is 0; Output F will be 0
162

Consider A=0, B=1, C=0

Input
010 —> F=]A+B+C)(A+
0

mT
\!/ \|/
J U U
~_ —

Only one of the products will be 0, anything ANDed with 0 is 0 D
|

)

0 li 0
|

== ==] S
R R OORRK O O|w
R ORORORO|A
R R R R RO O O|x

Therefore, the outputis F=0 F=0

163

Optional Self-Study

= More combinational circuits
= Shifters
= Rotators
" Multiplication
= Division
= FPGAS

Section 5.2.5,5.2.6,5.2.7, 5.6.2 of H&H

What We Have Done So Far

= Building blocks of modern computers

" Transistors
= |ogic gates

= Combinational logic fundamentals
= Boolean algebra
= Using Boolean algebra to implement combinational circuits

= Basic combinational logic blocks

= Simplifying combinational logic circuits

165

