
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Broadening our horizon
“one layer at a time”

1

We Covered Combinational Blocks
§ Computation

§ Adders
§ ALU
§ Comparator

§ Control
§ Multiplexer
§ Decoder
§ Tri-state Buffer

§ Standard form (SOP)
§ Boolean equation to 2-level implementation

2

What will we learn this week?
§ Circuits that can store information

§ State and clock
§ Cross-coupled inverter
§ SR latch
§ D latch
§ D flip-flop
§ Register & Memory

§ Synchronous sequential circuits
§ Finite state machines

§ Synchronous vs. Asynchronous
sequential circuits

3

Circuits that
 Store Information

4

All Computers Need Memory to Work

Apple M1,
2021

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested 5

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Large Portion of a System is Memory

Intel Pentium 4, 2000

L2 Cache

https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg
6

https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium_4_6xx-die.jpg

L2 Cache
Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

L3 Cache:
32 MB shared

AMD Ryzen 5000, 2020
https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

Large Portion of a System is Memory

7

L2 Cache
IBM POWER10,
2020

Cores:
15-16 cores,
8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

Large Portion of a System is Memory

8

Nvidia Ampere,
2020

Cores:
128 Streaming Multiprocessors

L1 Cache or Scratchpad:
192KB per SM
Can be used as L1 Cache and/or
Scratchpad

L2 Cache:
40 MB shared

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Large Portion of a System is Memory

9

Motivation
§ Combinational circuit output depends only on current

input combinations

§ We want circuits that produce output depending on
current and past input values ⎯ circuits with memory

§ How can we design a circuit that stores information?

10

Sequential Circuit

Sequential Circuit

Combinational
Circuitin

pu
ts

ou
tp

ut
s

Storage
Element

The output depends on the input combinations and the state of the system
11

What is State?
§ What is state?

§ A set of bits that summarize past behavior of system
§ The set of bits are called state variables
§ Each bit is stored in a state or memory element

§ The state of a system informs us everything about the
past we need to know to predict the future

§ The output of sequential logic depends on both the
current input values and the state of the system

12

Example of State
§ Consider a controller for a traffic light

§ To set the next state, the controller needs to remember
the current state

§ The past input values (signals from traffic sensors) are
summarized by the “current” state stored as a 2-bit value

13

Another Example

§ We remember the meaning of the words in time t since

§ we remembered them in time t – 1

§ all the way back to the point of time

§ when we first committed them to memory

14

Capturing State
§ To remember or to store the state of the system

(current state of traffic light), we need a logic element
with memory

§ How can we capture input data and persist it until the
next input?

15

Capturing and Storing One Bit
§ One bit of information represents two possible

states

§ To store one bit, we need
§ An element with two stable states (bistable element)
§ The ability to change the state

§ First, we will find the bistable element
§ And then focus on the ability to change state

16

Bistable element
§ The fundamental building block of memory is a bistable

element with two stable states

Cross-coupled inverters: A pair of inverters connected in a loop

Section 3.2 of H&H 17

Analysis of Bistable Element
§ How should we analyze circuits with cyclic paths?

§ When the circuit is switched on, Q is either 0 or 1 (scenarios)
§ Show: Output is stable (consequence – A)
§ Show: Q and Q’ are complements of each other (consequence – B)

§ Scenario # 1: Q = 0 (FALSE)
§ I2 receives 0, Q’ = 1: B is satisfied
§ Q’ = 1, Q = 0, A is satisfied
§ Consistent with original assumption

§ Scenario # 2: Q = 1 (TRUE)
§ I2 receives 1, Q’ = 0: B is satisfied
§ Q’ = 0, Q = 1, A is satisfied Section 3.2 of H&H 18

Bistable Element: Observations
§ Bistable element has two stable states

§ Stores one bit of information

§ Q reveals about past, necessary to explain the future
§ If Q = 0, it will remain 0 forever
§ If Q = 1, it will remain 1 forever

§ The (initial) state of the bistable element is unpredictable
when powered on
§ Bistable element is not practical because the user lacks inputs to

control its state
§ We need something else!

Section 3.2 of H&H 19

SR Latch
§ Two cross-coupled NOR gates
§ The state can be controlled with S/R inputs

§ S = Set to 1
§ R = Reset to 0

A B Y
0 0 1
0 1 0
1 0 0
1 1 0

§ NOR gate revision
§ When both inputs are 0, the output is 1
§ If any of the inputs is 1, the output is 0

20

SR Latch: Analysis
§ SR latch has inputs unlike the cross-coupled inverter

§ Four scenarios in the truth table (Sim = Simultaneous)

Scenario S R Q Q’
Sim-0 0 0
Reset 0 1
Set 1 0
Sim-1 1 1

Section 3.2.1 of H&H 21

Whiteboard: SR Latch

A B Y

0 0 1

0 1 0

1 0 0

1 1 0

S R Q
0 0
0 1
1 0
1 1

Section 3.2.1 of H&H 22

SR Latch: Analysis
§ Scenario # 1 (Reset): R = 1, S = 0

§ N1 sees at least one TRUE (1) input
§ Q = FALSE (0)

§ N2 sees both Q and S FALSE
§ Q’ = TRUE (1)

§ Scenario # 2 (Set): R = 0, S = 1
§ N1 sees 0 and Q’

§ What is Q’?
§ N2 sees at least one TRUE input

§ Q’ = FALSE (0)
§ Revisit N1 (R = 0 and Q’ = 0)

§ Q = TRUE (1)
Section 3.2.1 of H&H 23

SR Latch: Analysis
§ Scenario # 3 (Sim-1): R = 1, S = 1

§ N1 sees at least one TRUE (1) input
§ Q = FALSE (0)

§ N2 sees at least one TRUE (1) input
§ Q’ = FALSE (0)

§ Scenario # 4 (Sim-0): R = 0, S = 0
§ N1 sees 0 and Q’

§ What is Q’?
§ N2 sees 0 and Q

§ What is Q?
§ We are stuck!

§ Wait: remember the cross-coupled inverter? Q can be 0 or 1 J
24

SR Latch: Analysis
§ Scenario # 4-A (Sim-0): R = 0, S = 0, Q = 0

§ N2 sees S = 0 and Q = 0
§ Q’ = 1

§ N1 sees one TRUE (1) input
§ Q = 0 (hindsight: Q is indeed 0 as

assumed)

§ Scenario # 4-B (Sim-0): R = 0, S = 0, Q = 1
§ N2 sees Q = 1

§ Q’ = FALSE
§ N1 receives two FALSE inputs

§ Q = 1 (hindsight: Q is indeed 1 as
assumed)

25

SR Latch: Analysis Summary
§ SR latch has inputs unlike the cross-coupled inverters
§ Four scenarios in the truth table (Sim = Simultaneous)

Scenario S R Q Q’
Sim-0 0 0 Q prev Q’prev

Reset 0 1 0 1
Set 1 0 1 0
Sim-1 1 1 0 0

Section 3.2.1 of H&H 26

SR Latch: Observations
§ SR latch is a bistable element but it’s state can be controlled

§ To set a bit means to make it TRUE
§ To reset is to make it FALSE

§ Q accounts for the entire history of past inputs
§ All prior set/reset patterns are irrelevant
§ The most recent set/reset event predicts the future

behavior of the SR latch

§ Asserting both set/reset to 1 does not make sense
§ Neither intuitively nor physically
§ The circuit outputs 0 on Q and Q’ which is inconsistent
§ We need something else!

S

R Q

Q

SR Latch
Symbol

27

First, We Will Learn to Model the
 Progression of Time

Next: D Latch

28

Representing Time

CLK 0
1

Arrow of time
Changes continuously

§ Physicist and philosopher's view
§ Relentless arrow continuously progressing forward
§ Changes in the world can be infinitesimally small

§ Too mysterious and deep for computer scientists
§ We prefer a discrete representation
§ Break time into fixed-length intervals called cycles
§ cycle 1, cycle 2, cycle 3, and so on Cycles are indivisible and atomic

Changes in the world occur only during cycle transitions; within cycles, the world stands still
29

Time in Digital Systems

Clock period, Tc

CLK

§ Periodic square wave (clock) generated by a special circuit
§ Used to synchronize state updates everywhere in the system

Frequency = 1/Tc

rising edge

falling edge
0

1

Changes in the world occur only during cycle transitions. Within cycles, the world stands still
30

Time in Digital Systems
§ Our goal is to endow logic circuits with the ability to

§ Maintain state over time

§ Respond to time changes

31

D Latch
§ Two drawbacks of SR latch

§ Strange behavior when S = 1 and R = 1
§ S and R inputs serve two roles: what the state is and when the

state changes

§ Designing sequential circuits is easier when we have
control over when the state changes

§ The D latch overcomes the two drawbacks
§ A data input (D) controls what the next state should be
§ The clock input (CLK) controls when the state should

change
Section 3.2.2 of H&H 32

D Latch

S

R Q

Q

Q

QD

CLK
D

R

S

§ Scenario # 1: CLK = 0, S = 0, R = 0, D = X
§ The value of D is irrelevant
§ Q = Qprev (remember the old value)

§ Scenario # 2: CLK = 1, D = 0, S = 0, R = 1
§ The latch is reset

§ Scenario # 3: CLK = 1, D = 1, S = 1, R = 0
§ The latch is set

Latch is transparent (acts like
a buffer)

Latch is opaque (blocks new
data from flowing to Q)

33

Whiteboard: D Latch

S

R Q

Q

Q

QD

CLK
D

R

S

S R Q

0 0 Q prev
0 1 0

1 0 1

1 1 0
Section 3.2.2 of H&H 34

D Latch: Truth Table

S

R Q

Q

Q

QD

CLK
D

R

S

Scenario CLK D Q Q’
Opaque 0 X Q prev Q’prev

Transparent/0 1 0 0 1
Transparent/1 1 1 1 0

Section 3.2.2 of H&H 35

D Latch: Observations
§ D latch is a level-triggered or a level-sensitive circuit

§ Reacts to the level (0 or 1) of the CLK input

§ D latch avoids the awkward case of both S/R asserted

§ D latch changes its state continuously when CLK = 1

§ Designing correct & efficient sequential circuits is
easier when
§ the state changes only at a specific instant in time instead

of changing continuously
§ We need something else!

D Latch
Symbol

CLK
D Q

Q

36

Summary
§ Cross-coupled inverter

§ Two stable states but no inputs to control the state

§ SR Latch
§ Two control inputs: S for Set (1) and R for Reset (0)
§ Awkward when S = 1 and R = 1
§ The state changes instantly (need greater control over when it changes)

§ D Latch
§ One Data input (D) and one control input (CLK)
§ Level-sensitive: CLK = 1 (Transparent), CLK = 0 (Opaque)
§ Output (Q) changes continuously when CLK = 1

37

D Flip-Flop
§ Problem with D Latch: The output changes continuously

when CLK = 1
§ This behavior leads to timing bugs and circuits that are difficult to

analyze

§ D flip-flop is an edge-triggered circuit
§ Sets its state to the data input when CLK changes from 0 to 1
§ At all other times, the D flip-flop remembers its state

Flip-flop samples the input at the edge of the clock

Section 3.2.3 of H&H 38

Analogy: Photography

Sample the input just at the
rising edge (copy D to Q)

Ignore D until
the next rising
edge

§ Input: D, Output/State: Q
§ CLK = Clock (periodic square wave)

CLK

CLK

39

D Flip-Flop

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

§ Two back-to-back D latches controlled by complementary clocks
§ The L1 latch is the master and L2 is the slave latch

§ Remember that, when CLK = 0, D latch is opaque
§ And, when CLK = 1, D latch is transparent

master slave

S

R Q

Q

Q

QD

CLK
D

R

S

D Latch

40

D Flip-Flop: Analysis
§ CLK = 0

§ master: transparent
§ slave: opaque

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2
master slave

0

The value at D propagates through to N1, but Q is cut off from N1
41

D Flip-Flop: Analysis
§ CLK = 1

§ master: opaque
§ slave: transparent

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2
master slave

1

The value at N1 propagates through to Q, but N1 is cut off from D
42

D Flip-Flop: Observations
§ The value at D immediately before the CLK rises from 0 to

1 get copied to Q immediately after CLK rises

§ At all other times, Q retains its old value
§ There is an opaque latch blocking D from flowing to Q

A D flip-flop copies D to Q on the rising/falling edge of the
CLK, and remembers its state at all other times

43

Other Names
§ All names means the same

§ Master-slave flip-flop

§ Edge-triggered flip-flop

§ Positive edge-triggered flip-flop

D Flip-Flop
Symbols

D Q
Q

44

Remember the Symbols

D Flip-Flop
Symbols

D Q
Q

D Latch
Symbol

CLK
D Q

Q

45

 Register

46

Register
§ How can we use flipflops to store more than one bit?

§ Principle of modularity: Use more flipflops!
§ A single CLK to simultaneously write to all flipflops

§ Register: A structure that stores more than one bit of
information and can be read from and written to

§ This register holds 4 bits, and its data is referenced as Q[3:0]
47

4-bit Register

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK
D Q

Q

CLK
D Q

Q
Q

Q

D N1

CLK

L1 L2

CLK

D3 D2 D1 D0

4-bit Register

Q0Q1Q2Q3

To build an N-bit register, use a bank of N flipflops with a shared CLK
48

4-bit Register
CLK

D Q

D Q

D Q

D Q

D0

D1

D2

D3

Q0

Q1

Q2

Q3

D3:0
4 4

CLK

Q3:0

This register stores 4 bits

This line represents 4 wires

Condensed

49

Register Width
§ Register width is the number of flipflops in a register

§ Typical register widths: 8-bit, 16-bit, 32-bit, 64-bit, ..., 512+ bits today
§ Register width is an important parameter of any computer

§ Why do we need wide registers with large widths?
§ Solving large/important problems require manipulating large numbers
§ Large numbers need large number of bits, hence more flipflops
§ Floating point numbers (section 5.3) with decimal point require extra bits

§ Question: Do we need 512-bit registers in microwave controller, automobile
engine control unit (ECU), computer used in financial tech, cockpit domain
controller in cars?

50

Now, We will See
 Different Types of Flipflops

51

Enabled Flip-Flops
§ Loads a new value on a specific clock edge
§ Inputs: CLK, D, EN

§ The enable input (EN) controls when new data (D) is stored
§ Function:

§ EN = 1: D passes through to Q on clock edge
§ EN = 0: the flip-flop retains its previous state

Internal Circuit

52

Clock Gating
§ Doing an AND of CLK with EN is called clock gating
§ Caution: Performing logic on clock is best avoided

§ AND gate delays the clock
§ If EN changes while CLK is 1, the flipflop sees a glitch

(switch at an incorrect time)

CLK

EN
53

Resettable Flip-Flop
§ Add another input (RESET)
§ Function:

§ RESET = 1 (ignore D and reset output to 0)
§ RESET = 0 (ordinary D flip-flop)

§ Two types
§ Reset on clock edge only (synchronous reset)

§ Reset immediately (asynchronous reset) Homework
exercise!

54

Settable Flip-Flop
§ Add another input (SET)
§ Function:

§ SET = 1 (Q is set to 1)
§ SET = 0 (ordinary D flip-flop)

Symbols

D Q
Set

s

55

Examples:
 Latch vs. Flipflop

56

Example - I

Q (Latch)
T0
T1
T2
T3

Q (Flipflop)
T0
T1
T2
T3

57

CLK

D

T0 T1 T2 T3

Example - I

Q (Latch)
T0 0 FALSE
T1
T2
T3

Q (Flipflop)
T0 0 FALSE
T1
T2
T3

58

CLK

D

T0 T1 T2 T3

Example - I

Q (Latch)
T0 0 FALSE
T1 1 TRUE
T2
T3

Q (Flipflop)
T0 0 FALSE
T1 1 TRUE
T2
T3

59

CLK

D

T0 T1 T2 T3

Example - I

Q (Latch)
T0 0 FALSE
T1 1 TRUE
T2 1 TRUE
T3

Q (Flipflop)
T0 0 FALSE
T1 1 TRUE
T2 1 TRUE
T3

60

CLK

D

T0 T1 T2 T3

Example - I

CLK

D

Q (Latch)
T0 0 FALSE
T1 1 TRUE
T2 1 TRUE
T3 0 FALSE

Q (Flipflop)
T0 0 FALSE
T1 1 TRUE
T2 1 TRUE
T3 1 TRUE

T0 T1 T2 T3

61

Q (Latch)
T0
T1
T2
T3

Q (Flipflop)
T0
T1
T2
T3

Example - II

62

CLK

D

T0 T1 T2 T3

Q (Latch)
T0 1 TRUE
T1
T2
T3

Q (Flipflop)
T0 0 FALSE
T1
T2
T3

Example - II

63

CLK

D

T0 T1 T2 T3

Q (Latch)
T0 1 TRUE
T1 0 FALSE
T2
T3

Q (Flipflop)
T0 0 FALSE
T1 1 TRUE
T2
T3

Example - II

64

CLK

D

T0 T1 T2 T3

Q (Latch)
T0 1 TRUE
T1 0 FALSE
T2 1 TRUE
T3

Q (Flipflop)
T0 0 FALSE
T1 1 TRUE
T2 1 TRUE
T3

Example - II

65

CLK

D

T0 T1 T2 T3

CLK

D

Q (Latch)
T0 1 TRUE
T1 0 FALSE
T2 1 TRUE
T3 1 TRUE

Q (Flipflop)
T0 0 FALSE
T1 1 TRUE
T2 1 TRUE
T3 0 FALSE

T0 T1 T2 T3

Example - II

66

 Memory

67

68

§ Houses have unique addresses
§ In computers, everything is

binary 0 or 1 so addresses
are in binary as well

§ Houses have stuff inside them
§ In computers, the “only”

type of stuff is binary data
§ Binary data can be program

variables, photos, videos,
emails, word documents

Memory

69

A huge number of uniquely
identifiable locations each storing a

piece of information

Memory

70

Address: Naming or identification scheme

 VS.

Data: Information stored inside a location

Memory

71

How many locations?

How big is the piece of information at each
location?

Which technology is used to store information?

Memory

Memory
§ Memory is made up of locations that can be written to or read

from. An example memory array with 4 locations:

§ Each unique memory location is indexed with a unique address.
4 locations require 2 address bits (log[#locations])

§ Addressability: the number of bits of information stored in each
location. This example: addressability is 8 bits

§ The entire set of unique locations in memory is referred to as
the address space

Addr(00):

Addr(10):

Addr(01):

Addr(11):

0100 1001

0010 0010

0100 1011

1100 1001

Section 5.5 of H&H 72

Memory
§ Memory in almost all computers today is byte addressable due

to historical reasons (later)

§ Typical memory is MUCH larger consisting of billions of locations

§ Two billion locations and 8-bit (1 byte) addressability
§ Address space is 2 GB or 2 billion 1-byte locations

§ Uniquely identifying each byte of memory allows individual
bytes of stored information to be changed easily

73

Addressing Memory
§ Let’s implement a simple memory array with:

§ 3-bit addressability & address space of 2 (total of 6 bits)

§ How can we select an address to read?
§ Two addresses so address size is log(2) = 1 bit

1 Bit

Bit2 Bit1 Bit0

Bit2 Bit1 Bit0

Addr(0)

Addr(1)

6-Bit Memory Array

74

Reading from Memory

§ Each “box” is a bit cell storing one bit
§ Can be enabled (like the enabled flip-flop with EN)
§ Takes an input (Di) and produces an output (D)

75

Reading from Memory

D[2] D[1] D[0]

Addr[0]

Wordline

Q

Q

76

Reading from Memory

Address Decoder

D[2] D[1] D[0]

Addr[0]

Wordline

77

Reading from Memory

Address Decoder

D[2] D[1] D[0]

Addr[0]

Multiplexer
(together w/ decoder)

Wordline

78

Reading from Memory

Address Decoder

D[2] D[1] D[0]

Addr[0]

Multiplexer
(together w/ decoder)

Wordline

79

Reading from Memory

Address Decoder

D[2] D[1] D[0]

Addr[0]

Multiplexer
(together w/ decoder)

Wordline

80

Recall: Multiplexer (MUX), or Selector
§ Selects one of the N inputs to connect it to the output

§ based on the value of log2N-bit control input called select
§ Example: 2-to-1 MUX

81

Writing to Memory
§ How can we select an address to write to it?

§ How should we tell memory our intention to write?
§ We assert the EN input of the enabled flip-flop

§ How should we tell memory what data we need to write?
§ We use the Di input of the flip-flop

82

Writing to Memory

Di[2] Di[1] Di[0]
Addr[0]

WE

§ How can we select an address to write to it?
§ Input is indicated with Di

83

Writing to Memory

Di[2] = 0 Di[1] = 1 Di[0] = 0
Addr[0] = 0

WE

§ How can we select an address to write to it?
§ Input is indicated with Di

EN
D 0 1 0

1

84

Full Memory Array

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[0]

WE

§ Both reading from and writing to a memory array

85

A Bigger Memory Array
 4 locations X 3 bits

86

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

87

Di[2] Di[1] Di[0]

D[2] D[1] D[0]

Addr[1:0]

WE

Address Decoder
Multiplexer 88

Example: Reading Location 3

Image source: Patt and Patel, “Introduction to Computing Systems”, 3rd ed., page 78. 89

Recall: Decoder

A = 1 0B = 0

0

1

0

§ The decoder is useful in determining how to interpret a bit
pattern

Ø It could be the address of a
location in memory, that the
processor intends to read
from

Ø It could be an instruction in
the program and the
processor needs to decide
what action to take (based
on instruction opcode)

90

Recall: A 4-to-1 Multiplexer

91

Multi-Ported Memory
§ Each port gives read/write access to one memory address

§ Typically, we need to access many addresses simultaneously
§ Example with two read ports and one write port

92

Another Representation of Memory
§ What is the memory’s addressability?
§ How big is the address space?

93

 Sequential Logic Circuits
§ Week 1 & 2: Combinational circuits that process information

§ Week 3: Boolean algebra, & circuits that can store information, & basic
storage elements, & memory

§ Now, digital logic structures that can both process information (i.e.,
make decisions) and store information
§ The decision is based on both input combinations and their history

94

Sequential Logic Circuits
§ We have discovered circuit elements that can store information
§ Now, we will use these elements to build circuits that remember

past inputs

Sequential
Opens depending on past inputs

Combinational
Only depends on current inputs

https://www.easykeys.com/228_ESP_Combination_Lock.aspx
https://www.fosmon.com/product/tsa-approved-lock-4-dial-combo 95

State
§ In order for this lock to work, it has to remember past events

§ If passcode is R13-L22-R3, sequence of states to unlock
A. Locked and no operations have been performed
B. Locked but R13 completed
C. Locked but R13 – L22 completed
D. Unlocked and R13 – L22 – R3 completed

§ The state of a system is a snapshot of all relevant elements of the system at
the moment of the snapshot
§ To open the lock, states A–D must be completed in order
§ If anything else happens (L5 or L6), lock returns to state A

96

State Diagram of Sequential Lock

Image source: Patt and Patel, “Introduction to Computing Systems”, 2nd ed., page 76.

§ Completely describes the operation of the sequential lock

97

Another Example: Soft Drink Machine

Image source: Patt and Patel, “Introduction to Computing Systems”, 2nd ed., page 84.

§ There are only three possible states
A. The lock is open, so a bottle can be (or has been) removed
B. The lock is not open, but 5 cents have been inserted.
C. The lock is not open, but 10 cents have been inserted.

98

Image source: Patt and Patel, “Introduction to Computing Systems”, 2nd ed., page 84.

A B C

§ One possible sequence of states is as follows

Another Example: Soft Drink Machine

99

Another Example: Traffic Light

Image source: Patt and Patel, “Introduction to Computing Systems”, 2nd ed., page 84.

A B C

§ The sequence of states is as follows

§ There are only three possible states:
A. Green
B. Yellow
C. Red

100

Asynchronous vs. Synchronous State Changes

§ Sequential lock we saw is an asynchronous machine
§ State transition occur when they occur
§ There is nothing that synchronizes when each state transition

must occur

§ Most modern computers are synchronous machines
§ State transitions take place after fixed units of time
§ Controlled by the clock that dictates when transitions occur

§ These are two different design paradigms, with tradeoffs

101

Changing State & The Notion of Clock

A B C

§ When should the vending machine change state from A to B?

§ When should the traffic light change from one state to
another?

102

Changing State & The Notion of Clock

§ When should the machine change state from A to B?

§ We need a clock to dictate when to change state
§ Clock alternates between 0 & 1

§ At the start of a clock cycle (), system state changes
§ During a clock cycle, the state stays constant
§ The machine stays in a specific state an equal amount of time

103

CLK: 0
1

Changing State & The Notion of Clock

§ Clock is a general mechanism that triggers transition from one
state to another in a (synchronous) sequential circuit

§ Clock synchronizes state changes across many sequential
circuit elements

§ Combinational logic evaluates for the length of the clock cycle

§ Clock cycle should be chosen to accommodate maximum
combinational delay

104

Asynchronous vs. Synchronous State Changes
§ Sequential lock we saw is an asynchronous machine

§ State transition occur when they occur
§ There is nothing that synchronizes when each state transition must occur

§ Most modern computers are synchronous machines
§ State transitions take place after fixed units of time
§ Controlled in part by a clock, as we will see soon

§ These are two different design paradigms, with tradeoffs
§ Synchronous control can be easier to get correct when the system

consists of many components and many states
§ Asynchronous control can be more efficient (no clock overheads)

We will assume synchronous systems in this course 105

We will assume synchronous systems in this course

"the art of directing the simultaneous
performance of several players or singers by
the use of gesture.” Wikipedia, Conducting

106

Why are Arbitrary Sequential Circuits
a Bad Idea?

Reading: Section 3.4 of H&H 107

Arbitrary Sequential Circuits
§ Important: We need to discipline ourselves and only build

synchronous sequential circuits

§ State is synchronized at the clock edges

§ Let’s examine two arbitrary sequential circuits

Section 3.3 of H&H 108

Ring Oscillator
§ What does the circuit below do?

§ One output, No inputs

§ X oscillates b/w 0 and 1 (prove it assuming X = 0)
§ No stable state (Unstable or Astable)

§ If the propagation delay of each inverter is 1 ns, then
the clock period is 6 ns

Example 3.3 of H&H 109

Asynchronous D Latch
§ What does the circuit below do?

§ CLK = D = 1 (transparent, Q = 1)
§ CLK = 0 (Q = Qprev)

Example 3.4 (page 119) of H&H 110

Asynchronous D Latch
§ What does the circuit below do?

§ CLK = D = 1 (transparent, Q = 1)
§ CLK = 0 (Q = Qprev)

Example 3.4 (page 119) of H&H 111

§ What if tINV >> tAND and tINV >> tOR?
§ Node N1 and Q may both fall before CLK changes

§ Q gets stuck at 0
§ Race condition: The path through CLK to Q is faster than

CLK to Q

Example 3.4 (page 119) of H&H 112

Asynchronous D Latch

Takeaways
§ When outputs are fed back directly back to inputs, these are

called cyclic paths

§ Combinational logic has NO cyclic paths
§ Outputs settle after propagation delay

§ Circuits with cyclic paths are called asynchronous circuits
§ Difficult to analyze
§ Timing issues (race conditions, oscillations)
§ May work in one set of conditions but not in another

113

Synchronous Sequential Circuits
§ What is the problem with asynchronous circuits?

§ Cyclic paths lead to races and unstable behavior

§ Solution: Break the cyclic paths by inserting registers
somewhere in the path

§ Registers contain state, and synchronized to the clock

next state
logic

CLK

output
logic

M k k N

Section 3.3.2 of H&H 114

Synchronous Sequential Circuits

next state
logic

CLK

output
logic

M k k N

General Rule: If the clock is sufficiently slow, so that
the inputs to all registers settle before the next clock
edge, all races are eliminated

115

Composition Rules
§ Every circuit element is either a register or a

combinational element

§ At least one element is a register

§ All registers receive the same clock signal

§ Every cyclic path contains at least one register

116

Which circuits are synchronous
sequential?

Example 3.5 of H&H 117

 Finite State Machines

Compulsory Reading: Section 3.4 of H&H 118

Finite State Machines
§ What is a Finite State Machine (FSM)?

§ A discrete-time model of a stateful system
§ A finite set of states a system can be in

§ An FSM pictorially shows
§ The set of all possible states that a system can be in
§ How the system transitions from one state to another

§ An FSM can model
§ A traffic light, an elevator, microwave, microprocessor, fan

speed, car lock
119

FSMs Consist of:
§ Five elements:

§ A finite number of states
§ State: snapshot of all relevant elements of the system at the time of

the snapshot
§ A finite number of external inputs
§ A finite number of external outputs
§ An explicit specification of all state transitions

§ How to get from one state to another
§ An explicit specification of what determines each external

output value
§ If state is A, then output is 10

120

§ Each FSM consists of three separate parts:
§ next state logic
§ state register
§ output logic

Finite State Machines (FSMs)

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM
Section 3.4 of H&H 121

FSMs Consist of:
§ Sequential circuits

§ State register(s)
§ Store the current state and
§ Provide the next state at the clock edge

§ Combinational Circuits
§ Next state logic

§ Determines what the next state will be

§ Output logic
§ Generates the outputs

Next
State

Current
State

S’ S

CLK

CL

Next State
Logic

Next
State

CL

Output
Logic

Outputs
122

State Register
§ Why do we need flip-flops (NOT latches) to implement a state

register

§ Properties of state register
§ We need to store data at the beginning of every clock cycle

123

State Register

CLK

Register Input

T0 T1 T2 T3

Register Output

§ The data must be available during the entire clock cycle

124

State Register

CLK

Register Input

T0 T1 T2 T3

Register Output

§ The data must be available during the entire clock cycle

125

State Register

CLK

Register Input

T0 T1 T2 T3

Register Output

§ The data must be available during the entire clock cycle

126

State Register

CLK

Register Input

T0 T1 T2 T3

Register Output

§ The data must be available during the entire clock cycle
§ So combinational elements have enough time to process input

combinations

127

The Problem with Latches

CLK

Register Input

T0

Register Output

§ We cannot simply wire a clock to CLK input of a latch
§ Whenever the clock is HIGH, the latch propagates D to Q
§ The latch is transparent

S

R Q

Q

Q

QD

CLK
D

R

S

undesirable

128

State Register uses Flip-Flops
§ D (input) is observable at Q (output) only at the

beginning of the next clock cycle

§ Q is available for the full clock cycle

129

Implementing FSMs
 Traffic Light Controller

The Next Example is from H & H: Section 3.4
Acknowledgement: Selection of Slides from Digital Design and Computer Architecture, Onur Mutlu, ETH Zurich, Spring 2022
https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule

130

https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule

Finite State Machines (FSMs)
§ Next state is determined by the current state and the inputs

§ Two types of finite state machines differ in the output logic:

§ Moore FSM: outputs depend only on the current state

§ Mealy FSM: outputs depend on the current state and inputs

131

Moore & Mealy FSM

132

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

§ “Smart” traffic light controller
§ 2 inputs:
§ Traffic sensors: TA , TB (TRUE when there’s traffic)

§ 2 outputs:
§ Lights: LA , LB (Red, Yellow, Green)

§ State can change every 5 seconds
§ Except if green and traffic, stay green

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

From H&H Section 3.4.1

Finite State Machine Example

133

§ Traffic sensors are built into the road
§ Each sensor indicates if a street is empty or there are vehicles nearby

TA = (eastbound traffic on A) OR (westbound traffic on A)
TB = (northbound traffic on B) OR (southbound traffic on B)

Finite State Machine Example

§ Inputs TA and TB
§ Returns TRUE if there are cars on the road
§ Returns FALSE if the road is empty

§ Outputs LA1:0 and LB1:0
§ Each set of lights receive 2-bit digital inputs from the traffic light

controller specifying whether it should be: RED, YELLOW, GREEN

Output Encoding
GREEN 00

YELLOW 01
RED 10

Finite State Machine Example

§ Inputs: CLK, Reset, TA , TB

§ Outputs: LA , LB

TA

TB

LA

LB

CLK

Reset

Traffic
Light

Controller

Finite State Machine Blackbox

136

137

S0
LA: green
LB: red

Reset

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

Finite State Machine Diagram
§ Moore FSM: outputs labeled in each state
§ States: Circles
§ Transitions: Arrows (Arcs)

138

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Diagram
§ Moore FSM: outputs labeled in each state
§ States: Circles
§ Transitions: Arrows (Arcs) à From “current state” S0 to “next state” S1

139

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Diagram
§ Moore FSM: outputs labeled in each state
§ States: Circles
§ Transitions: Arrows (Arcs)

140

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Diagram
§ Moore FSM: outputs labeled in each state
§ States: Circles
§ Transitions: Arrows (Arcs)

141

TA

LA

TA

LB

TB

TB

LA

LB

Academic Ave.

Bravado
Blvd.

Dorms

Fields

Dining
Hall

Labs

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

Finite State Machine Diagram
§ Moore FSM: outputs labeled in each state
§ States: Circles
§ Transitions: Arrows (Arcs)

Finite State Machine:
 State Transition Table

142

Current	State Inputs Next	State
S TA TB S'
S0 0 X
S0 1 X
S1 X X
S2 X 0
S2 X 1
S3 X X

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

FSM State Transition Table

143

Current	State Inputs Next	State
S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

FSM State Transition Table

144

Current	State Inputs Next	State
S TA TB S'
S0 0 X S1
S0 1 X S0
S1 X X S2
S2 X 0 S3
S2 X 1 S2
S3 X X S0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

FSM State Transition Table

145

Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

FSM State Transition Table

146

Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	?

FSM State Transition Table

147

Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	(S1	∙	S0)	+	(S1	∙	S0	∙	TB)	+	(S1	∙	S0	∙	TB)

FSM State Transition Table

148

Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	(S1	∙	S0)	+	(S1	∙	S0	∙	TB)	+	(S1	∙	S0	∙	TB)

S’0	=	?

FSM State Transition Table

149

Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	(S1	∙	S0)	+	(S1	∙	S0	∙	TB)	+	(S1	∙	S0	∙	TB)

S’0	=	(S1	∙	S0	∙	TA)	+	(S1	∙	S0	∙		TB)

FSM State Transition Table

150

Current	State Inputs Next	State
S1 S0 TA TB S’1 S’0
0 0 0 X 0 1
0 0 1 X 0 0
0 1 X X 1 0
1 0 X 0 1 1
1 0 X 1 1 0
1 1 X X 0 0

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset

State Encoding

S0 00

S1 01

S2 10

S3 11

S’1	=	S1	xor	S0									(Simplified)

S’0	=	(S1	∙	S0	∙	TA)	+	(S1	∙	S0	∙		TB)

FSM State Transition Table

151

Finite State Machine:
 Output Table

152

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

FSM Output Table

153

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA LB
0 0 green red
0 1 yellow red
1 0 red green
1 1 red yellow

Output Encoding

green 00

yellow 01

red 10

FSM Output Table

154

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1	=	S1

FSM Output Table

155

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1	=	S1
LA0	=	S1	∙	S0

FSM Output Table

156

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1	=	S1
LA0	=	S1	∙	S0
LB1	=	S1

FSM Output Table

157

S0
LA: green
LB: red

S1
LA: yellow
LB: red

S3
LA: red
LB: yellow

S2
LA: red
LB: green

TA
TA

TB

TB

Reset Current	State Outputs
S1 S0 LA1 LA0 LB1 LB0
0 0 0 0 1 0
0 1 0 1 1 0
1 0 1 0 0 0
1 1 1 0 0 1

Output Encoding

green 00

yellow 01

red 10

LA1	=	S1
LA0	=	S1	∙	S0
LB1	=	S1
LB0	=	S1	∙	S0

FSM Output Table

158

Finite State Machine:
 Schematic

159

160

FSM Overview

161

S1

S0

S'1

S'0

CLK

state register

Reset
r

FSM Schematic: State Register

162

S1

S0

S'1

S'0

CLK

next state logic state register

Reset

TA

TB

inputs

S1 S0

r

S’1	=	S1	xor	S0

S’0	=	(S1	∙	S0	∙	TA)	+	(S1	∙	S0	∙		TB)

FSM Schematic: Next State Logic

163

S1

S0

S'1

S'0

CLK

next state logic output logicstate register

Reset

LA1

LB1

LB0

LA0

TA

TB

inputs outputs

S1 S0

r

LA1	=	S1
LA0	=	S1	∙	S0
LB1	=	S1
LB0	=	S1	∙	S0

FSM Schematic: Output Logic

164

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

FSM Timing Diagram

165

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

FSM Timing Diagram

166

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

FSM Timing Diagram

167

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

FSM Timing Diagram

168

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

FSM Timing Diagram

169

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

FSM Timing Diagram

170

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

FSM Timing Diagram

171

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TBThis is from H&H Section 3.4.1

FSM Timing Diagram

172

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

FSM Timing Diagram

173

CLK

Reset

TA

TB

S'1:0

S1:0

LA1:0

LB1:0

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7 Cycle 8 Cycle 9 Cycle 10

S1 (01) S2 (10) S3 (11) S0 (00)

t (sec)

??

??

S0 (00)

S0 (00) S1 (01) S2 (10) S3 (11) S1 (01)

??

??

0 5 10 15 20 25 30 35 40 45

Green (00)

Red (10)

S0 (00)

Yellow (01) Red (10) Green (00)

Green (00) Red (10)Yellow (01)

S0
LA: green

LB: red

S1
LA: yellow

LB: red

S2
LA: red

LB: green

S3
LA: red

LB: yellow

Reset TA
TA
__

__
TB
TB

See H&H Chapter 3.4

FSM Timing Diagram

Finite State Machine:
 State Encoding

174

§ How do we encode the state bits?
§ Three common state binary encodings with different tradeoffs
§ Fully Encoded
§ 1-Hot Encoded

§ Let’s see an example traffic light with 3 states
§ Green, Yellow, Red

175

FSM State Encoding

1. Binary Encoding (Full Encoding):
§ Use the minimum possible number of bits
§ Use log2(num_states) bits to represent the states

§ Example state encodings: 00, 01, 10
§ Minimizes # flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:
§ Each bit encodes a different state
§ Uses num_states bits to represent the states
§ Exactly 1 bit is “hot” for a given state

§ Example state encodings: 0001, 0010, 0100, 1000
§ Simplest design process – very automatable
§ Maximizes # flip-flops, minimizes next state logic

176

FSM State Encoding

1. Binary Encoding (Full Encoding):
§ Use the minimum possible number of bits
§ Use log2(num_states) bits to represent the states

§ Example state encodings: 00, 01, 10
§ Minimizes # flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:
§ Each bit encodes a different state
§ Uses num_states bits to represent the states
§ Exactly 1 bit is “hot” for a given state

§ Example state encodings: 0001, 0010, 0100, 1000
§ Simplest design process – very automatable
§ Maximizes # flip-flops, minimizes next state logic

177

FSM State Encoding

The designer must carefully choose
an encoding scheme to optimize the

design under given constraints

Moore vs. Mealy Machines

178Section 3.4.3 of H&H

§ Next state is determined by the current state and the inputs
§ Two types of FSMs differ in the output logic:

§ Moore FSM: outputs depend only on the current state
§ Mealy FSM: outputs depend on the current state and the inputs

179

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Recall: Moore vs. Mealy Machines

Section 3.4.3 of H&H

n Alyssa P. Hacker has a snail that crawls down a paper tape with 1’s and 0’s on it.
n The snail smiles whenever the last four digits it has crawled over are 1101.
n Design Moore and Mealy FSMs of the snail’s brain.

180

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Moore vs. Mealy Examples

Example 3.7 of H&H

n Alyssa P. Hacker has a snail that crawls down a paper tape with 1’s and 0’s on it.
n The snail smiles whenever the last four digits it has crawled over are 1101.
n Design Moore and Mealy FSMs of the snail’s brain.

181

CLK
M Nk knext

state
logic

output
logic

Moore FSM

CLK
M Nk knext

state
logic

output
logic

inputs

inputs

outputs

outputsstate

state
next
state

next
state

Mealy FSM

Moore vs. Mealy Examples

182

reset

Moore FSM

S0
0

S1
0

S2
0

S3
0

S4
1

0

1 1 0 1

1

01 0
0

reset

S0 S1 S2 S3
0/0

1/0 1/0 0/0
1/1

0/01/0

0/0

Mealy FSM
What are the tradeoffs?

State Transition Diagrams

Step # 1: State transition diagram
§ Formalize the specification and remove ambiguity

Step # 2: Derive the next state logic
§ Binary encoding for states
§ State transition (truth) table
§ Minimized Boolean equations for next state logic

Step # 3: Derive the output logic
§ Binary encoding for outputs
§ Output table & Boolean equations

Step # 4: Turn the Boolean equations into logic gate implementation
§ Next state logic & output logic

FSM Design Procedure (I)

183

§ Determine all possible states of your machine
§ Develop a state transition diagram

§ Generally, this is done from a textual description
§ You need to:

§ 1) determine the inputs and outputs for each state and
§ 2) figure out how to get from one state to another

§ Approach
§ Start by defining the reset state and what happens from it – this is typically an easy point to start from
§ Then continue to add transitions and states
§ Picking good state names is very important
§ Building an FSM is like programming (but it is not programming!)

§ An FSM has a sequential “control-flow” like a program with conditionals and goto’s
§ The if-then-else construct is controlled by one or more inputs
§ The outputs are controlled by the state or the inputs

§ In hardware, we typically have many concurrent FSMs

184

FSM Design Procedure (II)

Sync. Seq. Circuits: What We Covered Until Now
§ The concept of state

§ State diagrams

§ Asynchronous vs. synchronous state changes

§ Synchronous sequential circuits

§ FSMs
§ Components, transition diagram, tables, equations, schematic
§ State transition diagrams
§ State encoding
§ Moore vs. Mealy
§ Design procedure 185

Timing Issues in Sequential Circuits

Reading: Section 3.5 of H&H (More detailed than what we need in this course) 186

Timing in Sequential Circuits
§ We need to understand three aspects of

timing specification

§ Clock-to-Q propagation delay

§ Setup time

§ Hold time

CLK

D Q

187

Recall the Clock
§ Output does not change instantly when the rising edge arrives

§ Input needs to stay stable for some time for the flip-flop to take
a reliable photograph

Clock period, Tc

CLK

Frequency = 1/Tc

rising edge

falling edge
0

1

188

Clock-to-Q Propagation Delay
§ When the clock rises, the time it takes for the output to

settle to the final value (tpcq)

CLK

D

Q

tpcq

CLK

D Q

189

Setup Time
§ For the circuit to sample its input correctly, the input must have

stabilized at least some setup time, tsetup, before the rising edge
of the clock

CLK

D

Q

tpcq

tsetup

CLK

D Q

190

Hold Time

CLK

D

Q

tpcq

tsetup

thold

§ The input must remain stable for at least some hold time (thold)
after the rising edge of the clock

CLK

D Q

191

Aperture Time
§ The sum of the setup and hold times is called the aperture

time of the circuit

§ It is the total time for which the input must remain stable

192

Technology and Hold Time
§ It is a reasonable assumption that modern flip-flops have a

hold time close to zero

§ We can ignore hold time in subsequent discussions

193

Example: Calculating Clock Period

Next State Logic

tpd

§ What is the clock period for the circuit below for it to work correctly
in terms of tpd, tsetup, and tpcq ?

CLK

D Q

194

Tc = tpcq + tpd + tsetup

Sequencing Overhead
§ tpcq + tsetup is called the sequencing overhead of the flipflop

§ Tc = tpd + tpcq + tsetup

§ Ideally, the entire clock period should be spent doing useful
work (processing done by the combinational circuit)

§ The sequencing overhead of the flip-flop cuts into this time

195

Recall: Synchronous Sequential Circuits

next state
logic

CLK

output
logic

M k k N

General Rule: If the clock is sufficiently slow, so that the
inputs to all registers settle before the next clock edge, all
races are eliminated

196

 Different Types of
 Storage Elements

197

Diff. Storage Elements – Motivation
§ Flip-flops, registers, and flip-flop-based register files make up

synchronous sequential circuits
§ They process information based on current and past

combinations of inputs
§ They have arithmetic circuits or logic elements to process inputs

and history *stored as state*
§ Processing happens during a clock cycle, while state changes

happen at the edge of the clock (synchronous)

§ Sometimes, we need to store lots of information
§ Computer main memory, USB drives, flash drives, disks, SSDs
§ We can build cheaper storage elements that store information

asynchronously – and processing happens somewhere else
synchronously

Section 5.5 of H&H 198

Example

199

Composed using ALUs,
registers, muxes, and
decoder to process one
instruction every cycle

Just rows and
rows of storage
elements, and
no cycle-by-cycle
processing ….
Just read and
write words

CPU
Main Memory

§ On-chip fast memory called a L1/L2/L3 cache
§ Subset of recently read data from main memory

Storage Elements
§ Latches and flip-flops

§ Very fast
§ Very expensive (one bit costs tens of transistors)

§ Static RAM (SRAM)
§ Relatively fast
§ Expensive (one bit costs 6 transistors)

§ Dynamic RAM (DRAM)
§ Slower than latches, flip-flops, and SRAM
§ Reading destroys content, requiring a refresh operation to

recharge the capacitor
§ It needs a special process for manufacturing
§ Cheap (one bit costs only one transistor plus one transistor)

Section 5.5 of H&H 200

Generalized Storage Element
§ Stores one bit (bit cell)

§ Wordline enables (selects) the storage element or bit cell
§ Bit line is used to read the stored bit or write a new bit

§ Why is it called word line?
§ Word line addresses an entire (unique) word in a row of words
§ We read from and write to an entire row

Section 5.5 of H&H 201

Generalized Memory Organization
§ A decoder to decode the address
§ A multiplexer to select an output (not shown below)

§ Can also use tri-state buffers instead of AND/OR multiplexer

§ Storage element can be of any “type”
§ Address/Data makes up a single port rightmost line

is numbered 0

called bitlines
because they
produce the
stored bits

Section 5.5 of H&H 202

Generalized Memory Organization
§ Bitlines are used for both reading the stored bit and writing a

new bit (circuit details of how it is done is outside scope)

rightmost line
is numbered 0

called bitlines
because they
produce the
stored bits

Section 5.5 of H&H 203

Read/Write Procedure in Detail
§ READ

§ A wordline is asserted, and the corresponding row of bits cells drives the
bitlines HIGH or LOW

§ WRITE
§ The bitlines are driven HIGH or LOW first and then a wordline is

asserted, allowing the bitlines values to be stored in that row of bit cells

Section 5.5 of H&H 204

Recall a Tri-State Buffer
§ A tri-state buffer enables gating of different signals onto a

wire

§ When E is LOW, output is a floating signal (Z)
§ Floating: Signal not driven by any circuit (open circuit, floating wire)

A tri-state buffer
acts like a switch

205

Memory Port with Tri-State Buffer

CPU

Memory

GateMem

GateCPU

Shared Bus

Homework Exercise!

206

SRAM Bit Cell
§ SRAM: Static Random Access Memory

§ Data bit is stored in a cross-coupled inverter
§ Each cell has two outputs: bitline and bitline and bitline

§ When the wordline is asserted, both nMOS transistors are turned ON, and
data values are transferred to or from the bitlines

207

SRAM Bit Cell

source: https://electronics.stackexchange.com/questions/162466/how-do-the-access-transistors-in-an-sram-cell-work
208

NOT Gate using nMOS

cross-coupled inverter

bitlinebitline

Recall: MOS NOT Gate (Inverter)
§ We have seen a NOT gate at the transistor level

§ If A = 0V then Y = 3V
§ If A = 3V then Y = 0V

§ Interpretation of voltage levels
§ Interpret 0V as logical (binary) 0 value
§ Interpret 3V as logical (binary) 1 value

A P N Y

0 ON OFF 1

1 OFF ON 0
𝑌 = �̅�

3V

0V

Out (Y)In (A)

209

Random Access Memory (RAM)
§ RAM: Random Access Memory

§ Each byte has an address (byte-addressable)

§ Any data word (consisting of multiple bytes) can be accessed
independently of the other

§ Any data word is accessed with the same delay as any other

210

Another Device for Storing Information
§ What storage medium is this?

§ A length of magnetic tape in a plastic enclosure with one or two
reels for controlling the motion of the tape

§ Cassette used in tape recorders: nearby data is accessed more
quickly than faraway data

§ Inherently sequential device: they must be rewound and read from
the start to load data

211

Yet Another Device for Storing Information
§ What storage medium is this?

§ A rotational platter with magnetic coating and arm assembly inside
a casing

§ Hard disk used in all computers: nearby data is accessed more
quickly than faraway data

§ Inherently sequential device: a disk must rotate under an arm for
data to be read

212

Random vs. Sequential access devices
These vs. These

213

DRAM Bit Cell
§ DRAM: Dynamic Random Access Memory

§ Stores a bit as the presence or absence of a charge on a capacitor
§ The nMOS transistor behaves as a switch that either connects or

disconnects the capacitor from the bitline

§ When the wordline is asserted, the nMOS transistor turns ON, and the
stored bit value transfers to or from the bitline

Section 5.5.2 of H&H 214

Static vs. Dynamic
§ Recall the SRAM cell: The nMOS transistors (M5 and M6) are

driven by cross-coupled inverter connected to supply voltage

§ DRAM: The capacitor node is not actively driven HIGH or LOW
by a transistor tied to supply voltage

SRAM Cell DRAM Cell
215

DRAM Reads and Writes
§ Read: Upon a read, data values are transferred from the

capacitor to the bitline
§ Reading destroys the bit value stored on the capacitor, so the data word

must be restored (rewritten) after each read
§ Refresh: Even when DRAM is not read, the contents must be refreshed

(read and rewritten) every few milliseconds, because the charge on the
capacitor gradually leaks away

§ Write: Upon a write, data values are transferred from the
bitline to the capacitor

216

DRAM Refresh
§ Refresh: Even when DRAM is not read, the contents must be

refreshed (read and rewritten) every few milliseconds
because the charge on the capacitor gradually leaks away

§ Refreshing consumes extra energy

§ Refreshing requires costly circuitry

§ It is a critical drawback of DRAM technology, especially at
large capacities (many gigabytes, for example)

217

Memory Comparison
§ Latches and flip-flops (20 transistors)

§ Very fast
§ Very expensive (one bit costs tens of transistors)

§ Static RAM (SRAM) (6 transistors)
§ Relatively fast
§ Expensive (one bit costs 6 transistors)

§ Dynamic RAM (DRAM) (1 transistor)
§ Slower than latches, flip-flops, and SRAM
§ Reading destroys content, requiring a refresh operation to

recharge the capacitor
§ It needs a special process for manufacturing
§ Cheap (one bit costs only one transistor plus one transistor)

Section 5.5 of H&H 218

Memory Hierarchy
§ Large memories use SRAM and DRAM
§ Registers inside the CPU use flip-flops

§ Flip-flops are used in synchronous sequential circuits
219

Memory Hierarchy

Inside the CPU chip: SRAM and flip-flops Outside the CPU chip: DRAM

DRAM Stick
or DIMM

220

