COMP2300-COMP6300-ENGN2219 Computer Organization & Program Execution

Convener: Shoaib Akram shoaib.akram@anu.edu.au

Australian National University

We Covered Combinational Blocks

- Computation
 - Adders
 - ALU
 - Comparator
- Control
 - Multiplexer
 - Decoder
 - Tri-state Buffer
- Standard form (SOP)
- Boolean equation to 2-level implementation

What will we learn this week?

Circuits that can store information

- State and clock
- Cross-coupled inverter
- SR latch
- D latch
- D flip-flop
- Register & Memory
- Synchronous sequential circuits
 - Finite state machines
- Synchronous vs. Asynchronous sequential circuits

Circuits that Store Information

All Computers Need Memory to Work

Apple M1, 2021

Source: <u>https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested</u>

https://download.intel.com/newsroom/kits/40thanniversary/gallery/images/Pentium 4 6xx-die.jpg

Intel Pentium 4, 2000

Core Count: 8 cores/16 threads

L1 Caches: 32 KB per core

L2 Caches: 512 KB per core

L3 Cache: 32 MB shared

AMD Ryzen 5000, 2020

https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

IBM POWER10, 2020

Cores: 15-16 cores, 8 threads/core

L2 Caches: 2 MB per core

L3 Cache: 120 MB shared

https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/

Nvidia Ampere, 2020

	ED-CIRCOX	EB-CBCCCC	- 82-CBCCX
	SM C		8
	SM .		
	SM	233 1233	
G6X		COTOS [®] (FEEC	
TPG	SM		
	SM 15		
GOX. GPC - TPG			
TPG	SM		
822	SM		GO
GOX TPG	SM	256 FP32	
	SM	Cores [®] FP32C	
Geomet	IV		
322 III III III III III IIII III	UEngine LEngi		G
		31	
MC (24x	Front	tend (2	4x MC
		2x NyLink	

Cores:

128 Streaming Multiprocessors

L1 Cache or Scratchpad: 192KB per SM Can be used as L1 Cache and/or Scratchpad

L2 Cache: 40 MB shared

https://www.tomshardware.com/news/infrared-photographer-photos-nvidia-ga102-ampere-silicon

Motivation

 Combinational circuit output depends only on current input combinations

 We want circuits that produce output depending on current and past input values – circuits with memory

How can we design a circuit that stores information?

Sequential Circuit

What is State?

- What is state?
 - A set of bits that summarize past behavior of system
 - The set of bits are called state variables
 - Each bit is stored in a state or memory element
- The state of a system informs us everything about the past we need to know to predict the future
- The output of sequential logic depends on both the current input values and the *state* of the system

Example of State

Consider a controller for a traffic light

- To set the next state, the controller needs to remember the current state
- The past input values (signals from traffic sensors) are summarized by the "current" state stored as a 2-bit value

Another Example

- We remember the meaning of the words in time t since
 - we remembered them in time t 1
 - all the way back to the point of time
 - when we first committed them to memory

Capturing State

 To remember or to store the state of the system (current state of traffic light), we need a logic element with memory

How can we capture input data and persist it until the next input?

Capturing and Storing One Bit

- One bit of information represents two possible states
- To store one bit, we need
 - An element with two stable states (bistable element)
 - The ability to change the state
- First, we will find the bistable element
 - And then focus on the *ability to change state*

Bistable element

 The fundamental building block of memory is a bistable element with two stable states

Cross-coupled inverters: A pair of inverters connected in a loop

Section 3.2 of H&H

Analysis of Bistable Element

- How should we analyze circuits with cyclic paths?
 - When the circuit is switched on, Q is either 0 or 1 (scenarios)
 - Show: Output is stable (consequence A)
 - Show: Q and Q' are complements of each other (consequence B)

Section 3.2 of H&H

- Scenario # 1: Q = 0 (FALSE)
 - I2 receives 0, Q' = 1: B is satisfied
 - Q' = 1, Q = 0, A is satisfied
 - Consistent with original assumption
- Scenario # 2: Q = 1 (TRUE)
 - I2 receives 1, Q' = 0: B is satisfied
 - Q' = 0, Q = 1, A is satisfied

 $\overline{I1}$ \overline{Q} \overline{Q}

Bistable Element: Observations

- Bistable element has two stable states
 - Stores one bit of information
- Q reveals about past, necessary to explain the future
 - If Q = 0, it will remain 0 forever
 - If Q = 1, it will remain 1 forever
- The (initial) state of the bistable element is unpredictable when powered on
 - Bistable element is *not practical* because the user lacks inputs to control its state
 - We need something else!

Section 3.2 of H&H

SR Latch

- Two cross-coupled NOR gates
- The state can be controlled with S/R inputs
 - S = Set to 1
 - R = Reset to 0

Α	В	Y	
0	0	1	 NOR gate revision
0	1	0	When both inputs are 0, the output is 1
1	0	0	If any of the inputs is 1, the output is 0
1	1	0	

- SR latch has inputs unlike the cross-coupled inverter
- Four scenarios in the truth table (Sim = Simultaneous)

Scenario	S	R	Q	Q'
Sim-0	0	0		
Reset	0	1		
Set	1	0		
Sim-1	1	1		

Whiteboard: SR Latch

Section 3.2.1 of H&H

- Scenario # 1 (Reset): R = 1, S = 0
 - N1 sees at least one TRUE (1) input
 - Q = FALSE (0)
 - N2 sees both Q and S FALSE
 - **Q'** = TRUE (1)
- Scenario # 2 (Set): R = 0, S = 1
 - N1 sees 0 and Q'
 - What is Q'?
 - N2 sees at least one TRUE input
 - Q' = FALSE (0)
 - Revisit N1 (R = 0 and Q' = 0)
 - **Q** = TRUE (1)

- Scenario # 3 (Sim-1): R = 1, S = 1
 - N1 sees at least one TRUE (1) input
 - Q = FALSE (0)
 - N2 sees at least one TRUE (1) input
 - Q' = FALSE (0)
- Scenario # 4 (Sim-0): R = 0, S = 0
 - N1 sees 0 and Q'
 - What is Q'?
 - N2 sees 0 and Q
 - What is **Q**?
 - We are stuck!
 - Wait: remember the cross-coupled inverter? **Q** can be **0** or 1 ⁽²⁾

- Scenario # 4-A (Sim-0): R = 0, S = 0, Q = 0
 - N2 sees S = 0 and Q = 0
 - **Q'** = 1
 - N1 sees one TRUE (1) input
 - Q = 0 (hindsight: Q is indeed 0 as assumed)

- Scenario # 4-B (Sim-0): R = 0, S = 0, Q = 1
 - N2 sees Q = 1
 - **Q'** = **FALSE**
 - N1 receives two FALSE inputs
 - Q = 1 (hindsight: Q is indeed 1 as assumed)

SR Latch: Analysis Summary

- SR latch has inputs unlike the cross-coupled inverters
- Four scenarios in the truth table (Sim = Simultaneous)

Scenario	S	R	Q	Q'
Sim-0	0	0	Q _{prev}	Q′ _{prev}
Reset	0	1	0	1
Set	1	0	1	0
Sim-1	1	1	0	0

Section 3.2.1 of H&H

SR Latch: Observations

- SR latch is a bistable element but it's state can be controlled
 - To set a bit means to make it TRUE
 - To reset is to make it FALSE
- Q accounts for the entire history of past inputs
 - All prior set/reset patterns are irrelevant
 - The most recent set/reset event predicts the future behavior of the SR latch
- Asserting both set/reset to 1 does not make sense
 - Neither intuitively nor physically
 - The circuit outputs 0 on Q and Q' which is inconsistent
 - We need something else!

SR Latch Symbol

Next: D Latch

First, We Will Learn to Model the Progression of Time

Representing Time

- Physicist and philosopher's view
 - Relentless arrow continuously progressing forward
 - Changes in the world can be infinitesimally small

Arrow of time Changes continuously

Too mysterious and deep for computer scientists

- We prefer a discrete representation
- Break time into fixed-length intervals called cycles
- cycle 1, cycle 2, cycle 3, and so on Cycles are indivisible and atomic

Changes in the world occur only during cycle transitions; within cycles, the world stands still 29

Time in Digital Systems

- Periodic square wave (clock) generated by a special circuit
- Used to synchronize state updates everywhere in the system

Frequency = $1/T_c$

Changes in the world occur only during cycle transitions. Within cycles, the world stands still 30

Time in Digital Systems

Our goal is to endow logic circuits with the ability to

Maintain state over time

Respond to time changes

D Latch

Two drawbacks of SR latch

- Strange behavior when S = 1 and R = 1
- S and R inputs serve two roles: what the state is and when the state changes
- Designing sequential circuits is easier when we have control over when the state changes
- The D latch overcomes the two drawbacks
 - A data input (D) controls what the next state should be
 - The clock input (CLK) controls when the state should change

D Latch

Whiteboard: D Latch

Section 3.2.2 of H&H

D Latch: Truth Table

Scenario	CLK	D	Q	Q'
Opaque	0	Χ	Q _{prev}	Q′ _{prev}
Transparent/0	1	0	0	1
Transparent/1	1	1	1	0

Section 3.2.2 of H&H
D Latch: Observations

- D latch is a level-triggered or a level-sensitive circuit
 - Reacts to the level (0 or 1) of the CLK input
- D latch avoids the **awkward** case of both **S/R** asserted
- D latch changes its state continuously when CLK = 1
- Designing correct & efficient sequential circuits is easier when
 - the state changes only at a specific instant in time instead of changing continuously
 - We need something else!

Summary

Cross-coupled inverter

Two stable states but no inputs to control the state

SR Latch

- Two control inputs: S for Set (1) and R for Reset (0)
- Awkward when S = 1 and R = 1
- The state changes instantly (need greater control over when it changes)

D Latch

- One Data input (D) and one control input (CLK)
- Level-sensitive: CLK = 1 (Transparent), CLK = 0 (Opaque)
- Output (Q) changes continuously when CLK = 1

D Flip-Flop

- Problem with D Latch: The output changes continuously when CLK = 1
 - This behavior leads to timing bugs and circuits that are difficult to analyze
- D flip-flop is an edge-triggered circuit
 - Sets its state to the data input when CLK changes from 0 to 1
 - At all other times, the D flip-flop remembers its state

Flip-flop samples the input at the edge of the clock

Analogy: Photography

- Input: D, Output/State: Q
- CLK = Clock (periodic square wave)

Sample the input just at the rising edge (copy D to Q)

D Flip-Flop

- Two back-to-back D latches controlled by complementary clocks
- The L1 latch is the master and L2 is the slave latch
 - Remember that, when CLK = 0, D latch is opaque
 - And, when CLK = 1, D latch is transparent

D Latch

D Flip-Flop: Analysis

- CLK = 0
 - master: transparent
 - slave: opaque

The value at D propagates through to N1, but Q is cut off from N1

D Flip-Flop: Analysis

- CLK = 1
 - master: opaque
 - slave: transparent

The value at N1 propagates through to Q, but N1 is cut off from D

D Flip-Flop: Observations

- The value at D immediately before the CLK rises from 0 to 1 get copied to Q immediately after CLK rises
- At all other times, Q retains its old value
 - There is an opaque latch blocking D from flowing to Q

A D flip-flop copies D to Q on the *rising/falling edge* of the CLK, and remembers its state at all other times

Other Names

- All names means the same
 - Master-slave flip-flop
 - Edge-triggered flip-flop
 - Positive edge-triggered flip-flop

Remember the Symbols

D Latch Symbol CLK D Q Q

D Flip-Flop Symbols

Register

Register

- How can we use flipflops to store more than one bit?
 - Principle of modularity: Use more flipflops!
 - A single CLK to simultaneously write to all flipflops

- Register: A structure that stores more than one bit of information and can be read from and written to
- This register holds 4 bits, and its data is referenced as Q[3:0]

4-bit Register

To build an N-bit register, use a bank of N flipflops with a shared CLK

4-bit Register

Register Width

- Register width is the number of flipflops in a register
 - Typical register widths: 8-bit, 16-bit, 32-bit, 64-bit, ..., 512+ bits today
 - Register width is an important parameter of any computer
- Why do we need wide registers with large widths?
 - Solving large/important problems require manipulating large numbers
 - Large numbers need large number of bits, hence more flipflops
 - Floating point numbers (section 5.3) with decimal point require extra bits
- Question: Do we need 512-bit registers in microwave controller, automobile engine control unit (ECU), computer used in financial tech, cockpit domain controller in cars?

Now, We will See Different Types of Flipflops

Enabled Flip-Flops

- Loads a new value on a specific clock edge
- Inputs: CLK, D, EN
 - The enable input (EN) controls when new data (D) is stored
- Function:
 - EN = 1: D passes through to Q on clock edge
 - EN = 0: the flip-flop retains its previous state

Clock Gating

- Doing an AND of CLK with EN is called clock gating
- Caution: Performing logic on clock is best avoided
 - AND gate delays the clock
 - If EN changes while CLK is 1, the flipflop sees a glitch (switch at an incorrect time)

-Q

D-

Л

54

Resettable Flip-Flop

- Add another input (RESET)
- Function:

- RESET = 1 (ignore D and reset output to 0)
- RESET = 0 (ordinary D flip-flop)
- Two types
 - Reset on clock edge only (synchronous reset)

 Reset immediately (asynchronous reset) Homework exercise!

RFSF

Settable Flip-Flop

- Add another input (SET)
- Function:
 - SET = 1 (Q is set to 1)
 - SET = 0 (ordinary D flip-flop)

Symbols

Examples:

Latch vs. Flipflop

Houses have unique addresses

 In computers, everything is binary 0 or 1 so addresses are in binary as well

Houses have stuff inside them

- In computers, the "only" type of stuff is binary data
- Binary data can be program variables, photos, videos, emails, word documents

2005 2nd St.

A huge number of **uniquely identifiable** *locations* each storing a piece of information

Address: Naming or identification scheme

VS.

Data: Information stored inside a location

How many **locations**?

How big is the **piece of information** at each location?

Which **technology** is used to store information?
Memory

 Memory is made up of locations that can be written to or read from. An example memory array with 4 locations:

Addr (00):	0100 1001	Addr (01):	0100 1011
Addr (10):	0010 0010	Addr (11):	1100 1001

- Each unique memory location is indexed with a unique address.
 4 locations require 2 address bits (log[#locations])
- Addressability: the number of bits of information stored in each location. This example: addressability is 8 bits
- The entire set of unique locations in memory is referred to as the address space

Memory

- Memory in almost all computers today is byte addressable due to historical reasons (later)
- Typical memory is MUCH larger consisting of billions of locations
- Two billion locations and 8-bit (1 byte) addressability
 - Address space is 2 GB or 2 billion 1-byte locations
- Uniquely identifying each byte of memory allows individual bytes of stored information to be changed easily

Addressing Memory

- Let's implement a simple memory array with:
 - 3-bit addressability & address space of 2 (total of 6 bits)
- How can we select an address to read?
 - Two addresses so address size is log(2) = 1 bit

Bit

CLK

ΕN

- Each "box" is a bit cell storing one bit
 - Can be enabled (like the enabled flip-flop with EN)
 - Takes an input (D_i) and produces an output (D)

Recall: Multiplexer (MUX), or Selector

- Selects one of the *N* inputs to connect it to the output
 - based on the value of log₂N-bit control input called select
- Example: 2-to-1 MUX

 $Y = D_0 \overline{S} + D_1 S$

Writing to Memory

How can we select an address to write to it?

- How should we tell memory our intention to write?
 - We assert the EN input of the enabled flip-flop
- How should we tell memory what data we need to write?
 - We use the D_i input of the flip-flop

Writing to Memory

- How can we select an address to write to it?
 - Input is indicated with D_i

Writing to Memory

- How can we select an address to write to it?
 - Input is indicated with D_i

Full Memory Array

Both reading from and writing to a memory array

A Bigger Memory Array <u>4 locations X 3 bits</u>

Example: Reading Location 3

Figure 3.21 Reading location 3 in our 2²-by-3-bit memory.

Image source: Patt and Patel, "Introduction to Computing Systems", 3rd ed., page 78.

Recall: Decoder

- The decoder is useful in determining how to interpret a bit pattern
 - It could be the address of a location in memory, that the processor intends to read from
 - It could be an instruction in the program and the processor needs to decide what action to take (based on instruction opcode)

Recall: A 4-to-1 Multiplexer

91

Multi-Ported Memory

- Each port gives read/write access to one memory address
- Typically, we need to access many addresses simultaneously
 - Example with two read ports and one write port

Another Representation of Memory

- What is the memory's addressability?
- How big is the address space?

Sequential Logic Circuits

- Week 1 & 2: Combinational circuits that process information
- Week 3: Boolean algebra, & circuits that can store information, & basic storage elements, & memory
- Now, digital logic structures that can both process information (i.e., make decisions) and store information
 - The decision is based on both input combinations and their history

Sequential Logic Circuits

- We have discovered circuit elements that can store information
- Now, we will use these elements to build circuits that remember past inputs

Sequential

Combinational

Only depends on current inputs

Opens depending on past inputs

https://www.easykeys.com/228_ESP_Combination_Lock.aspx https://www.fosmon.com/product/tsa-approved-lock-4-dial-combo

State

- In order for this lock to work, it has to remember past events
- If passcode is R13-L22-R3, sequence of states to unlock
 - A. Locked and no operations have been performed
 - B. Locked but **R13** completed
 - C. Locked but **R13 L22** completed
 - D. Unlocked and R13 L22 R3 completed
- The state of a system is a snapshot of all relevant elements of the the moment of the snapshot
 - To open the lock, states A–D must be completed in order
 - If anything else happens (L5 or L6), lock returns to state A

State Diagram of Sequential Lock

Completely describes the operation of the sequential lock

Image source: Patt and Patel, "Introduction to Computing Systems", 2nd ed., page 76.

Another Example: Soft Drink Machine

Figure 3.27 State diagram of the soft drink machine.

- There are only three possible states
 - A. The lock is open, so a bottle can be (or has been) removed
 - B. The lock is not open, but 5 cents have been inserted.
 - C. The lock is not open, but 10 cents have been inserted.

Another Example: Soft Drink Machine

Figure 3.27 State diagram of the soft drink machine.

One possible sequence of states is as follows

Image source: Patt and Patel, "Introduction to Computing Systems", 2nd ed., page 84.

Another Example: Traffic Light

- There are only three possible states:
 - A. Green
 - B. Yellow
 - C. Red
- The sequence of states is as follows

Image source: Patt and Patel, "Introduction to Computing Systems", 2nd ed., page 84.

Asynchronous vs. Synchronous State Changes

- Sequential lock we saw is an asynchronous machine
 - State transition occur when they occur
 - There is nothing that synchronizes when each state transition must occur
- Most modern computers are synchronous machines
 - State transitions take place after fixed units of time
 - Controlled by the clock that dictates when transitions occur
- These are two different design paradigms, with tradeoffs

Changing State & The Notion of Clock

- When should the vending machine change state from **A** to **B**?
- When should the traffic light change from one state to another?

Changing State & The Notion of Clock

- When should the machine change state from **A** to **B**?
- We need a clock to dictate when to change state
 - Clock alternates between 0 & 1
- At the start of a clock cycle (), system state changes
 - During a clock cycle, the state stays constant
 - The machine stays in a specific state an equal amount of time

Changing State & The Notion of Clock

- Clock is a general mechanism that triggers transition from one state to another in a (synchronous) sequential circuit
- Clock synchronizes state changes across many sequential circuit elements
- Combinational logic evaluates for the length of the clock cycle
- Clock cycle should be chosen to accommodate maximum combinational delay

Asynchronous vs. Synchronous State Changes

- Sequential lock we saw is an asynchronous machine
 - State transition occur when they occur
 - There is nothing that synchronizes when each state transition must occur
- Most modern computers are synchronous machines
 - State transitions take place after fixed units of time
 - Controlled in part by a clock, as we will see soon
- These are two different design paradigms, with tradeoffs
 - Synchronous control <u>can be easier to get correct</u> when the system consists of many components and many states
 - Asynchronous control <u>can be more efficient (no clock overheads</u>)

We will assume synchronous systems in this course

"the art of directing the **simultaneous** performance of several players or singers by the use of gesture." Wikipedia, Conducting

We will assume synchronous systems in this course

106

Why are Arbitrary Sequential Circuits a Bad Idea?

Reading: Section 3.4 of H&H
Arbitrary Sequential Circuits

 Important: We need to discipline ourselves and only build synchronous sequential circuits

State is synchronized at the clock edges

Let's examine two arbitrary sequential circuits

Section 3.3 of H&H

Ring Oscillator

- What does the circuit below do?
 - One output, No inputs

- X oscillates b/w 0 and 1 (prove it assuming X = 0)
 - No stable state (Unstable or Astable)
- If the propagation delay of each inverter is 1 ns, then the clock period is 6 ns

Asynchronous D Latch

- What does the circuit below do?
 - CLK = D = 1 (transparent, Q = 1)
 - CLK = 0 (Q = Q_{prev})

 $Q = CLK \cdot D + \overline{CLK} \cdot Q_{prev}$

Example 3.4 (page 119) of H&H

110

Asynchronous D Latch

- What does the circuit below do?
 - CLK = D = 1 (transparent, Q = 1)
 - CLK = 0 (Q = Q_{prev})

Example 3.4 (page 119) of H&H

Asynchronous D Latch

- What if $\mathbf{t}_{INV} >> t_{AND}$ and $\mathbf{t}_{INV} >> t_{OR}$?
 - Node N1 and Q may both fall before CLK changes
 - Q gets stuck at 0
 - Race condition: The path through CLK to Q is faster than CLK to Q

Example 3.4 (page 119) of H&H

Takeaways

- When outputs are fed back directly back to inputs, these are called cyclic paths
- Combinational logic has NO cyclic paths
 - Outputs settle after propagation delay
- Circuits with cyclic paths are called asynchronous circuits
 - Difficult to analyze
 - Timing issues (race conditions, oscillations)
 - May work in one set of conditions but not in another

Synchronous Sequential Circuits

- What is the problem with asynchronous circuits?
 - Cyclic paths lead to races and unstable behavior
- Solution: Break the cyclic paths by inserting registers somewhere in the path
- Registers contain state, and synchronized to the clock

Synchronous Sequential Circuits

General Rule: If the clock is sufficiently slow, so that the inputs to all registers settle before the next clock edge, all races are eliminated

Composition Rules

- Every circuit element is either a register or a combinational element
- At least one element is a register
- All registers receive the same clock signal
- Every cyclic path contains at least one register

Which circuits are synchronous sequential?

Ę

Example 3.5 of H&H

Finite State Machines

Compulsory Reading: Section **3.4** of H&H

Finite State Machines

- What is a Finite State Machine (FSM)?
 - A discrete-time model of a stateful system
 - A finite set of states a system can be in
- An **FSM** pictorially shows
 - The set of all possible states that a system can be in
 - How the system transitions from one state to another
- An FSM can model
 - A traffic light, an elevator, microwave, microprocessor, fan speed, car lock

FSMs Consist of:

Five elements:

- A finite number of states
 - State: snapshot of all relevant elements of the system at the time of the snapshot
- A **finite** number of external inputs
- A finite number of external outputs
- An explicit specification of all state transitions
 - How to get from one state to another
- An explicit specification of what determines each external output value
 - If state is A, then output is 10

Finite State Machines (FSMs)

- Each FSM consists of three separate parts:
 - next state logic
 - state register
 - output logic

FSMs Consist of:

- Sequential circuits
 - State register(s)
 - Store the current state and State
 - Provide the next state at the clock edge

Combinational Circuits

- Next state logic
 - Determines what the next state will be
- Output logic
 - Generates the outputs

CLK

Next

State

S'--/

- Why do we need flip-flops (NOT latches) to implement a state register
- Properties of state register
 - We need to store data at the **beginning** of every clock cycle

The data must be available during the entire clock cycle

• The data must be **available** during the **entire clock cycle**

• The data must be **available** during the **entire clock cycle**

- The data must be available during the entire clock cycle
 - So combinational elements have enough time to process input combinations

The Problem with Latches

- We cannot simply wire a clock to CLK input of a latch
 - Whenever the clock is HIGH, the latch propagates D to Q

State Register uses Flip-Flops

 D (input) is observable at Q (output) only at the beginning of the next clock cycle

Q is available for the full clock cycle

Implementing FSMs Traffic Light Controller

The Next Example is from H & H: Section 3.4

Acknowledgement: Selection of Slides from Digital Design and Computer Architecture, Onur Mutlu, ETH Zurich, Spring 2022 https://safari.ethz.ch/digitaltechnik/spring2022/doku.php?id=schedule

Finite State Machines (FSMs)

Next state is determined by the current state and the inputs

- Two types of finite state machines differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and inputs

Moore & Mealy FSM

132

Finite State Machine Example

- "Smart" traffic light controller
 - 2 inputs:
 - Traffic sensors: T_A, T_B (TRUE when there's traffic)
 - 2 outputs:
 - Lights: L_A, L_B (Red, Yellow, Green)
 - State can change every 5 seconds
 - Except if green and traffic, stay green

From H&H Section 3.4.1

Finite State Machine Example

- Traffic sensors are built into the road
- Each sensor indicates if a street is empty or there are vehicles nearby

 $T_A = (eastbound traffic on A) OR (westbound traffic on A)$ $T_B = (northbound traffic on B) OR (southbound traffic on B)$

Finite State Machine Example

- Inputs T_A and T_B
 - Returns TRUE if there are cars on the road
 - Returns FALSE if the road is empty
- Outputs L_{A1:0} and L_{B1:0}
 - Each set of lights receive 2-bit digital inputs from the traffic light controller specifying whether it should be: RED, YELLOW, GREEN

	Output	Encoding
<u> </u>	GREEN	00
	YELLOW	01
	RED	10

Finite State Machine Blackbox

Inputs: CLK, Reset, T_A, T_B

- Moore FSM: outputs labeled in each state
 - States: Circles
 - Transitions: Arrows (Arcs)

- Moore FSM: outputs labeled in each state
 - States: Circles
 - Transitions: Arrows (Arcs)

 \rightarrow From "current state" SO to "next state" S1

- Moore FSM: outputs labeled in each state
 - States: Circles
 - Transitions: Arrows (Arcs)

- Moore FSM: outputs labeled in each state
 - States: Circles
 - Transitions: Arrows (Arcs)

- Moore FSM: outputs labeled in each state
 - States: Circles
 - Transitions: Arrows (Arcs)

Finite State Machine: State Transition Table

FSM State Transition Table

Reset T _A	Current State	Inputs		Next State
S0 T _A S1	S	T _A	T _B	S'
$\begin{pmatrix} L_A: \text{ green} \\ L_B: \text{ red} \end{pmatrix} = \begin{pmatrix} L_A: \text{ yellow} \\ L_B: \text{ red} \end{pmatrix}$	S0	0	Х	
	S0	1	Х	
	S1	Х	Х	
	S2	Х	0	
S 3 S 2	S2	Х	1	
L_{A} : red L_{A} : red L_{B} : green	S3	Х	Х	
T_B				
Reset TA	Current State	Inp	uts	Next State
--	---------------	----------------	----------------	------------
S0 T _A S1	S	T _A	T _B	S'
$\begin{pmatrix} L_A : \text{ green} \\ L_B : \text{ red} \end{pmatrix} = \begin{pmatrix} L_A : \text{ yellow} \\ L_B : \text{ red} \end{pmatrix}$	S0	0	Х	S1
	S0	1	Х	S0
	S1	Х	Х	S2
	S2	Х	0	S3
S 3 S 2	S2	Х	1	S2
$\begin{pmatrix} L_A: \text{ red} \\ L_a: \text{ yellow} \end{pmatrix} = \begin{pmatrix} L_A: \text{ red} \\ L_a: \text{ green} \end{pmatrix}$	S3	Х	Х	S0
T_B				

Reset So L_A : green L_B : red	$\begin{array}{c} T_{A} \\ \hline T_{A} \\ \hline \\ L_{A}: \text{ yellow} \\ L_{B}: \text{ red} \end{array}$
$ \begin{array}{c} \mathbf{S3}\\ L_A: \text{ red}\\ L_B: \text{ yellow} \end{array} $	$\overline{T_B}$

Current State	Inputs		Next State
S	T _A	T _B	S'
S0	0	Х	S1
S0	1	Х	S0
S1	Х	Х	S2
S2	Х	0	S3
S2	Х	1	S2
S3	Х	Х	S0

State	Encoding
SO	00
S1	01
S2	10
S3	11

Curren	t State	Inp	uts	Next	State
S ₁	S ₀	T _A	T _B	S' ₁	S' ₀
0	0	0	Х	0	1
0	0	1	Х	0	0
0	1	Х	Х	1	0
1	0	Х	0	1	1
1	0	Х	1	1	0
1	1	Х	Х	0	0
		_			

State	Encoding
S0	00
S1	01
S2	10
S3	11

Curren	it State	Inp	uts	Next	State
S ₁	S ₀	T _A	T _B	S'1	S' ₀
0	0	0	Х	0	1
0	0	1	Х	0	0
0	1	Х	Х	1	0
1	0	Х	0	1	1
1	0	Х	1	1	0
1	1	Х	Х	0	0

State

S0	00
S1	01
S2	10
S3	11

Encoding

Reset T _A	Current State In		puts	Next State		
S0 T _A S1	S ₁	S ₀	T _A	T _B	S' ₁	S' ₀
$\begin{pmatrix} L_A: \text{ green} \\ L_a: \text{ red} \end{pmatrix} \qquad \begin{pmatrix} L_A: \text{ yellow} \\ L_a: \text{ red} \end{pmatrix}$	0	0	0	X	0	1
в	0	0	1	X	0	0
	0	1	X	X	1	0
	1	0	Х	0	1	1
S 3 S 2	1	0	Х	1	1	0
L_A : red L_B : yellow L_B : green	1	1	Х	X	0	0
				State	Enco	ding
					0)
$S'_{4} = (\overline{S}_{4} \cdot S_{2}) + (S_{4} \cdot \overline{S}_{2} \cdot \overline{T}_{2}) + (S_{4} \cdot \overline{S}_{2} \cdot \overline{T}_{2})$					01	

S2

S3

10

11

$$S'_{1} = (\overline{S}_{1} \cdot S_{0}) + (S_{1} \cdot \overline{S}_{0} \cdot \overline{T}_{B}) + (S_{1} \cdot \overline{S}_{0} \cdot T_{B})$$

Reset TA	Current State I		In	puts	Next State	
S0 T _A S1	S ₁	S ₀	T _A	T _B	S' ₁	S' ₀
$\begin{pmatrix} L_A : \text{ green} \\ L_B : \text{ red} \end{pmatrix} = \begin{pmatrix} L_A : \text{ yellow} \\ L_B : \text{ red} \end{pmatrix}$	0	0	0	X	0	1
	0	0	1	X	0	0
	0	1	Х	X	1	0
	1	0	Х	0	1	1
S 3 S 2	1	0	Х	1	1	0
L_A : red L_B : yellow L_B : green	1	1	Х	X	0	0
				State	Enco	ding
				S0	0	0
$S' = (\overline{S} + S) + (S + \overline{S} + \overline{T}) + (S + \overline{S} + \overline{T})$					0	1
$S_1 = (S_1 \ S_0) + (S_1 \ S_0 \ I_B)$		S2	1	0		

S3

11

S'₀ = ?

Reset T _A	Current State In		puts	ts Next Stat		
$\overline{T_A}$ S1	S ₁	S ₀	T _A	T _B	S' ₁	S' ₀
$\begin{pmatrix} L_A: \text{ green} \\ L_B: \text{ red} \end{pmatrix}$ $\begin{pmatrix} L_A: \text{ yellow} \\ L_B: \text{ red} \end{pmatrix}$	0	0	0	Х	0	1
	0	0	1	X	0	0
	0	1	Х	X	1	0
	1	0	Х	0	1	1
S 3 S 2	1	0	Х	1	1	0
L_A : red L_B : yellow L_B : green	1	1	Х	Х	0	0
				State	Enco	ding
		S0	00)		
$S' = (\overline{\Sigma} \cdot S) + (\overline{\Sigma} \cdot \overline{\Sigma} \cdot \overline{\Sigma}) + (S \cdot \overline{\Sigma} \cdot \overline{\Sigma} \cdot \overline{\Sigma}) + (S \cdot \overline{\Sigma} \cdot $				S1	02	1
$S_1 - (S_1 \ S_0) + (S_1 \ S_0 \ I_B) + (S_1 \ S_0 \ I_B)$					10)
$S'_0 = (\overline{S}_1 \cdot \overline{S}_0 \cdot \overline{T}_A) + (S_1 \cdot \overline{S}_0)$		S3	1	1		

rrent State		Inputs		Next	Next State	
1	S ₀	T _A		T_{B}	S' ₁	S' ₀
)	0	0		Х	0	1
)	0	1		Х	0	0
)	1	X		Х	1	0
L	0	X		0	1	1
L	0	X		1	1	0
L	1	X		Х	0	0
		S	tate	Enco	ding	

S0

S1

S2

S3

00

01

10

11

 $S'_1 = S_1 \operatorname{xor} S_0$ (Simplified)

$$S'_{0} = (\overline{S}_{1} \cdot \overline{S}_{0} \cdot \overline{T}_{A}) + (S_{1} \cdot \overline{S}_{0} \cdot \overline{T}_{B})$$

Finite State Machine: Output Table

Current State		Outputs		
S ₁	S ₀	L _A	L _B	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Current State		Outputs		
S ₁	S ₀	L _A	L _B	
0	0	green	red	
0	1	yellow	red	
1	0	red	green	
1	1	red	yellow	

Output	Encoding
green	00
yellow	01
red	10

Curren	it State	Outputs				
S ₁	S ₀	L_{A1}	L _{A0}	L_{B1}	L_{B0}	
0	0	0	0	1	0	
0	1	0	1	1	0	
1	0	1	0	0	0	
1	1	1	0	0	1	

Output	Encoding
green	00
yellow	01
red	10

$$L_{A1} = S_1$$

Current State		Outputs			
S ₁	S ₀	L _{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

L_{A1}	=	S ₁		
$L_{A0} \\$	=	$\overline{S_1}$	•	S_0

Current State		Outputs			
S ₁	S ₀	L _{A1}	L _{A0}	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding	
green	00	
yellow	01	
red	10	

$L_{A1} =$	S_1	
$L_{A0} =$	S_1	• S ₀
$L_{B1} =$	S_1	

Current State		Outputs			
S ₁	S ₀	L_{A1}	L _{A0}	L _{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding		
green	00		
yellow	01		
red	10		

$L_{A1} = S$	1
$L_{A0} = \overline{S}$	$_1 \cdot S_0$
$L_{B1} = \overline{S}$	1
$L_{B0} = S$	$_1 \cdot S_0$

Finite State Machine: Schematic

FSM Overview

FSM Schematic: State Register

FSM Schematic: Next State Logic

$$S'_1 = S_1 \operatorname{xor} S_0$$

$$S'_{0} = \overline{(S_{1} \cdot \overline{S}_{0} \cdot \overline{T}_{A})} + (S_{1} \cdot \overline{S}_{0} \cdot \overline{T}_{B})$$

162

FSM Schematic: Output Logic

$$L_{A1} = \underline{S_1}$$
$$L_{A0} = \underline{S_1} \cdot S_0$$
$$L_{B1} = \overline{S_1}$$
$$L_{B0} = S_1 \cdot S_0$$

163

CLK_ Reset_ T_A _-S'_{1:0} _-S'_{1:0} _-L_{A1:0} _-L_{B1:0} _-

This is from H&H Section 3.4.1

See H&H Chapter 3.4

Finite State Machine:

State Encoding

FSM State Encoding

- How do we encode the state bits?
 - Three common state binary encodings with different tradeoffs
 - Fully Encoded
 - 1-Hot Encoded
- Let's see an example traffic light with 3 states
 - Green, Yellow, Red

FSM State Encoding

1. Binary Encoding (Full Encoding):

- Use the minimum possible number of bits
 - Use log₂(num_states) bits to represent the states
- Example state encodings: 00, 01, 10
- Minimizes # flip-flops, but not necessarily output logic or next state logic

2. One-Hot Encoding:

- Each bit encodes a different state
 - Uses num_states bits to represent the states
 - Exactly 1 bit is "hot" for a given state
- *Example state encodings:* 0001, 0010, 0100, 1000
- Simplest design process very automatable
- Maximizes # flip-flops, minimizes next state logic

FSM State Encoding

1. Binary Encoding (Full Encoding):

- Use the minimum possible number of bits
- UseExamp
- Minim
- 2. One-H
 - Each b
 - Use
 - Exac

The designer must carefully choose an encoding scheme to optimize the design under given constraints logic

- Example state encodings: 0001, 0010, 0100, 1000
- Simplest design process very automatable
- Maximizes # flip-flops, minimizes next state logic

Moore vs. Mealy Machines

Section 3.4.3 of H&H

Recall: Moore vs. Mealy Machines

- Next state is determined by the current state and the inputs
- Two types of FSMs differ in the output logic:
 - Moore FSM: outputs depend only on the current state
 - Mealy FSM: outputs depend on the current state and the inputs Moore FSM

Moore vs. Mealy Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM

Example 3.7 of H&H

Moore vs. Mealy Examples

- Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it.
- The snail smiles whenever the last four digits it has crawled over are 1101.
- Design Moore and Mealy FSMs of the snail's brain.

Moore FSM

State Transition Diagrams

FSM Design Procedure (I)

Step # 1: State transition diagram

Formalize the specification and remove ambiguity

Step # 2: Derive the next state logic

- Binary encoding for states
- State transition (truth) table
- Minimized Boolean equations for next state logic

Step # 3: Derive the output logic

- Binary encoding for outputs
- Output table & Boolean equations

Step # 4: Turn the Boolean equations into logic gate implementation

Next state logic & output logic

FSM Design Procedure (II)

Determine all possible states of your machine

Develop a state transition diagram

- Generally, this is done from a textual description
- You need to:
 - 1) determine the inputs and outputs for each state and
 - 2) figure out how to get from one state to another

Approach

- Start by defining the reset state and what happens from it this is typically an easy point to start from
- Then continue to add transitions and states
- Picking good state names is very important
- Building an FSM is like programming (but it is not programming!)
 - An FSM has a sequential "control-flow" like a program with conditionals and goto's
 - The if-then-else construct is controlled by one or more inputs
 - The outputs are controlled by the state or the inputs
- In hardware, we typically have many concurrent FSMs

Sync. Seq. Circuits: What We Covered Until Now

- The concept of state
- State diagrams
- Asynchronous vs. synchronous state changes
- Synchronous sequential circuits
- FSMs
 - Components, transition diagram, tables, equations, schematic
 - State transition diagrams
 - State encoding
 - Moore vs. Mealy
 - Design procedure

Timing Issues in Sequential Circuits

Reading: Section **3.5** of H&H (More detailed than what we need in this course) 186

Timing in Sequential Circuits

- We need to understand three aspects of timing specification
 - Clock-to-Q propagation delay
 - Setup time
 - Hold time

Recall the Clock

- Output does not change instantly when the rising edge arrives
- Input needs to stay stable for some time for the flip-flop to take a reliable photograph

Frequency = $1/T_c$

Clock-to-Q Propagation Delay

 When the clock rises, the time it takes for the output to settle to the final value (t_{pcq})

Setup Time

 For the circuit to sample its input correctly, the input must have stabilized at least some setup time, t_{setup}, before the rising edge of the clock

Hold Time

 The input must remain stable for at least some hold time (t_{hold}) after the rising edge of the clock

Aperture Time

- The sum of the setup and hold times is called the aperture time of the circuit
- It is the total time for which the input must remain stable

Technology and Hold Time

 It is a reasonable assumption that modern flip-flops have a hold time close to zero

• We can ignore hold time in subsequent discussions

Example: Calculating Clock Period

What is the clock period for the circuit below for it to work correctly in terms of t_{pd}, t_{setup}, and t_{pcq} ?

Sequencing Overhead

t_{pcq} + t_{setup} is called the sequencing overhead of the flipflop

- $T_c = t_{pd} + t_{pcq} + t_{setup}$
 - Ideally, the entire clock period should be spent doing useful work (processing done by the combinational circuit)
 - The sequencing overhead of the flip-flop cuts into this time

Recall: Synchronous Sequential Circuits

General Rule: If the clock is sufficiently slow, so that the inputs to all registers settle before the next clock edge, all races are eliminated

Different Types of Storage Elements

Diff. Storage Elements – Motivation

- Flip-flops, registers, and flip-flop-based register files make up synchronous sequential circuits
 - They process information based on current and past combinations of inputs
 - They have arithmetic circuits or logic elements to process inputs and history *stored as state*
 - Processing happens during a clock cycle, while state changes happen at the edge of the clock (synchronous)
- Sometimes, we need to store lots of information
 - Computer main memory, USB drives, flash drives, disks, SSDs
 - We can build cheaper storage elements that store information asynchronously – and processing happens somewhere else synchronously

- On-chip fast memory called a L1/L2/L3 cache
- Subset of recently read data from main memory

Storage Elements

- Latches and flip-flops
 - Very fast
 - Very expensive (one bit costs tens of transistors)
- Static RAM (SRAM)
 - Relatively fast
 - Expensive (one bit costs 6 transistors)
- Dynamic RAM (DRAM)
 - Slower than latches, flip-flops, and SRAM
 - Reading destroys content, requiring a refresh operation to recharge the capacitor
 - It needs a special process for manufacturing
 - Cheap (one bit costs only one transistor plus one transistor) Section 5.5 of H&H

Generalized Storage Element

- Stores one bit (bit cell)
 - Wordline enables (selects) the storage element or bit cell
 - Bit line is used to read the stored bit or write a new bit

- Why is it called **word line**?
 - Word line addresses an entire (unique) word in a row of words
 - We read from and write to an entire row

Generalized Memory Organization

- A decoder to decode the address
- A multiplexer to select an output (not shown below)
 - Can also use tri-state buffers instead of AND/OR multiplexer

Generalized Memory Organization

 Bitlines are used for both reading the stored bit and writing a new bit (circuit details of how it is done is outside scope)

Read/Write Procedure in Detail

READ

 A wordline is asserted, and the corresponding row of bits cells drives the bitlines HIGH or LOW

WRITE

 The bitlines are driven HIGH or LOW first and then a wordline is asserted, allowing the bitlines values to be stored in that row of bit cells

Recall a Tri-State Buffer

A tri-state buffer enables gating of different signals onto a wire
Tristate Buffer

A tri-state buffer acts like a switch

Figure 2.40 Tristate buffer

- When E is LOW, output is a floating signal (Z)
- Floating: Signal not driven by any circuit (open circuit, floating wire)

Memory Port with Tri-State Buffer

Homework Exercise!

SRAM Bit Cell

- SRAM: Static Random Access Memory
 - Data bit is stored in a cross-coupled inverter
 - Each cell has two outputs: bitline and bitline and bitline

 When the wordline is asserted, both <u>nMOS transistors</u> are turned ON, and data values are transferred to or from the bitlines

source: https://electronics.stackexchange.com/questions/162466/how-do-the-access-transistors-in-an-sram-cell-work 208

Recall: MOS NOT Gate (Inverter)

- We have seen a NOT gate at the transistor level
 - If A = **OV** then Y = **3V**
 - If A = 3V then Y = 0V
- Interpretation of voltage levels
 - Interpret **OV** as logical (binary) **O** value
 - Interpret **3V** as logical (binary) 1 value

Α	Ρ	Ν	Y	
0	ON	OFF	1	Y =
1	OFF	ON	0	

Random Access Memory (RAM)

- RAM: Random Access Memory
 - Each byte has an address (byte-addressable)

 Any data word (consisting of multiple bytes) can be accessed independently of the other

Any data word is accessed with the same delay as any other

Another Device for Storing Information

What storage medium is this?

- A length of magnetic tape in a plastic enclosure with one or two reels for controlling the motion of the tape
- Cassette used in tape recorders: nearby data is accessed more quickly than faraway data
- Inherently sequential device: they must be rewound and read from the start to load data

Yet Another Device for Storing Information

What storage medium is this?

- A rotational platter with magnetic coating and arm assembly inside a casing
- Hard disk used in all computers: nearby data is accessed more quickly than faraway data
- Inherently sequential device: a disk must rotate under an arm for data to be read

Random vs. Sequential access devices

These

2:4

VS.

These

213

DRAM Bit Cell

DRAM: Dynamic Random Access Memory

- Stores a bit as the presence or absence of a charge on a capacitor
- The nMOS transistor behaves as a switch that either connects or disconnects the capacitor from the bitline

When the wordline is asserted, the <u>nMOS transistor</u> turns ON, and the stored bit value transfers to or from the bitline

Static vs. Dynamic

- Recall the SRAM cell: The <u>nMOS transistors</u> (M5 and M6) are driven by cross-coupled inverter connected to supply voltage
- DRAM: The capacitor node is not actively driven HIGH or LOW by a transistor tied to supply voltage

DRAM Reads and Writes

- Read: Upon a read, data values are transferred from the capacitor to the bitline
 - Reading destroys the bit value stored on the capacitor, so the data word must be restored (rewritten) after each read
 - Refresh: Even when DRAM is not read, the contents must be refreshed (read and rewritten) every few milliseconds, because the charge on the capacitor gradually leaks away

 Write: Upon a write, data values are transferred from the bitline to the capacitor

DRAM Refresh

 Refresh: Even when DRAM is not read, the contents must be refreshed (read and rewritten) every few milliseconds because the charge on the capacitor gradually leaks away

Refreshing consumes extra energy

- Refreshing requires costly circuitry
 - It is a critical drawback of DRAM technology, especially at large capacities (many gigabytes, for example)

Memory Comparison

- Latches and flip-flops (20 transistors)
 - Very fast
 - Very expensive (one bit costs tens of transistors)
- Static RAM (SRAM) (6 transistors)
 - Relatively fast
 - Expensive (one bit costs 6 transistors)
- Dynamic RAM (DRAM) (1 transistor)
 - Slower than latches, flip-flops, and SRAM
 - Reading destroys content, requiring a refresh operation to recharge the capacitor
 - It needs a special process for manufacturing
 - Cheap (one bit costs only one transistor plus one transistor) Section 5.5 of H&H

Memory Hierarchy

- Large memories use SRAM and DRAM
- Registers inside the CPU use flip-flops

Storage Capacity

Flip-flops are used in synchronous sequential circuits

Memory Hierarchy

Inside the CPU chip: SRAM and flip-flops

Debug, Wafer tests bumps	048 64 04 04 04 04 - 401 401 401 401 501 - 401 510 60 601 - 401 511 601 601 - 401 511 601 601 - 401 601 601 601 - 401 601 601 601 - 401 601	Slobal Memory I (Infinity	nterconnect 2 Fabric)	en ter ter besindele pol mon (heine) elligen anno (hein an ter ter sono (hein an ter ter sono (hein mon (heine)	System Manage	ment Unit
Avenue of the second seco	E 1 Mill Lis Array Lis Tray Tapy	2 MIB L35 Array	1 Hit L35'Array	.1 HiB L35 Array L25 Shadow k035 Tags Tegs?	250 KIR 250 KI	UCOSE ROM
LL DCache	1 Mill L35 Array L3.Cache	s Mile L35 Array L3 Cache	1 мів L3s Аггаў L3 Cache	1 MiB L35 Array L3 Cache	256 KiB L25 - 225 KiB L25 - 225 KiB	Acher Barrier
Contraction La Contractio La Contraction La Contraction La Contraction La Contrac	e 3 Mill (35 Array	1 Mið E35 Array	1 MiB L35 Array	1 MiB L35 Array	L2 Cache Instruction	UCode ROM
Zen3 Core	L15 Tags Shadow Tags7	Control L35 Taga	L35-Taga L35 Control	L25 Shadow Tegs?	Li DCacne Li DCacne Zagi Tagi State	ore PPU Control
200 CARLES CARLES TO BE CODED	1 MiB L35 Arroy L3 Cache	L3 Cache	i MiB Lis Array L3 Cache	1 Hill L35 Array L3 Cache	236 KIB 128 - 12 DTLB 22 KIB	Via Ciche
designed to the second se	IC 1 Mill L35 Array	1 Mill L35.Array	1 MiB L35 Array	1 MIB L35 Airray	L2 Cachet Instruction Ceche 1256 Kill 1224 Z.Level BTB	UCode ROM
L1 DCache Bei Control Zen3 Core	L35 Tags Shadow L34 Tags? L34	Control L35 Tags	L35 Tags L35 Control	L25 Shadow Tags? L35 Tags	Tags+ L28 Control Tags+ State	ore FPU Control
L1 DCache	L3 Cache	1 Mill L35 Array L3 Cache	1 MIB L35 Arryy L3 Cache	1 MIB L35 Array L3 Cache	256 Kill 1254 122 OTLB	ache
ucore non	IC 1 Mill L35 Array 3	1 MiB L39 Array	1 MiB L3S Array	.1 MIB L3S Array	L2 Cache Instruction	uCode ROM
L1 ICache Tage U2U Centrel Zen3 Core	L36 Tags Shadow L34	Control L36 Tags	L35 Tags L38 Control	L25 Shadow k35 Tags Tags?	Tagat State L25 Control Tagat+ State Zen3	ore PPU Control
	1 MB L35 Array L3 Cache	1 Mile L35 Array L3 Cache	1 MIB L38 Array L3 Cache	1 MIB L35 Array L3 Cache	256 KIB L25-4 122 DTLB	Ache Aller A

DRAM Stick or DIMM

Outside the CPU chip: DRAM

