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What we have done so far
§ Data processing/ALU instructions

§ Memory instructions

§ Branch instructions

§ Various addressing modes

§ How do we use these instructions to translate structured programs 
with loops into ARM assembly?

§ ISA enables easier translation of high-level language constructs



Recall: Conditional Branch
§ Conditional branch uses condition mnemonics

§ CMP subtracts R1 from R0 and sets all flags
§ Z flag is FALSE because R0 – R1 is not 0 

§ The branch BEQ evaluates to FALSE 
§ Branch is NOT TAKEN (NT)
§ The next instruction executed is the ORR instruction

Assembly code:  
   MOV  R0,  #4
   ADD  R1,  R0,  R0
   CMP  R0,  R1
   BEQ  THERE
   ORR  R1,  R1,  R1
THERE
   ADD  R1,  R1,  #78
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Instruction Format – 3: Branch

§ op = 10

§ imm24 = 24-bit signed immediate

§ The two bits [25:24] form the funct field
 

§ Bit 25 is always 1

§ L bit: L = 0 for B (Branch)

§ L bit: L = 1 for BL (Branch and Link)

31:28 27:26 25:24 23:0

cond op 1L imm24

§ Format
 B  TARGET

 B  imm24
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Branch with L = 0 

31:28 27:26 25:24 23:0

cond 10 10 imm24

§ Branch with L bit (Bit 24) as 0 is a regular branch

§ Branch Target Address (BTA): The address of the next instruction to execute if the  
branch is taken 

§ How is BTA calculated?
1. Shift left imm24 by 2 (to convert words to bytes)

2. Sign-extend (copy Instruction[23] into Instruction[24:31] )

3. Add PC + 8
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BTA Calculation Example

PC
PC + 4
PC + 8
3 instructions
= 12 Bytes

address

31:28 27:26 25:24 23:0

cond 10 10 imm24 = 3 (000000000000000000000011)

suppose PC points here à BLT  THERE
   ADD  R0,  R1,  R2
   SUB  R0,  R0,  R9
   ADD  R3,  R0,  R1
   ORR  R3,  R2,  R1
THERE
   ADD  R1,  R1,  #78
   ADD  R3,  R3,  #0x5

0x80A0
0x80A4
0x80A8
0x80AC
0x80B0

0x80B4
0x80B8

§ Instruction encodes the distance from PC + 8 as three 32-bit words
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BTA Calculation DataPath

PC

ALU

31:28 27:26 25:24 23:0

cond 10 10 imm24 = 3 (000000000000000000000011)

Shifter

ALU

8

SEXT
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BTA Calculation Summary 
The processor calculates the BTA in three steps

1. Shift left imm24 by 2 (to convert words to bytes)

2. Sign-extend (copy Instr23 into Instr31:24)

3. Add PC + 8

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

= 3

= 12
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PC-Relative Addressing Mode
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Add an offset to the PC to calculate the 

memory address of the target 

instruction



Functions
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Functions

C Code
void main()
{
  int y1, y2;
  y1 = sum(42, 7);
  y2 = diffofsums(12, 7, 10, 1);
}

int diffofsums(int f, int g, int h, int i) {
   int result;
   result = sum(f, g) – (h + i);
   return result;
}

int sum(int a, int b)
{
  return (a + b);
}

§ Program fragments that are written once and invoked multiple times 
within the same or a different program

§ One software engineer writes sum(int a, int b) and many 
others can reuse it



Libraries of Pre-Existing Functions
§ One might require a fragment that has been supplied by the 

manufacturer or by some independent software supplier

§ It is almost always the case that collections of such fragments are 
available to programmers to free them from having to write their 
own

§ These collections are called libraries

§ Example:  Math library provides square root, sine, cosine, arctangent

§ Programmers do not need to reinvent the wheel



API

sqrt()
sine()

cosine()
and so on ...

Math Library
Application A

Application B

Application C

Application D

§ Application Programming Interface (API)
§ Defines the interfaces by which one software program communicates 

with another at the source code level

§ API defines the interface only
§ The user of the API can ignore the implementation
§ Many implementations of the same API
§ C standard library hides many low-level details of the system



Usefulness of Functions
§ High-level languages offer functions to enable 

§ Abstraction & Modularity 

§ Code reuse

§ Readability

§ Testability & validation

§ Maintainability



Functions
§ Functions are also called procedures or subroutines

§ Functions are ubiquitous which encourages ISA support 

§ Special jump instructions 

§ Special (isolated) space in memory to store function-
related data

§ “Mechanism” to reduce interference between nested 
functions  



What we will cover
§ Architectural support for functions

§ Branch and Link instruction (BL)
§ Stack Pointer (SP)
§ Link Register (LR)

§ Microarchitecture-level impact of programming styles
§ Iteration vs. Recursion

§ Get a deeper understanding of hardware/software 
interaction and tradeoffs 



Functions in C C Code
void main()
{
  int y;
  y = sum(42, 7);
  ...
}

int sum(int a, int b)
{
  return (a + b);
}

§ main()is the caller 
§ It calls another function
§ Returns nothing (void)
§ Takes no input arguments

§ sum()is the callee 
§ Being called by some function
§ Takes two input arguments of type int: a and b
§ It returns an integer value
§ Computes the sum of a and b



Functions in C C Code
void main()
{
  int y;
  y = sum(42, 7);
  ...
}

int sum(int a, int b)
{
  return (a + b);
}

§ The caller provides the input arguments 
§ 42 and 7 in this example

§ The distinction between caller and callee depends on 
the context
§ What if someone calls the main function? 



§ sum()is a leaf function
§ It does not call another function

§ main()is a non-leaf function
§ It calls another function

§ Non-leaf functions are more complicated especially 
at the assembly level

Leaf versus Non-Leaf Functions



§ Assigned a secret mission (function call)

§ Acquires necessary resources (acquire memory)

§ Perform the mission (execute instructions)

§ Leaves no trace (clean up memory)

§ Returns safely to point of origin (function return)

Functions as Detectives



§ Caller stores arguments in registers or memory

§ Function call: Caller transfers flow control to the callee 

§ Callee acquires/allocates memory for doing work

§ Callee executes the function body

§ Callee stores the result in “some” register

§ Callee deallocates memory 

§ Function return: Callee returns control back to the caller 

Breaking Down Function Execution



§ It is usually the case that ISAs provide a special variant of the branch 
instruction for making the function call

§ MIPS : jal

§ ARM : BL

§ Intel x86 : call

§ RISC-V : jal

§ QuAC: No architectural support for functions

Instruction for Function Call



ARM Function Call
§ BL (Branch and Link)

§ CPU branches to the label specified by BL

§ CPU stores the return address in the link register (LR)

§ Return address is the address of the next instruction 
after the function call

§ How should we return from the function to the caller?



Returning to Callee
§ Returning from function requires updating the PC

§ Move the link register into PC

§ MOV PC, LR

§ How should we pass arguments  to the function?

§ Where should we return the value?



Passing Arguments
§ Passing arguments (convention)

§ R0, R1, R2, R3

§ Returning value (convention)
§ R0



ARM Register Set
Name Use
R0 Argument / return value / temporary variable
R1-R3 Argument / temporary variables
R4-R11 Saved variables
R12 Temporary variable
R13 (SP) Stack Pointer
R14 (LR) Link Register
R15 (PC) Program Counter



Example of a Function Call
C Code

int main() {
  simple();
  a = b + c;
}

void simple() {
  return;
} § BL   branches to SIMPLE

      LR = PC + 4 = 0x00000204
§ MOV PC, LR  sets PC = LR
    (the next instruction executed is at 0x00000204) 

   

0x00000200 MAIN     BL  SIMPLE 
0x00000204          ADD R4, R5, R6
...

0x00401020 SIMPLE   MOV PC, LR

§ MAIN and SIMPLE are labels (memory addresses) in assembly
§ BL transfers flow to SIMPLE and stores the return address in LR
§ The function returns after MOV, and the next instruction (ADD) is executed

ARM Assembly Code
Memory 
Address



Another Example: Difference of Sums
C code:  
int main() {
   int y;
   ...
   y = diffofsums(2, 3, 4, 5);
   ...
}

int diffofsums(int f, int g, int h, int i) {
   int result;
   result = (f + g) – (h + i);
   return result;
}



ARM Assembly Code
; R4 = y

MAIN
  ...
  MOV R0, #2        ; argument 0 = 2
  MOV R1, #3        ; argument 1 = 3
  MOV R2, #4        ; argument 2 = 4
  MOV R3, #5        ; argument 3 = 5
  BL  DIFFOFSUMS    ; call function
  MOV R4, R0   ; y = returned value
  ...

; R4 = result
DIFFOFSUMS
  ADD R8, R0, R1  ; R8 = f + g
  ADD R9, R2, R3  ; R9 = h + i
  SUB R4, R8, R9  ; result = (f + g) - (h + i)
  MOV R0, R4       ; put return value in R0
  MOV PC, LR         ; return to caller



Questions
§ How can we pass more than 4 function arguments?

§ How can we ensure that registers in use by the caller are not 
corrupted? 
§ DIFFOFSUMS overwrites R4, R8, R9
§ MAIN may have “live” values in these registers

§ Answer:  The Stack
§ A special area in memory used across function calls to
     preserve registers and store temporary values that 
     overflow available registers



Aside: Register Reuse
§ Live register

§ A subsequent instruction will use the register value

§ The property is called liveness

§ Dead register
§ No upcoming instruction will use the register’s value

§ The register can be safely used to store a new value

§ It’s really the value stored in the register that is dead and not the 
physical register



Uses of Stack
§ Preserving and saving registers

§ Passing extra arguments 

§ Temporary memory space for Storing function-local 
variables 



The Stack
§ A stack is like a Last In First Out (LIFO) Queue

§ Stack expands and contracts as items are added and removed

memory address
44
40
36
32
28
24
20
16
12
8
4
0



The Stack
§ A stack is like a Last In First Out (LIFO) Queue

§ Stack expands and contracts as items are added and removed

memory address
44
40
36
32
28
24
20
16
12
8
4
0



Implementing a Stack
§ What do we need to implement a stack?

§ We need “some memory” for stack data (items)
§ Do we have memory? Yes, we can use data memory

§ We need “an arrow” to point to the top of the stack
§ What does an arrow represent in comp. architecture?
§ It represents a pointer to a memory location
§ In other words, a register containing the memory address 
§ Do we have a register? Yes, we can use an architectural register
§ Stack Pointer (SP): An architectural register that is by convention 

dedicated to storing the top of the stack



§ Suppose we have the stack pointer initialized to 0.  How do we make space for 
(aka reserve) 8 items on the stack. Word size = 4 bytes

§ Add 32 to the stack pointer:  SP = SP + 32

memory address
44
40
36
32
28
24
20
16
12
8
4
0

Implementing a Stack



§ Suppose we have the stack pointer initialized to 0.  How do we make space for 
(aka reserve) 8 items on the stack. Word size = 4 bytes

§ Add 32 to the stack pointer:  SP = SP + 32

memory address
44
40
36
32
28
24
20
16
12
8
4
0

Implementing a Stack



Growing and Shrinking the Stack
§ push 

§ Put a new item on top of the stack and adjust the stack 
pointer accordingly (SP = SP + 4)

§ pop 
§ Remove an item from top of the stack and subtract 4 

from the stack pointer



Push and Pop Operations
§ We store the stack at “some” arbitrary address in memory

§ Details of how the address is chosen are not important

§ push {R0}
§ Store R0 onto the stack 

§ pop {R0}
§ Restore R0 with whatever is at the top of the stack



Different Ways to Manage Stack
§ Descending Stack                                               

§ Grows downward 
§ SP points to the lowest address          

§ Ascending Stack                                               
§ Grows upward 
§ SP points to highest address          

item-4
item-3
item-2
item-1

memory address
44
40
36
32
28
24
20
16
12
8
4
0

SP

item1
item2
item3
item4

memory address
44
40
36
32
28
24
20
16
12
8
4
0

SP



Further Classification
§ Full Stack                                               

§ SP points to the last allocated 
space on the stack (top)

§ Last item pushed         

§ Empty Stack                                               
§ SP points to one word 

beyond the top of stack

item-4
item-3
item-2
item-1

memory address

SP item-4
item-3
item-2
item-1

memory address
44
40
36
32
28
24
20
16
12
8
4
0

SP

44
40
36
32
28
24
20
16
12
8
4
0



Empty Descending Stack

item-4
item-3
item-2
item-1

memory address
44
40
36
32
28
24
20
16
12
8
4
0

SP



Full Ascending Stack

item-1
item-2
item-3
item-4

memory address
44
40
36
32
28
24
20
16
12
8
4
0

SP



Empty Ascending Stack

item-1
item-2
item-3
item-4

memory address
44
40
36
32
28
24
20
16
12
8
4
0

SP



Full Descending Stack

item-4
item-3
item-2
item-1

memory address
44
40
36
32
28
24
20
16
12
8
4
0

SP

§ ARM specifies a full descending stack, which we will assume in 
this course



ARM Stack
Address Data

BEFFFAE8 AB000001

BEFFFAE4

BEFFFAE0

BEFFFADC

BEFFFAD8

BEFFFAD4

§ ARM stack grows down 
in memory 

§ Stack Pointer (SP) points 
to the top of the stack
§ SP register holds the 

address of (points to) 
the top of the stack

SP

0xBEFFFAE8SP
contents of stack pointer



Address Data

BEFFFAE8 AB000001

BEFFFAE4

BEFFFAE0

BEFFFADC

BEFFFAD8

BEFFFAD4

§ Let us push two items 
on the stack
§ 0x12345678
§ 0xFFFFDDCC

§ Where does the SP 
points to now?

§ How does the stack look?

SP

Growing the  Stack

0xBEFFFAE8SP
contents of stack pointer



Address Data

BEFFFAE8 AB000001

BEFFFAE4 12345678

BEFFFAE0 FFFFDDCC

BEFFFADC

BEFFFAD8

BEFFFAD4

§ SP points to the most 
recently pushed item on 
the stack

§ SP decrements by 8 to 
make space for two 
words

SP

Growing the Stack

0xBEFFFAE0SP
contents of stack pointer



§ DIFFOFSUMS corrupts three registers

§ Recall: Spy must not reveal their actions

§ No unintended side-effects (except leaving result in R0)

§ Callee should not corrupt caller’s execution

Saving and Restoring Registers



§ Functions use the stack for saving/restoring registers

§ Allocate space on the stack (SP = SP – 12)

§ Store registers in use by the caller on the stack

§ Execute the function 

§ Restore the registers from the stack

§ Deallocate space on the stack (SP = SP + 12)

Saving and Restoring Registers



Improved DIFFOFSUMS
ARM Assembly Code
; R0 = result
DIFFOFSUMS
  SUB SP, SP, #12  ; make space on stack 
     ; for 3 registers
  STR R9, [SP, #8] ; save R9 on stack
  STR R8, [SP, #4] ; save R8 on stack
  STR R4, [SP]  ; save R4 on stack
  ADD R8, R0, R1  ; R8 = f + g
  ADD R9, R2, R3  ; R9 = h + i
  SUB R4, R8, R9  ; result = (f + g) - (h + i)
  MOV R0, R4    ; put return value in R0
  LDR R4, [SP]  ; restore R4 from stack
  LDR R8, [SP, #4] ; restore R8 from stack
  LDR R9, [SP, #8] ; restore R9 from stack
  ADD SP, SP, #12  ; deallocate stack space
  MOV PC, LR   ; return to caller

Address Data

BEFFFAE8 0X12345678

BEFFFAE4

BEFFFAE0

BEFFFADC

BEFFFAD8

BEFFFAD4

SP



Improved DIFFOFSUMS
ARM Assembly Code
; R2 = result
DIFFOFSUMS
  SUB SP, SP, #12  ; make space on stack 
     ; for 3 registers
  STR R9, [SP, #8] ; save R9 on stack
  STR R8, [SP, #4] ; save R8 on stack
  STR R4, [SP]  ; save R4 on stack
  ADD R8, R0, R1  ; R8 = f + g
  ADD R9, R2, R3  ; R9 = h + i
  SUB R4, R8, R9  ; result = (f + g) - (h + i)
  MOV R0, R4    ; put return value in R0
  LDR R4, [SP]  ; restore R4 from stack
  LDR R8, [SP, #4] ; restore R8 from stack
  LDR R9, [SP, #8] ; restore R9 from stack
  ADD SP, SP, #12  ; deallocate stack space
  MOV PC, LR   ; return to caller

Address Data

BEFFFAE8 0X12345678

BEFFFAE4

BEFFFAE0

BEFFFADC

BEFFFAD8

BEFFFAD4

SP



Improved DIFFOFSUMS
ARM Assembly Code
; R2 = result
DIFFOFSUMS
  SUB SP, SP, #12  ; make space on stack 
     ; for 3 registers
  STR R9, [SP, #8] ; save R9 on stack
  STR R8, [SP, #4] ; save R8 on stack
  STR R4, [SP]  ; save R4 on stack
  ADD R8, R0, R1  ; R8 = f + g
  ADD R9, R2, R3  ; R9 = h + i
  SUB R4, R8, R9  ; result = (f + g) - (h + i)
  MOV R0, R4    ; put return value in R0
  LDR R4, [SP]  ; restore R4 from stack
  LDR R8, [SP, #4] ; restore R8 from stack
  LDR R9, [SP, #8] ; restore R9 from stack
  ADD SP, SP, #12  ; deallocate stack space
  MOV PC, LR   ; return to caller

Address Data

BEFFFAE8 0X12345678

BEFFFAE4 R9

BEFFFAE0 R8

BEFFFADC R4

BEFFFAD8

BEFFFAD4

SP



Improved DIFFOFSUMS
ARM Assembly Code
; R2 = result
DIFFOFSUMS
  SUB SP, SP, #12  ; make space on stack 
     ; for 3 registers
  STR R9, [SP, #8] ; save R9 on stack
  STR R8, [SP, #4] ; save R8 on stack
  STR R4, [SP]  ; save R4 on stack
  ADD R8, R0, R1  ; R8 = f + g
  ADD R9, R2, R3  ; R9 = h + i
  SUB R4, R8, R9  ; result = (f + g) - (h + i)
  MOV R0, R4    ; put return value in R0
  LDR R4, [SP]  ; restore R4 from stack
  LDR R8, [SP, #4] ; restore R8 from stack
  LDR R9, [SP, #8] ; restore R9 from stack
  ADD SP, SP, #12  ; deallocate stack space
  MOV PC, LR   ; return to caller

Address Data

BEFFFAE8 0X12345678

BEFFFAE4 R9

BEFFFAE0 R8

BEFFFADC R4

BEFFFAD8

BEFFFAD4

SP



Calling Convention
§ Preserving every register that a function uses is wasteful

§ DIFFOFSUMS preserves R4, R8, R9, but the caller 
may not be using R8 or R9

§ Calling convention is a contract that callers and callees must 
follow 



Calling Convention
§ With a convention in place

§ Functions written by different programmers can 
interoperate

§ Functions compiled by two different compilers can 
interoperate

§ A library function written by third party can safely be used 
without worrying about corruption due to misplaced 
arguments and return value



ARM Calling Convention
§ Preserved Registers

§ Registers that are preserved across function calls
§ Caller can expect these registers to appear as if a function 

call was never made
§ Callee must save and restore preserved registers

§ Nonpreserved Registers
§ Caller must save these registers before making the function 

call
§ Their preservation is NOT the callee’s responsibility



ARM Calling Convention
Preserved Nonpreserved
Saved registers: R4 – R11 Temporary register: R12

Stack pointer: SP (R13) Argument registers: R0 – R3 

Return address: LR (R14) Current Program Status 
Register

Stack above the stack pointer Stack below the stack pointer

§ SP and LR are fancy names for R13 and R14
§ Stack above the stack pointer is preserved if the callee does not mess with 

the caller’s stack space (a.k.a. stack frame)
§ Stack pointer is preserved, because the caller deallocates the space it uses 

on the stack before returning



Rules for Caller and Callee
§ Caller save rule: The caller must save any non-preserved 

registers that it needs after the call
§ After the call, it must restore these registers

§ Callee save rule: Before a callee disturbs any of the 
preserved registers, it must save these registers 
§  Before the return, it must restore these registers



PUSH and POP Instructions
§ PUSH: Saves registers on the stack 

§ PUSH {R4}  stores R4 on to the stack and adds 4 to SP

§ POP: Restores registers from the stack 
§ POP  {R4}  stores [SP] in R4 and subtracts 4 from SP

§ Can store multiple registers on the stack in a single PUSH
§ PUSH {R4, R8, LR}

lowest-numbered reg stored at lowest memory address

R13 stored at highest memory address



C Code

int f1(int a, int b) {
  int i, x;

x = (a + b)*(a − b);

  for (i=0; i<a; i++)
    x = x + f2(b+i);
  return x;
}

int f2(int p) {
  int r;

  r = p + 5;
  return r + p;
}

ARM Assembly Code

; R0=a, R1=b, R4=i, R5=x
F1
  PUSH  {R4,  R5, LR}
ADD   R5,  R0, R1
SUB   R12, R0, R1
MUL   R5,  R5, R12
MOV   R4,  #0

FOR
CMP   R4, R0

  BGE   RETURN
  PUSH  {R0, R1}
ADD   R0, R1, R4

  BL    F2
ADD   R5, R5, R0

  POP   {R0, R1} 
ADD   R4, R4, #1

  B     FOR
RETURN
  MOV   R0, R5
  POP   {R4, R5, LR}
  MOV   PC, LR

; R0=p, R4=r
F2
  PUSH {R4}
ADD   R4, R0, 5
ADD   R0, R4, R0

  POP  {R4}
  MOV   PC, LR



ARM Assembly Code

; R0=a, R1=b, R4=i, R5=x
F1
  PUSH {R4,  R5, LR} ; save regs
ADD   R5,  R0, R1  ; x = (a+b)
SUB   R12, R0, R1  ; temp = (a-b)
MUL   R5,  R5, R12 ; x = x*temp
MOV   R4,  #0      ; i = 0

FOR
CMP   R4, R0       ; i < a?

  BGE   RETURN       ; no: exit loop
  PUSH {R0, R1}      ; save regs
ADD   R0, R1, R4   ; arg is b+i

  BL    F2           ; call f2(b+i)
ADD   R5, R5, R0   ; x = x+f2(b+i)

  POP  {R0, R1}      ; restore regs
ADD   R4, R4, #1   ; i++

  B     FOR          ; repeat loop
RETURN
  MOV   R0, R5       ; return x
  POP  {R4, R5, LR}  ; restore regs
  MOV   PC, LR       ; return

; R0=p, R4=r
F2
  PUSH {R4}         ; save regs
ADD   R4, R0, 5   ; r = p+5
ADD   R0, R4, R0  ; return r+p

  POP  {R4}         ; restore regs
  MOV   PC, LR      ; return



ARM Assembly Code

; R0=a, R1=b, R4=i, R5=x
F1
  PUSH  {R4,  R5, LR}
ADD   R5,  R0, R1
SUB   R12, R0, R1
MUL   R5,  R5, R12
MOV   R4,  #0

FOR
CMP   R4, R0

  BGE   RETURN
  PUSH  {R0, R1}
ADD   R0, R1, R4

  BL    F2
ADD   R5, R5, R0

  POP   {R0, R1} 
ADD   R4, R4, #1

  B     FOR
RETURN
  MOV   R0, R5
  POP   {R4, R5, LR}
  MOV   PC, LR

; R0=p, R4=r
F2
  PUSH {R4}
ADD   R4, R0, 5
ADD   R0, R4, R0

  POP  {R4}
  MOV   PC, LR

Address Data

BEFFFAE8 LR

BEFFFAE4 R5

BEFFFAE0 R4

BEFFFADC R1

BEFFFAD8 R0

BEFFFAD4

SP



ARM Assembly Code

; R0=a, R1=b, R4=i, R5=x
F1
  PUSH  {R4,  R5, LR}
ADD   R5,  R0, R1
SUB   R12, R0, R1
MUL   R5,  R5, R12
MOV   R4,  #0

FOR
CMP   R4, R0

  BGE   RETURN
  PUSH  {R0, R1}
ADD   R0, R1, R4

  BL    F2
ADD   R5, R5, R0

  POP   {R0, R1} 
ADD   R4, R4, #1

  B     FOR
RETURN
  MOV   R0, R5
  POP   {R4, R5, LR}
  MOV   PC, LR

; R0=p, R4=r
F2
  PUSH {R4}
ADD   R4, R0, 5
ADD   R0, R4, R0

  POP  {R4}
  MOV   PC, LR

Address Data

BEFFFAE8 LR

BEFFFAE4 R5

BEFFFAE0 R4

BEFFFADC R1

BEFFFAD8 R0

BEFFFAD4 R4

SP



ARM Assembly Code

; R0=a, R1=b, R4=i, R5=x
F1
  PUSH  {R4,  R5, LR}
ADD   R5,  R0, R1
SUB   R12, R0, R1
MUL   R5,  R5, R12
MOV   R4,  #0

FOR
CMP   R4, R0

  BGE   RETURN
  PUSH  {R0, R1}
ADD   R0, R1, R4

  BL    F2
ADD   R5, R5, R0

  POP   {R0, R1} 
ADD   R4, R4, #1

  B     FOR
RETURN
  MOV   R0, R5
  POP   {R4, R5, LR}
  MOV   PC, LR

; R0=p, R4=r
F2
  PUSH {R4}
ADD   R4, R0, 5
ADD   R0, R4, R0

  POP  {R4}
  MOV   PC, LR

Address Data

BEFFFAE8 LR

BEFFFAE4 R5

BEFFFAE0 R4

BEFFFADC R1

BEFFFAD8 R0

BEFFFAD4 R4

SP



ARM Assembly Code

; R0=a, R1=b, R4=i, R5=x
F1
  PUSH  {R4,  R5, LR}
ADD   R5,  R0, R1
SUB   R12, R0, R1
MUL   R5,  R5, R12
MOV   R4,  #0

FOR
CMP   R4, R0

  BGE   RETURN
  PUSH  {R0, R1}
ADD   R0, R1, R4

  BL    F2
ADD   R5, R5, R0

  POP   {R0, R1} 
ADD   R4, R4, #1

  B     FOR
RETURN
  MOV   R0, R5
  POP   {R4, R5, LR}
  MOV   PC, LR

; R0=p, R4=r
F2
  PUSH {R4}
ADD   R4, R0, 5
ADD   R0, R4, R0

  POP  {R4}
  MOV   PC, LR

Address Data

BEFFFAE8 LR

BEFFFAE4 R5

BEFFFAE0 R4

BEFFFADC R1

BEFFFAD8 R0

BEFFFAD4 R4

SP



Exercise
§ Provide two optimizations that reduce the stack space 

consumed by the previous program without impacting its 
correctness.



Recall: Function Execution
§ f1()
§ f1()à f2()
§ f1()à f2() à f3()
§ f1()à f2()
§ f1()

§ Stack grows downward on function calls

§ Stack shrink upward as functions return



Address Data

BEFFFAE8 LR

BEFFFAE4 R5

BEFFFAE0 R4

BEFFFADC R1

BEFFFAD8 R0

BEFFFAD4 R4

Stack Frame
§ The space that a function allocates on 

the stack is called its stack frame
§ Also called “activation record”

§ Execution Environment of function: 
Stack frame, PC, preserved registers

§ Caller’s execution env must be 
preserved b/w call & return

§ Callee’s execution env must be installed 
on function invocation/activation

f1
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Stack

saved reg

saved reg

temporary

Stack Frame
§ Many active frames during program 

execution 

§ We call it the program’s call stack

function A function B function C

call B call C

return return return

1 2 3 4

5

6789
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Stack

returned value

argument 

argument

link to 
previous frame

saved machine 
state

local data

temporaries

Things to Remember
§ The precise nature & layout of call 

stack depends on the compiler and 
architecture

§ Stack is not a hardware component
§ We set aside an area in memory 

and treat it as a stack

§ A different (more generic) stack 
frame is shown to the right



Application Binary Interface
§ Calling convention is not part of ISA

§ It is part of procedure call interface

§ Such aspects make up the Application Binary Interface or 
ABI



Group of Stack Frames
§ Many names for the call stack

§ Execution Stack
§ Program Stack
§ Run-time Stack
§ Control Stack
§ Machine Stack
§ Activation Stack

Stack

saved reg

saved reg

temporary
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§ Caller
§ Puts arguments in R0-R3
§ Saves any needed registers (R0-R3, R12)
§ Call function: BL CALLEE
§ Restores registers
§ Looks for result in R0

§ Callee
§ Saves registers that might be disturbed (R4-R11, LR)
§ Executes the function body (a.k.a. performs the function)
§ Puts the result in R0
§ Restores registers
§ Returns: MOV PC, LR

Summary



Recursion

C Code
int factorial(int n) {

  if (n <= 1)

    return 1;

  else

    return (n * factorial(n-1));
}

§ Recursion is a powerful programming technique
§ Clarity, simplicity, and convenience

§ A recursive function is a non-leaf that calls itself
§ Both caller and callee at the same time

n = 0, factorial(0) = 1

n = 1, factorial(1) = 1

n = 2, factorial(2) = 2
n = 3, factorial(3) = 6

n = 4, factorial(4) = 24

n = 5, factorial(5) = 120

n = 6, factorial(6) = 720

and so on ....



C Code
int factorial(int n) {

  if (n <= 1)

    return 1;

  else

    return (n * factorial(n-1));

}

factorial(3)

n = 3, factorial(3) = 3 * factorial(2)

                    = 3 * 2 * factorial(1)

                    = 3 * 2 * 1 * factorial(0)

                    = 3 * 2 * 1 * 1

                    = 6

               



Recursion
ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  ;Push n and LR on stack
0x8504 CMP   R0, #1  ;R0 <= 1?    
0x8508 BGT   ELSE   ;no: branch to else
0x850C MOV   R0, #1  ;otherwise, return 1  
0x8510 ADD   SP, SP, #8 ;restore SP 
0x8514 MOV   PC, LR  ;return
0x8518 ELSE        SUB   R0, R0, #1 ;n = n - 1
0x851C     BL    FACTORIAL ;recursive call
0x8520 POP   {R1, LR}  ;pop n (into R1) and LR
0x8524 MUL   R0, R1, R0 ;R0 = n*factorial(n-1)
0x8528             MOV   PC, LR  ;return



factorial(3)
ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

Address Data

BEFFFAE8

BEFFFAE4

BEFFFAE0

BEFFFADC

BEFFFAD8

BEFFFAD4

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP

0x1000LR

0x0003R0



factorial(3)
ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

Address Data

BEFFFAE8 LR (0x1000)

BEFFFAE4 R0 (3)

BEFFFAE0

BEFFFADC

BEFFFAD8

BEFFFAD4

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP

0x1000LR

0x0003R0



factorial(2)
Address Data

BEFFFAE8 LR (0x1000)

BEFFFAE4 R0 (3)

BEFFFAE0

BEFFFADC

BEFFFAD8

BEFFFAD4

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP

ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

0x8520LR

0x0002R0



factorial(2)
Address Data

BEFFFAE8 LR (0x1000)

BEFFFAE4 R0 (3)

BEFFFAE0 LR (0x8520)

BEFFFADC R0 (2)

BEFFFAD8

BEFFFAD4

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP

ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

0x8520LR

0x0002R0



factorial(1)
Address Data

BEFFFAE8 LR (0x1000)

BEFFFAE4 R0 (3)

BEFFFAE0 LR (0x8520)

BEFFFADC R0 (2)

BEFFFAD8

BEFFFAD4

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP

ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

0x8520LR

0x0001R0



factorial(1)
Address Data

BEFFFAE8 LR (0x1000)

BEFFFAE4 R0 (3)

BEFFFAE0 LR (0x8520)

BEFFFADC R0 (2)

BEFFFAD8 LR (0x8520)

BEFFFAD4 R0 (1)

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP

ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

0x8520LR

0x0001R0



factorial(1)
Address Data

BEFFFAE8 LR (0x1000)

BEFFFAE4 R0 (3)

BEFFFAE0 LR (0x8520)

BEFFFADC R0 (2)

BEFFFAD8 LR (0x8520)

BEFFFAD4 R0 (1)

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP

ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

0x8520LR

0x0001R0



R0 = 1
Address Data

BEFFFAE8 LR (0x1000)

BEFFFAE4 R0 (3)

BEFFFAE0 LR (0x8520)

BEFFFADC R0 (2)

BEFFFAD8 LR (0x8520)

BEFFFAD4 R0 (1)

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP

ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

0x8520LR

0x0001R0

0x8520PC



R0 = 2 X 1
Address Data

BEFFFAE8 LR (0x1000)

BEFFFAE4 R0 (3)

BEFFFAE0 LR (0x8520)

BEFFFADC R0 (2)

BEFFFAD8 LR (0x8520)

BEFFFAD4 R0 (1)

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP

ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

0x8520LR

0x0002R0

0x8520PC

0x0002R1



R0 = 3 X 2 = 6
Address Data

BEFFFAE8 LR (0x1000)

BEFFFAE4 R0 (3)

BEFFFAE0 LR (0x8520)

BEFFFADC R0 (2)

BEFFFAD8 LR (0x8520)

BEFFFAD4 R0 (1)

BEFFFAD4

BEFFFAD4

BEFFFAD4

SP
ARM Assembly Code

0x8500 FACTORIAL   PUSH  {R0, LR}  
0x8504 CMP   R0, #1  
0x8508 BGT   ELSE   
0x850C MOV   R0, #1  
0x8510 ADD   SP, SP, #8 
0x8514 MOV   PC, LR  
0x8518 ELSE        SUB   R0, R0, #1
0x851C     BL    FACTORIAL 
0x8520 POP   {R1, LR}  
0x8524 MUL   R0, R1, R0 
0x8528             MOV   PC, LR  

0x1000LR

0x0006R0

0x1000PC

0x0003R1



Is recursion worth the trouble?
§ There is an alternative to solving a problem using recursion

§ Any recursive solution has an equivalent iterative solution 
(mathematically sound statement)

§ Exercise: Write factorial(int n)with an iterative statement 

§ Overheads of recursion
§ (CPU) Extra branch instructions due to function calls
§ (Memory) Extra memory is consumed by the stack frames

§ In many areas, the convenience is worth the trouble
§ Neural networks, data structures, recursive descent parsers



Summary of factorial 
§ factorial saves LR according to the callee save rule

§  factorial saves R0 according to the caller save rule, because it 
will need n after calling itself

§ if n is less than or equal to 1 put the result (i.e., 1) in 
R0 and return (no need to restore LR because it is unchanged)

§ Use R1 for restoring n, so as not to overwrite the returned value

§ The multiply instruction (MUL R0, R1, R0) multiplies n(in 
R1)and the returned value (in R0)and puts the result in R0



Using Stack for Args & Local Vars 
§ Functions may have more than four input arguments and may have too 

many local variables to keep in preserved registers
§ The stack is used to store this information

§ The caller must expand its stack to make room for additional arguments
§ Callee can find the additional arguments in the caller’s stack

§ Exception to the rule that callee must not access caller’s stack



Local Variables and Arrays
§ Local variables are declared within a function and can be accessed 

only within that function (they are stack-resident)

§ If there are more local variables than can fit in R4 – R11, they can 
be stored in the callee’s stack frame

§ Local arrays are also stored on the stack as they do not fit in 
registers



Loading Literals
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Loading Literals
§ Programs need to load 32-bit literals, such as constants or 

addresses

§ Each instruction is 32 bits. MOV only accepts a 12-bit constant

§ Solution: LDR is used to load these numbers from a literal pool in 
the text segment
§ LDR   Rd,  =literal
§ LDR   Rd,  =label

§ In both cases, the value to load is kept in a literal pool, which is a 
portion of text segment containing literals

constant
address



Loading Literals
§ Example ARM assembly

§ Caution: The literal pool must be less than 4096 bytes from the 
LDR instruction so the load can be performed using the base 
addressing mode

§ Systems software (e.g., assemblers and compilers) 
     require extra care due to these details

§ Must NOT accidently point PC to a location inside the literal pool



Call by Value vs. Call by Reference

94



Argument Passing
§ Different high-level languages allow different ways of passing arguments 

between functions

§ How do the different mechanisms translate into assembly?

§ Two main approaches
§ Call by value
§ Call by reference

§ Implications 
§ Security and safety
§ Convenience
§ Abstraction



Call by Value
§ The actual value is copied into a register or on the stack and is 

passed to the callee

§ The advantage of this method is the safety of information hiding
§ Operations performed on the actual arguments do not affect the values in 

the activation frame of the caller

§ The disadvantage is the memory required for copies of values 
requiring large storage

§ Default method for passing arguments in C and C++, and the only 
way in Java



Call by Reference
§ Also called called by address or call by location

§ A reference of the argument is passed to the function

§ Lower overhead for the call and lower memory requirements

§ Callee can modify the data belonging to the caller, with possibly 
serious implications



Call by Value: Registers
.data

record:
  .word 100, 200

; call
LDR   R2, =record
LDR   R0, [R2]
LDR   R1, [R2, #4]
BL    CALLEE

CALLEE:
ADD   R0, #16
; rest of code



Call by Value: Stack
.data

record:
  .word 100, 200

; caller’s code
LDR   R2, =record
LDR   R0, [R2]
LDR   R1, [R2, #4]
PUSH  {R0, R1}
BL    CALLEE

CALLEE:
POP   {R0, R1}
ADD   R0, #16
; rest of code



Call by Reference
.data

record:
  .word 100, 200

; caller’s code
LDR   R2, =record
BL    CALLEE

CALLEE:
LDR   R0, [R2]
ADD   R0, #16
; rest of code



References in HLLs: C and C++
§ C and C++ provide special data types for storing and passing 

references (i.e., addresses of memory locations)

§ Having such a data type allows writing low-level code that 
interfaces directly with devices

§ Very high-performance and efficient code

§ Unfortunately, a  frequent source of memory safety-related 
errors and security vulnerabilities and bugs



References in HLLs: Java
§ There is no concept of reference in Java

§ Only call by value for argument passing

§ Application code NEVER observes and deals directly with 
memory addresses 

§ Address-level manipulations are handled by the runtime 
environment called the Java Virtual Machine (JVM) 



Software Stack: C/C++ and Java

User Code

C Library
Operating 

System
Hardware 
Resources

User Code

C Library
Operating 

System
Hardware 
Resources

Managed Runtime

§ Java, Python, Scala, Ruby are called managed languages because memory is 
managed on behalf of the programmer

                    C Environment                                 Java Environment

§ Each managed language has its own managed runtime
§ Java’s runtime environment is called the Java Virtual Machine (JVM)



Pointers in C (and C++)
§ A pointer is a variable that contains the address of 

another variable (references a location in memory)

00000004 P 

17 D

8 C

10 B

19 A

..

.
Data

00000010

0000000C

00000008

00000004

00000000

Address

..

.

4 Bytes

Variable

..

.int A = 19;

int B = 10;

int C = 8;

int D = 17;

....

int *P = &B;

// unary operator & gives 
the address of a 
variable

// P is a reference to B



§ Can use the pointer to access the value stored in a 
memory location 

int A = 19;

int B = 10;

int C = 8;

int D = 17;

....

int *P = &B;

*P = 1; 
// * is a dereferencing 

or indirection 
operator that accesses 
the value stored at 
address in P

00000004 P 

17 D

8 C

1 B

19 A

..

.
Data

00000010

0000000C

00000008

00000004

00000000

Address

..

.

4 Bytes

Variable

..

.

Pointers in C (and C++)



Pointers: Example
§ A pointer is 4 bytes on a 32-bit system and 8 bytes on a 64-bit 

system & it can be stored on the stack or data segment like 
ordinary variables

int A = 19;

int B = 1;

int C = 8;

int D = 17;

....

int *P = &B;

char *Q = &B;
// Both P and Q contain 

00000004

int  x = *P; // x=?

char y = *Q; // y=?

00000004 P 

17 D

8 C

1 B

19 A

..

.
Data

00000010

0000000C

00000008

00000004

00000000

Address

..

.

4 Bytes

Variable

..

.



Pointers 
§ A pointer points to a memory location and its content is a 

memory address

§ It wears “datatype glasses”
§ Wherever it points to, it sees through these glasses

§ The variable stored at some memory address can be 
interpreted via the dereferencing operator (*) as a character 
or integer or float depending on the type of the pointer 



Pointers: The Good 
§ Memory efficient code

§ Low-level software code requires access to memory locations
§ Devices are exposed as memory addresses
§ Memory-mapped I/O (more later)

§ Programmer has “unlimited power” in managing memory as a 
resource 



Pointers: The Ugly 
§ Programming is prone to errors

§ Bug in manipulating a value – Application produces incorrect 
output (may be tolerable some of the time) 

§ C allows pointer arithmetic
§ Bug in updating a memory address – Serious security violation 

(access violation, corrupted state, and so on)

§ C requires programmers to free memory – Memory leaks



Memory Map
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Address Space

§ Address range
§ A 32-bit (ARM) CPU generates addresses in the 

range 0 to 0xFFFFFFFC (4294967292)
§  With a 4 X 109 address range, the CPU can access 
4 billion individual bytes

§  Address space
§ The address space of a 32-bit CPU is 232 bytes 

which equals 4 Gigabytes (GB)



ox00000000

oxFFFFFFFC

Address Space
§ Each word is 32 bits or 
4 bytes. Address of first 
& last word is shown

§ The address space is empty 
as shown here
§ Let’s populate with 

stack and code and 
data 



Questions
§ Where is the code, data, and the stack in the address 

space?

§ Memory map
§ Defines where code, data, and stack memory are in 

the program address space

§ Differs from architecture to architecture

§ The subsequent discussion pertains to ARM



Operating System & 
I/O

Global Data

Text

Exception Handlers

Dynamic Data

Heap

Stack

ox00000000

oxFFFFFFFC

ARM 32-bit 
Memory Map 
§ Five parts or segments

§ text
§ global data
§ dynamic data
§ OS & I/O
§ Exception handlers



Operating System & 
I/O

Global Data

Text

Exception Handlers

Dynamic Data

Heap

Stack

§ Machine language program 
§ Also called read-only (RO) segment
§ Literals (constants) such as “Hello”

§ Data in this segment is dynamically allocated and 
deallocated during program execution

§ Heap data is allocated by the program at run-time
§ malloc() and new

§ Heap grows upward, stack grows downward

§ Global variables visible to all functions (contrasted 
with local variables that are only visible to a function) 



ARM Memory Map (with addr ranges)



Virtual Memory
§ What if the system has less than 4 GB of physical 

memory?

§ Desktop and high-performance computers use virtual 
memory

§ The address space is virtual (virtual addresses) and it is 
managed by the operating system

§ OS performs virtual to physical address translation



Virtual Memory
§ Divide 4 GB of address space into 4 KB pages

§  Each page is a virtual page and has a virtual page number
§ 1, 2, 3, 4, ……

§ Each virtual page also has a physical page #
§ Not one to one correspondence

§ Operating system allocates physical pages to virtual pages



Virtual Memory

swap 
space

§ The OS moves a virtual page from memory to a “swap space” on disk when it 
runs out of physical memory

§ It “remembers” the mapping of virtual page # to either main memory or disk 
locations in a page table

§ A page table maps virtual pages to their location in key-value pairs where key 
is the virtual page # and value is the location of a page



Starting a Program
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Translating and Starting Programs

Compiler

Assembler

Linker

Loader

High level code

Assembly code

Object file

Executable

Memory

Object files
Library files

Compile time
(Static)

Run-time OR
Execution time
(Dynamic)



Heap

122



Static vs. Dynamic 
§ Static in computer science means

§ When the program is being compiled
§ At compile time

§ Dynamic means
§ During program execution 
§ At run-time

§ Some aspects of the program behavior are known statically and 
other only at run-time



Statically Allocated Memory 
§ Statically allocated memory

§ Global variables 

§ Local function variables on the stack

§ Compiler knows the following about such variables
§ Their size (which is fixed at compile time)
§ Their location on the stack or global area
§ Their lifetime – either entire program or function execution



Heap 
§ Heap is for data that is allocated dynamically

§ Heap is a large subdividable block of memory

§ In C, programmers explicitly allocate and deallocate heap memory

§ A piece of code called a “dynamic memory allocator” is used to 
find free space on the heap memory



Stack vs. Heap 
§ Space on the stack is allocated and deallocated “automatically” in 

a strict LIFO order

§ Sometimes it is necessary to use a variable or array beyond the 
execution of a function (and keep it alive/around up to some point)

§ Sometimes the size of the space to be allocated is not known at 
compile time or needs to be resized

§ For all of the above heap is a more convenient space for storage 
allocation 



Deallocation of Memory
§ Also called “freeing memory”

§ DRAM is a limited resource

§ Programs run for a LONG time in the CPU world (1 sec = 2 billion 
cycles)

§ Allocated memory becomes garbage when it is no longer needed 
(but stack space is reclaimed when function returns)

§ It must be recycled for reuse by someone or something else



Heap
§ Lifetime of heap variables and arrays extend from allocation 

until deallocation 

§ Memory managers (that include a memory allocator) are 
libraries that help the programmer in managing the heap

§ C memory manager facilitates allocation and deallocation

§ Java and Python: Allocation same as C, but take “facilitate” to 
the extreme when it comes to deallocation
§ Does it automatically – Garbage Collector!



Heap Organization
§ Programs dynamically allocate objects (arrays, structures) of 

different types and sizes on the heap over time

§ Heap is now full!



Heap Organization
§ C programmers need to track lifetime of heap variables
§ Suppose we do not need anymore

§ Heap is now full!



Heap Organization
§ Let’s free some space on the heap



Heap Organization
§ Let’s free some space on the heap



Heap Organization
§ Now we can allocate new objects



Heap Organization
§ Now we can allocate new objects



Heap Management
§ We can deallocate (free) objects in any order (unlike the stack)

§ C/C++ programmers need to deallocate objects that are no 
longer needed
§ Otherwise, heap will remain full even if we can have some 

free space

§ Not returning unused heap back to the memory manager is 
called a memory leak 



C Memory Manager: malloc & free
§ C library provides malloc (short for memory allocate) and 
free to allocate and deallocate heap memory, respectively

#include <stdlib.h>

#include <stdio.h>

void useless_func() {
 int *array = malloc(10 * sizeof(int));

 for (int i = 0; i < 10; i++)

    array[i] = i * i;

 int sum = array[0] + array[9];

 free(array);

 printf(“%i\n”,sum);
 return;

}



malloc and free
§ malloc

§ Declaration in C library: void *malloc(size_t size)
§ Takes input as size (# bytes)
§ Returns a void pointer that can be casted to any pointer 

type 
§ free

§ Declaration in C library: void free(void *ptr)
§ Memory manager knows how many bytes to free, all it needs is the 

starting address



Where is everything mapped?
Operating System & 

I/O

Global Data

Text

Exception Handlers

Dynamic Data

Heap

Stack

int big_array[1L<<24];

int huge_array[1L<<31];

void increment() {

 // ctr is only initialized once

 static unsigned int ctr = 0;
 ctr++;

 printf(“ctr = %d\n”, ctr);

}

int main() {
 for (int i=0; i<5; i++) 
  increment();

 int *ptr;
 return 0;

}

instructions



A LOT More on this in COMP2310
§ Students implement a memory manager from scratch

§ Like the CPU: piece by piece

§ You write code in C: 
§ Manual memory management for twelve weeks!

§ Enroll and discover all the simplifications (a.k.a. LIES) we 
have told you this semester



Exceptions

140

Reading: Section 6.6.3 of H&H



Recall the Stored Program Concept
§ When do control flow change from sequential execution to 

somewhere else?



Recall the Stored Program Concept
§ When does control flow change from sequential execution to 

somewhere else?
§ Unconditional and conditional branches
§ Function calls and returns (also branches)

§ The above change in control flow is due to changes in 
program state

§ A useful system must change control flow due to changes in 
system state (recall computer system = hardware + software)

Reading: Section 6.6.3 of H&H



Exceptions
§ The change in state is known as an event

§ These changes are “unplanned” events
§ Divide by zero (execution cannot continue!)
§ Data arrives from an I/O device (keyboard or disk)
§ An I/O device needs attention
§ System timer expires

§ An exception is like an unscheduled function call that 
branches to a new address

§ Exceptions may be caused by hardware or software



Interrupts
§ Hardware exception triggered by an I/O device such as a 

keyboard is called an interrupt

§ CPU receives notification when a user presses
     a key on the keyboard

§ Stop the normal fetch cycle and handle the interrupt

§ Like any other function call, the exception must save the 
return address, jump to some address, do its work, clean up, 
and return to the program



Example of Interrupts
§ I/O device needing service

§ keyboard input, video input

§ Periodic system timer expiration

§ Power failure

§ Machine check: hardware error
§ Bit flip (unplanned!)



Traps
§ Software exceptions are also called traps

§ Undefined opcode
§ Divide by zero or overflow
§ Reading from a “bad” memory address (access protection error)
§ system call

§ System call is a form of trap that the program uses to invoke a function 
in the operating system (OS) running at a higher privilege level



System Call
§ An important form of trap which the program uses to invoke 

a function is the operating system (OS)

§ The function runs at a higher “privilege level”

§ Running at a higher privilege level allows access to all system 
resources

§ User/application code (as apposed to OS code) runs at a 
lower privilege level



Reason for Privilege Levels
§ The distinction between privilege levels prevent

§ buggy user code from corrupting other programs 

§ crashing the system

§ malicious code from taking over the system

§ OS has full control of the system
§ Ordinary user code does not!

User Code

C Library
Operating 

System
Hardware 
Resources



How should the CPU handle exceptions?
§ Both exceptions and interrupts require

§ stopping the current program
§ saving the architectural state
§ handling the exception/interrupt à switch to handler
§ (if possible and make sense) returning back to program 

execution

§ The program branches to a code in the OS that handles the 
exception



When to handle exceptions?
§ Cause

§ Software exceptions: internal
§ Hardware exceptions: external 

§ When to handle
§ Internal: When detected
§ External: when convenient

§ Except for very high priority ones or non-maskable ones
§ Power failure

§ What if multiple interrupts are raised at the same time?
§ User can define the priority of an interrupt
§ Interrupt classes



Exception Handling
§ Exception handler: Exceptions use a vector table to determine where to 

jump to the exception handler

§ The table is placed in low memory (recall the memory map)
§ Instructions to handle an interrupt is at  0x00000018
§ On power-up, CPU goes to address 0x00000000
§ The exception vector contains a branch instruction to an exception 

handler, code that handles the exception and then returns to user code



Exception Handling

§ Each type of event has a unique 
exception number (k)

§ k = index into the exception table

§ Handler k is called each time an 
exception k occurs



ARM Execution Modes
§ ARM processors can operate in one of several execution modes 

with different privilege levels

§ The mode is specified in the bottom bits of the CPSR

§ User mode operates at privilege level PL0 and other modes 
operate at PL1, which can access all system resources

§ Execution mode helps the CPU with proper book-keeping
§ Which registers to save (more on this later)
§ Where to return after an interrupt? 



Banked Registers
§ Exception handler is like a normal function call

§ Need to know where to return

§ Need to preserve registers

§ Stack is in memory and memory is slow

§ Banked registers are extra (shadow) registers that are used to copy 
values from actual registers on an interrupt

§ Idea is to handle interrupts as fast as possible



Example: Fast Interrupt Ex. Mode (FIQ)
R0
R1
R2
R3
R4
R5
R6
R7

R8
R9

R10
R11
R12

R13 (SP)
R14 (LR)

R15 (PC)

R8
R9

R10
R11
R12

R13 (SP)
R14 (LR)

Interrupt

Fast copy

§ The subset of registers shown are copied 
into the corresponding banked registers 

CPSR SPSR



Exception Handling (1)
§ Store the CPSR into banked SPSR

§ Set the execution mode and privilege level based on the type of 
exception

§ Set the interrupt mask bits in CPSR so that the exception handler 
will not be interrupted (only for maskable interrupts)

§ Store the return address into banked LR

§ Branch to the exception vector table based on exception type



Exception Handling (2)
§ Handler does the following

§ pushes other registers onto its stack

§ takes care of exception

§  pops the registers back off the stack



Exception Handling (3)
§ The exception handler returns using MOVS PC, LR

§ Copies the banked SPSR to the CPSR to restore the status 
register

§ Copies the banked LR to the PC to return to the program 
where the exception occurred

§ Restore the execution mode and privilege level



Transitioning between Privilege Levels
§ User code operates at a low privilege level

§ Supervisor instruction (SVC) is used to transition between levels

§ CPU reads the arguments from “certain” registers and executes 
the specific flavor of the SVC instruction

§ SVC is a software exception

§ A tables specifies what actions to take next based on the service 
user code wants from the OS



Supervisor Instruction
§ Every “industrial strength” architecture provides a means to switch 

between user code and OS code

§ SVC in ARM

§ syscall in Intel x86

§ In the labs, your code is running on “bare metal” – there is no OS

§ In real world, only way for user code to access system resources is by 
invoking functions in the OS (OS is “trustworthy” service provider)
§ These functions are called system calls



Input/Output (I/O) Architectures

161



Input/Output Devices
§ I/O devices are what makes a system useful

§ Input devices

§ Output devices

§ Storage devices 



Storage Devices
§ Storage devices two important purposes

§ Persistent storage for long-term storage
§ Contrast with SRAM/DRAM – Volatile storage

§ Extension of main memory or DRAM
§ Recall: Memory-resident stack acts as an extension of RF
§ Disk for memory expansion is subject of COMP2310: virtual memory

§   Storage devices are very slow compared to DRAM
§ Access latency is in microseconds compared to nanoseconds 
§ For high-end systems used in cloud and datacenters, storage is the most 

important I/O device



I/O subsystem
§ What makes up a computer system?

§ CPU-Memory (also called host system)
§ Tightly integrated
§ CPU has fast/direct access to memory through address/data buses

§ I/O subsystem
§ Many I/O devices need to communicate to CPU
§ Need a “subsystem” to interface with the host system
§ Consisting of devices, buses, communication protocols, data memory 



A Model I/O Configuration

IO
Bridge

System/host bus Memory bus

Moves data b/w host
and a device interface 
(a.k.a. controller)

One interface per device
class, e.g., USB interface



Modern I/O Bus - PCIe
§ Peripheral Component Interconnect Express (PCIe or PCI-E) is a 

serial expansion bus standard for connecting a computer to one 
or more peripheral devices 

§ PCIe provides lower latency and higher data transfer rates than 
parallel buses, such as “legacy” PCI



Modern I/O Bus - PCIe



Modern I/O Bus - PCIe



I/O subsystem
§ I/O subsystem

§ Blocks of main memory devoted to I/O functions

§ Buses that provide the means of moving data into and out of the system

§ Control modules in the host and peripheral devices

§ Interfaces to external components such as keyboards and disks

§ Cabling and communications links between the host system and its 
peripherals



Interfaces and Protocols
§ Interfaces communicate with certain types of devices, such as keyboards, 

disks, or printers

§ Interfaces make sure
§ Device is ready for next batch of data
§ Host is ready to receive the next batch of data coming in from the peripheral 

device

§ The exact form and meaning of the signals exchanged between the sender 
and the receiver is called a protocol
§ Signals are of two types: command and data signals
§ Handshake: A protocol exchange in which the receiver sends an 

Acknowledgement for the commands and data sent or indicate that it is ready to 
receive data 



I/O System Classification
§ No standard classification scheme and not every “configuration” 

makes sense

§ Three aspects to classify the systems

§ Device visibility

§ Reading data

§ Event notification



Device Visibility
§ We need to somehow make the device visible to the CPU

§ Two options

§ Port-mapped or Isolated I/O or instruction-based I/O

§ Memory-mapped I/O



Port-Mapped I/O (PMIO)
§ The device is accessible in a dedicated address space, separate from the 

address space of memory

§ I/O devices have a separate address space from general memory, typically 
accomplished by extra "I/O" pins on the CPU's physical interface

§ Because the address space for I/O is isolated from that for main memory, this 
is sometimes referred to as isolated I/O

§ Special “dedicated instructions” to access the I/O address space
§ IN
§ OUT



Memory-Mapped I/O (MMIO)
§ I/O devices and memory share the same address space

§ Each I/O device has its own reserved block of memory

§ Data transfers to and from the I/O device involve moving bytes to and from 
the memory address that is mapped to the device

§ MMIO is like using regular load/store instructions from the programmer’s 
perspective

§ Good abstraction 

§ Simplicity and convenience (Yes for the programmer)



Example MMIO System
§ Each I/O device is assigned one or more addresses in the address space

§ Recall the memory map with dedicated addresses for I/O devices

§ STR instruction writes data to the device

§ LDR instruction reads data from the device

§ Good abstraction
§ Good architecture
§ Neat hardware



Example MMIO System
§ Suppose that I/O Device 1 in Figure e9.1 is assigned the memory address 

0x20001000. Show the ARM assembly code for writing the value 7 to I/O 
Device 1 and for reading the output value from I/O Device 1.



Reading Data
§ Programmed I/O

§ Direct-Memory Access (DMA)



Programmed I/O (PIO)
§ Each data item transfer is initiated by an instruction in the program, involving 

the CPU for every transaction

§ The term can refer to either memory-mapped I/O (MMIO) or port-
mapped I/O (PMIO)

§ Why is this a problem?

§ CPU is very fast (recall: 1 second = 2 billion cycles)

§ I/O devices are slow

§ For large data transfers (for example, reading a video file from disk), we would like 
to free up the CPU to do other things while transfer happens in parallel

https://en.wikipedia.org/wiki/Memory-mapped_I/O


Direct-Memory Access (DMA)
§ CPU offloads the execution of tedious I/O instructions to a dedicated chip 

called DMA controller

§ CPU provides the DMA controller with 
§ the location of the bytes to be transferred 
§ the number of bytes to be transferred
§ the destination memory address

§ CPU signals the DMA controller and gets busy doing something else

§ DMA takes care of I/O

§ DMA controller places the data in memory and interrupts the CPU



A Sample DMA Configuration
§ DMA and CPU share the bus (below: memory-mapped I/O)

§ DMA runs at a higher priority and steals memory cycles from the 
CPU



Event Notification
§ Polled I/O

§ Interrupt-driven I/O 



Polled versus Interrupt I/O
§ Polled I/O

§ CPU monitors a control/status register associated with a port
§ When a byte arrives in the port, a bit in the control register is set
§ The CPU eventually polls and notices that the “data ready” control bit is set
§ The CPU resets the control bit, retrieves the byte, and processes it 
§ The CPU resumes polling the register as before

§ Interrupt-driven I/O 
§ CPU is not held up from doing other things
§ Interrupts are asynchronous signals

§ The devices tell the CPU when they have data to send
§ The CPU proceeds with other tasks until a device requesting service sends 

an interrupt to the CPU
§ Granularity is configurable: Interrupts for every word, or for an entire batch



Interrupt-Driven I/O 
§ Communication between many interrupt-enabled devices and CPU is handled 

via an interrupt controller

§ Once the circuit recognizes an interrupt signal from any device, it raises a single 
interrupt signal that activates a control line on the system bus 

§ Control line feeds directly into a pin on the CPU chip
§ INTA: Interrupt Acknowledge
§ INT is lowered by the interrupt controller after receiving the acknowledgement
§ Priority is resolved based on the time-criticality of the device requesting I/O



Example I/O Systems
§ Memory-mapped DMA interrupt-driven I/O

§ Typically used for storage devices that transfer large amounts of data

§ Port-mapped DMA interrupt driven I/O

§ Port-mapped programmed polling I/O
§ Polling, programmed, and port-mapped go well together



Character versus Block I/O
§ Character I/O devices process one byte (or character) at a time

§ Examples include modems, keyboards, and mice
§ Keyboards are usually connected through an interrupt-driven programmed 

I/O system

§ Block I/O devices handle bytes in groups
§ Most mass storage devices (disk and tape) are block I/O devices
§ Block I/O systems are most efficiently connected through  interrupt-driven 

DMA

§ Device driver: Software that handles the details of I/O transfer granularity and 
I/O-related instructions in general 



Bus Technology
§ Bus is a collection of wires to transfer signals (address, data, control) between 

sender and receiver

§ Serial transmission: one bit at a time
§ Keyboard

§ Parallel transmission: multiple bits in parallel
§ Similar to CPU-Memory communication

§ Parallel cables are fatter than serial cables
§ and susceptible to electrical interference that reduces signal range

§ In both cases a clock is used for timing purposes especially controlling signal 
transitions



Amdahl’s Law

187



I/O and Performance
§ Recall the computer system

§ Sluggish I/O throughput can have a ripple effect, dragging down overall system 
performance

§ The fastest processor in the world is of little use if it spends most of its time 
waiting for data from a peripheral device

§ If we really understand what’s happening in a computer system, we can make 
the best possible use of its resources

I/O bus
Memory 

bus



Amdahl’s Law (1)
§ The overall performance of a system is a result of the interaction of all 

of its components

§ System performance is most effectively improved when the 
performance of the most heavily used components is improved

§ This idea is quantified by Amdahl’s Law:

§ S is the overall speedup
§ f is the fraction of work performed by a faster component
§ k is the speedup of the faster component

S = !

!"# 	%	(!")



Amdahl’s Law (2)
§ Amdahl’s Law gives us a handy way to estimate the performance 

improvement we can expect when we upgrade a system component

§ On a large system, suppose 
§ Upgrade a CPU to make it 50% faster for $10,000 OR
§ Upgrade its disk drives for $7,000 to make them 150% faster
§ Programs spend 70% of their time running in the CPU AND 30% of 

their time waiting for disk service

§ Question: An upgrade of which component would offer the greater 
benefit for the lesser cost?



Amdahl’s Law (3)
§ Many different way to discuss the notion of “speed-up”

§ In Amdahl’s terms: 50% faster means 1.5 times as fast as (100% 
of the speed of the reference object plus an additional 50% of 
the speed of the reference object – 150% or 1.5 times as fast)

§ Translating speed-up to percentage terminology for use in 
Amdahl’s law
§ A is N% faster than B if 
§

!"#$	&
!"#$	'

 = 1 + (
)**



Amdahl’s Law (4)
§ The processor option offers a 30% speedup:

§ And the disk drive option gives a 22% speedup:

§ Each 1% of improvement for the processor costs $333, and for the disk a 
1% improvement costs $318

§ Should price/performance be your only concern?

f = 0.70, k = 1.5, so S = !
!"#.% &(!.#$.%)

 = 1.30

f = 0.30, k = 2.5, so S = !
!"#.) &(!.&'.%)

 = 1.22



Power and Energy

193



Power and Energy 
§ Both clock rate and power increased rapidly for decades, and the flattened or 

drop off recently

§ We have run into practical power limits for cooling
§ We want to understand the correlation between power and clock frequency



Power and Energy Equations
Ptotal = Pdynamic + Pstatic

Pdynamic = 1/2✖A✖C✖V2✖N✖Fswitch

0
1

clock period

rising 
edge

falling 
edge

Pstatic = V✖Ileak 

Transistors dissipate power during a
transition from LOW (0) to HIGH (1) 
and HIGH (1) to LOW (0) if switching 
in a cycle

A is ac9vity factor and 
quan9fies how o?en 
transistor switches

Etotal = Ptotal✖Time

# transistors



Recall: How Does a Transistor work?
§ Instead of the wall switch, we could use an n-type of a p-type 

MOS transistor to make or break the closed circuit

Drain

Source

Gate

Schematic of an n-type
MOS transistor

If the gate of the n-type transistor is supplied with 
a high voltage, the connecfon from source to drain 
acts like a piece of wire (we have a closed circuit)

If the gate of the n-type transistor is supplied with 
zero voltage, the connection between source and 
drain is broken (we have an open circuit)

§ Depending on the technology, high voltage can range from 0.3V 
to 3V 



Power EquaMon
§ Pdynamic = 1/2✖A✖C✖V2✖N✖Fswitch

§ Fswitch depends on the clock rate
§ C is a func9on of the CMOS technology and fanout:  

# transistors connected to output of a transistor
§ A and Fswitch and N kept increasing, leading to the 

power wall
§ Measured in waKs, typically reported as peak or 

average



Reducing Dynamic Power
§ Pdynamic = 1/2✖A✖C✖V2✖N✖Fswitch

§ To minimize dynamic power
§ Reduce frequency
§ Reduce supply voltage (squared reduc.on)

§ In ~30 years
§ Frequency increased by 1000X
§ Voltage decreased by 15% per generaton (from 5V to 1V)
§ Power increased by 30X

§ Lowering supply voltage is no longer feasible: increases leakage 
and leads to manufacturing complexity ($) 



Dynamic versus Static Power
§ Dynamic power

§ Primary source of energy consumption
§ Dissipated when the transistor switches
§ Some instruction mixes increase 

§ switching activity by flipping control bits

§ Static power
§ Due to leakage current that flows even when the transistor is not 

switching 
§ It increased significantly in recent times (40% of total)
§ Further reducing supply voltage increases leakage

§ A phenomenon called thermal runaway
§ Check the paper from Nam and Todd if interested



Energy 
§ Energy is the power dissipated over time

§ Etotal = (Pdynamic + Pstatic) ✖ time

§ Pstatic is always there (regardless of ac9vity)

§ Measured in joules



Power vs. Energy (with analogies) 

In the case of driving a car, power is 
the rate at which you drove (in miles 
per hour), and energy is the total 
distance you drove (in miles).

In the case of a hose with running water 
going into a bucket, power is the flow rate 
of the water (liters/second), and energy is 
how much water ends up in the bucket 
(liters).



Which metric to use? 
§ Power: Determines the packaging and cooling requirements
§ Energy: To compare the efficiency of two processors

§ Discussion
§ If maximizing battery life is the goal, it is better to use the 

energy metric

§ Think: Power is a rate metric (joules per second) like MIPS

§ Recall: To quantify performance, we use execution time 
(seconds) and not IPS (instructions per second)



Which CPU/program is more 
energy efficient?

Power (Watts) Execution time (s)
Processor A 100 Watts 100 seconds
Processor B 80 Watts 150 seconds

Power (Wa\s) Execution time (s)
C++ program 100 Watts 75 seconds
Java program 100 Watts 750 seconds

Same program, different CPUs

Same CPU, different programs



Plan
§ We are done with “Program Execution”

§ Advanced microarchitecture in remaining weeks

§ Multicycle (Section 7.4)

§ Pipelined (Section 7.5)

§ Out of Order (Section 7.7 + Slides)


