COMP2300-COMP6300-ENGN2219
Computer Organization &
Program Execution

Convener: Shoaib Akram
shoaib.akram@anu.edu.au

| Australian
<= National

< University

Agenda for Remaining Lectures

= Multi-cycle microarchitecture

= Pipelining
= Data and control hazards
= State maintenance and interrupts

System Software

= Qut-of-order execution SW/HW Interface

= Key to high performance in modern
Processors

Readings

= Multi-cycle microarchitecture (Section 7.4)

Multi-Cycle Microarchitecture

Acknowledgement: Selection of Slides from Digital Design and Computer Architecture,
Onur Mutlu, ETH Zurich, Spring 2022

Recall: Single-Cycle Microarchitecture (Very Basic)

= Each instruction takes a single clock cycle to execute
= Only combinational logic is used to implement instruction

execution
a No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state
at the beginning of a clock cycle

. N\
Process instruction in one clock cycle

¢

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

Recall: The Instruction Processing “Cycle™

FETCH

DECODE

EVALUATE ADDRESS
FETCH OPERANDS
EXECUTE

STORE RESULT

o O O 0O 0O O

Recall: The Instruction Processing “Cycle™

FETCH

DECODE + Register Read
EVALUATE ADDRESS/Execute
FETCH OPERANDS (Mem Access)
STORE RESULT (Writeback)

o o 0O 0O O

Instruction Processing “Cycle” vs. Machine Clock Cycle

Single-cycle machine:

a All phases of the instruction processing cycle take a single
machine clock cycle to complete

Multi-cycle machine:

o Each phase of the instruction processing cycle can take
multiple machine clock cycles to complete

Recall: Single-Cycle Machine

Single-cycle machine

AS’ AS

Sequential
Logic
(State)

Combinational
Logic

AS: Architectural State

Recall: Datapath and Control Logic

An instruction processing engine consists of two components

o Datapath: Consists of hardware elements that deal with and
transform data signals

functional units that operate on data

hardware structures (e.g., wires, muxes, decoders, tri-state bufs)
that enable the flow of data into the functional units and registers

storage units that store data (e.q., registers)

a Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

10

A Single-Cycle Microarchitecture: Analysis

Every instruction takes 1 cycle to execute
a CPI (Cycles per instruction) is strictly 1

How long each instruction takes is determined by how long
the slowest instruction takes to execute

o Even though many instructions do not need that long to
execute

Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction

o Critical path of the design is determined by the processing
time of the slowest instruction

11

What 1s the Slowest Instruction to Process?
Let’'s go back to the basics

All phases of the instruction processing cycle take a single
machine clock cycle to complete

Instruction Fetch (IF)

Instruction Decode and Register Read (ID/RF)
Execute (EX)

Memory Access (MEM)

Writeback (WB)

U O 0O O O

Does every instruction take the same time (latency) to
complete?

12

What 1s Really the Slowest Instruction to Process?

Real world: Memory is slow (not magic)
What if memory sometimes takes 150ns to access?

Does it make sense to have a simple register to register
add or jump to take {150ns + all else to perform a memory
operation}?

And, what if you need to access memory more than once to
process an instruction?

o Which instructions require this?
o Do you provide multiple ports to memory?

13

Single-Cycle uArch: Complexity

Contrived
o All instructions run as slow as the slowest instruction

Inefficient

o All instructions run as slow as the slowest instruction

o Must provide worst-case combinational resources in parallel as required by
any instruction

o Need to replicate a resource if it is needed more than once by an
instruction during different parts of the instruction processing cycle

Not necessarily the simplest way to implement an ISA
o Tough for complex instructions, e.g., REP MOVS (x86) or INDEX (VAX)

Not easy to optimize/improve performance
o Optimizing the common case (frequent instructions) does not work

o Need to optimize the worst case all the time
14

Multi-Cycle Microarchitectures

Goal: Let each instruction take (close to) only as much time
it really needs

Idea

o Determine clock cycle time independently of instruction
processing time

a Each instruction takes as many clock cycles as it needs to take
Multiple state transitions per instruction
The states followed by each instruction is different

15

Recall: The “Process Instruction” Step

ISA specifies abstractly what AS’ should be, given an
instruction and AS

o It defines an abstract finite state machine where
State = programmer-visible state
Next-state logic = instruction execution specification
o From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
One state transition per instruction

Microarchitecture implements how AS is transformed to AS’
o There are many choices in implementation

o We can have programmer-invisible state to optimize the speed of
instruction execution: multiple state transitions per instruction
Choice 1: AS - AS’ (transform AS to AS’ in a single clock cycle)

Choice 2: AS > AS+MS1 - AS+MS2 - AS+MS3 - AS’ (take multiple

clock cycles to transform AS to AS’)
16

Multi-Cycle Microarchitecture

AS = Architectural (programmer visible) state
at the beginning of an instruction

¢

Step 1: Process part of instruction in one clock cycle

(=

Step 2: Process part of instruction in the next clock cycle

@ ¢

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

17

Benefits of Multi-Cycle Design

Critical path design

o Can keep reducing the critical path independently of the worst-
case processing time of any instruction

Can optimize the common case

o Can optimize the number of states it takes to execute “important”
instructions that make up much of the execution time

Efficient/balanced design

2 No need to provide more capability or resources than really
needed

An instruction that needs resource X multiple times does not require
multiple X’s to be implemented

Leads to more efficient hardware: Can reuse hardware components
needed multiple times for an instruction

18

Downsides of Multi-Cycle Design

Need to store the intermediate results at the end of each
clock cycle
o Hardware overhead for microarchitectural registers

o Register setup/hold overhead (i.e., sequencing overhead) is
paid multiple times for an instruction

19

Remember: Performance Analysis

= Execution time of a single instruction
a {CPI} x {clock cycle time} CPI: Cycles Per Instruction

= Execution time of an entire program

a Sum over all instructions [{CPI} x {clock cycle time}]
o {# of instructions} x {Average CPI} x {clock cycle time}

= Single-cycle microarchitecture performance
o CPI=1
o Clock cycle time = long

= Multi-cycle microarchitecture performance

o CPI = different for each instruction In multi-cycle, we have
= Average CPI = hopefully small two degrees of freedom

a Clock cycle time = short to optimize independently
20

Multi-Cycle Microarchitectures

Key Idea for Realization

o One can implement the “process instruction” step as a
finite state machine that sequences between states and
eventually returns back to the “fetch instruction” state

o A state is defined by the control signals asserted in it

a Control signals for the next state are determined in
current state

21

A Basic Multi-Cycle Microarchitecture

Instruction processing cycle divided into “states”
A stage in the instruction processing cycle can take multiple states

A multi-cycle microarchitecture sequences from state to
state to process an instruction

The behavior of the machine in a state is completely determined by
control signals in that state

The behavior of the entire processor is specified fully by a
finite state machine

In a state (clock cycle), control signals control two things:
How the datapath should process the data
How to generate the control signals for the (next) clock cycle

22

Remember the Single-Cycle Uarch

—

PC

CLK

PC

Jsu|

A RD

ATREDR
Control

PCSrc

MemtoReg

Unit
31:28

MemWrite

Cond

27:26

ALUControl

Op

25:20

ALUSrc

Funct

15:12

ImmSrc

Instruction
Memory

PCPlus4

Rd

RegWrite

ALUFlags

19:16

CILK

WE3
A1

15— 1

3.0 [

|-1

15:12

A2

A3 Register
wD3 File
R15

2 'D PCPlus8
=

L

23:0

RD1

SrcA

RD2

Extend

ALUResult

CI]_K

\ AYU /l

PO SrcB
-|1 I

WriteData

Extlmm

WE

Data
Memory

WD

ReadData

-m_

Result

23

Why do we Want Multi-Cycle?

= Single-cycle microarchitecture:

= -- cycle time limited by longest instruction (LDR) = low clock
frequency

= -- three adders/ALUs and two memories - high hardware cost

= Multi-cycle microarchitecture:

=+ higher clock frequency
=+ simpler instructions take only a few clock cycles
=+ reuse expensive hardware across multiple cycles

-- hardware overhead for storing intermediate results
-- sequential logic overhead paid many times for each instruction

= Multi-cycle requires the same design steps as single cycle:
= datapath
= control logic

24

What Can We Optimize with Multi-Cycle

= Single-cycle microarchitecture uses two memories
o One memory stores instructions, the other data
o We want to use a single memory (lower cost)

= Single-cycle microarchitecture needs three adders

o ALU, PC, Branch address calculation
a We want to use only one ALU for all operations (lower cost)

= Single-cycle microarchitecture: each instruction takes one
cycle
o The slowest instruction slows down every single instruction

o We want to determine clock cycle time independently of instruction
processing time
o Divide each instruction into multiple clock cycles

o Simpler instructions can be very fast (compared to the slowest)

25

PC’

Overview: Multicycle ARM Processor

CLK

)

PCWrite

AdrSrc Contro
MemWrite| Unit

IRWrite

31:28

Cond
27:26 Op
25:20 Funct
15:12 Rd

ResultSrc

ALUControl

ALUSrcB

ALUSrcA

ImmSrc

RegWrite

/

ALUFlags
7 z
(]
CLK CLK
CLK CLK o ‘c:g |
I WE ki =20 RA1| o7 WES o SrcA CLK
RD 1541
A s N S| ALUResi LUOUt =
Instr / Data 1 A2 RD2 sreg| < 01
Memory Py ' —
WD R == r A3 Register 10
> wD3 File
3 \ R15
N AN
2390 Xten Extimm
- ,

\ Result

/

Only one memory

Extra registers
not needed in a

single-cycle
design

\

Only one ALU/adder

26

Let’s Construct
the Multi-Cycle Datapath for
32-bit ARM

27

Consider the LDR Instruction

= DR

= \We need to:

Read the instruction from memory
Then read R1 from the register file

Add the immediate value (#32) to calculate the
memory address

Read the value at this memory address
Write to the register =0 this value

28

Multicycle State Elements

Replace Instruction and Data memories with a single
unified memory — more realistic

Cll_K I CILK |
CLK ~~ WE N WE3
Vi — A1 RD1

PC' PC , RDI—

EN

Instr / Data — A2 RD2

Memory

WD — A3 Register

WD3 File
J R15

29

Multicycle Datapath: Instruction fetch

STEP 1: Fetch instruction

IRWrite
CLK CLK
CLK L CLK | l
7 WE i /" WES3
Instr — A1 RD1
PC' |V|PC A RD EN
EN Instr / Data —-,-I — A2 RD2
Memory
— A3 Register
- WD i
- \WD3 File
= R15
31:28 27:26 25:20 19:16 15:12 11:0
cond 01 111(0]10(L Rn Rd imm12

LDR Rd, [Rn, imml2]

30

Multicycle Datapath: LDR Register Read

STEP 2: Read source operands from RF

IRWrite ImmSrc
. CLK CLK CLK CLK
WE ‘ WES3
L PC Instr f— A1 RD1 A
PC' RD
A EN
EN
Instr / Data — — A2 RD2
Memory
— A3 Register
WD .
- WD3 File
-1 R15
230 Extend ‘_Extlmm
31:28 27:26 25:20 19:16 15:12 11:0
cond 01 111(0]10(L Rn Rd imm12

LDR Rd, [Rn, imml2]

31

Multicycle Datapath: LDR Address

STEP 3: Compute the memory address

IRWrite ImmSrc ALUControl
CLK CLK CLK
CLK — e ’ ‘
7 WE |_L| 1816 WE3 1 A SrcA CLK
. PC RD 7| Instr A1 RD1 =
PG I A IENI 3 [ALUResuit [*]ALUOut
EN Instr / Data — A2 RD2 f=r= SrcB
Memory A3 .
— wp — AS Reg.|ster
- WD3 File
= R15
{)E"tr Extlmm
31:28 27:26 25:20 19:16 15:12 11:0
cond 01 (11111 (010]|L Rn Rd imm12

LDR Rd, [Rn, imml2]
32

Multicycle Datapath: LDR Memory Read

STEP 4: Read data from memory

AdrSrc IRWTrite ImmSrc ALUControl
CLK CLK CLK
L CLK NI .
7 WE Instr 1216 Aﬁ WE3 rD1 E A SrcA
o RP o L o[ALuResut |-L| ALUOUL
Instr /Data — A2 RD2 fpep= SrcB < I_I
Memory o
WD 2 — A3 Register
g —| wD3 File
5 — R15
CLK B
m 220 | Extend Extimm
Data
31:28 27:26 25:20 19:16 15:12 11:0
cond 01 (11111 (010]|L Rn Rd imm12
ILDR Rd, [Rn, imml2]

33

Multicycle Datapath: LDR Write Register

STEP 5: Write data back to register file

PCWrite AdrSrc IRWTrite RegWrite ImmSre ALUControl ResultSrc
CLK CLK CLK
CLK | | CLK |
/" WE < WE3 A SrcA CLK
PC’ PC_r3 . Instr |- A1 RD! ——| I _ /
e Adr A . = | ALUResult [>] ALuOut
1 | 0
Instr / Data — A2 RD2 == SrcB j I—I 01
Memor P ,
y D Li A3 Register
- WD % :
S wpD3 File
® = R15
CLK
—D Data — { Extend Extimm
Result
31:28 27:26 25:20 19:16 15:12 11:0
cond 01 (1(1]1]0 L Rn Rd imm12
ILDR Rd, [Rn, imml2]

34

Multicycle Datapath: Increment PC

PCWrite

CLK

pc| |M]pPc
EN

STEP 6: Increment PC

AdrSrc IRWTrite RegWrite ImmSrc ALUSrcA ALUSrecB ALUControl
CLK CLK CLK
| | CLK | 1 e
WE Instr 19:16 A1 WE3 rD1 M A 0/ |SrcA
Adf A RP . - ALUResuItM ALUOUL =
1 ~ |
Instr / Data — A2 RD2 f=t= SrcB < u
Memory 2 15:12 01
0 — A3 i
— wp g Regllster 4 —d10
o wD3 File
® = R15
CLK /,:
230 Extend
Extimm
| Data L

ResultSrc

01

10

Result

35

Multicycle Datapath: Access to PC

PC can be read/written by instruction

PCWrite AdrSrc IRWrite RegWrite ImmSrc ALUSrcA ALUSrcB ALUControl ResultSrc

CLK CLK CLK J\
CLK | | CLK |

3
WE WE3 CLK
rc| Mecl . Instr |— A1 RD1 --mAi& L M
. . Adr| . N 2 [ALUResut ALUOuUt ﬁ
1
Instr / Data — A2 RD2 |- srece[< L o
Memory o : 01
8 1512 A3) .
— WD o Reg_lster 4 —10
15 wD3 File
© - R15

CLK /E
220 Extend
|\/I Data L

Extimm

Result

36

Multicycle Datapath: Access to PC

PC can be read/written by instruction
* Read: R15 (PC+8) available in Register File

PCWrite AdrSrc IRWrite RegWrite ImmSrc ALUSrcA ALUSrcB ALUControl ResultSrc
CLK CLK CLK
CLK | | CLK | y
WE WE3 g CLK
rc| Mecl . Instr }— A1 RD1 I Z [0 'ﬂ
n Adr} A . o[ALuResutt [V] ALuOut =
Instr / Data — A2 RD2 j= ™ srcB < |_| o
Memory o : 01
8 1612 A3 N 10
- wp 8 Reg.lster 4 —10
& wD3 File
o — R15
CLK __,—-[:
230 | Extend Extimm

|\/I Data

Result

37

Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R1l5, R2

38

Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R1l5, R2

* R15 needs to be read as PC+8 from Register File (RF) in 2"9 step

* So (alsoin 2" step) PC + 8 is produced by ALU and routed to R15
input of RF

PCWrite AdrSrc IRWrite RegWrite ImmSrc ALUSrcA ALUSrcB ALUControl ResultSrc
CLK CLK CLK J\
CLK | | CLK |
: v WE ‘ 151 / WE3 A 1 SrcA CLK
pc'| V] Pc N Instr |~ A1 RD1 H 0 —
i 0] Adr RD - ALURes |t|-L"| ALUOU
ey],] A EN oy =2 Eg
Instr /Data —1 A2 RD2 = SrcB | 01
Memory %3 o 01
f - A3 ; 10
— wp 4 Reg'lster 4 =110
& wD3 File
o — R15

|\' ! I Data

CLK B ,—/[:
230 | Extend Extimm

39

Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R1l5, R2

R15 needs to be read as PC+8 from Register File (RF) in 2" step

So (also in 2" step) PC + 8 is produced by ALU and routed to R15
input of RF

— SrcA = PC (which was already updated in step 1 to PC+4)
— SrcB=4
— ALUResult =PC+ 8

ALUResult is fed to R15 input port of RF in 2" step (which is then
routed to RD1 output of RF)

40

Multicycle Datapath: Read to PC (R15)

Example: ADD R1, R1l5, R2

* R15 needs to be read as PC+8 from Register File (RF) in 2"9 step

* So (alsoin 2" step) PC + 8 is produced by ALU and routed to R15
input of RF

PCWrite AdrSrc IRWrite RegWrite ImmSrc ALUSrcA ALUSrcB ALUControl ResultSrc
CLK CLK CLK J\
CLK | | CLK |
: v WE ‘ 151 / WE3 A 1 SrcA CLK
pc'| V] Pc N Instr |~ A1 RD1 H 0 —
i 0] Adr RD - ALURes |t|-L"| ALUOU
ey],] A EN oy =2 Eg
Instr /Data —1 A2 RD2 = SrcB | 01
Memory %3 o 01
f - A3 ; 10
— wp 4 Reg'lster 4 =110
& wD3 File
o — R15

|\' ! I Data

CLK B ,—/[:
230 | Extend Extimm

41

Multicycle Datapath: Access to PC

PCWrite

CLK

PC'|

PC can be read/written by instruction
 Read: R15 (PC+8) available in Register File
Write: Be able to write result of instruction to PC

ALUSrcA ALUSrcB ALUControl

M pc
EN

LUResult rL] ALUOuUt =~

.A
[—

ResultSrc

00
01
10

AdrSrc IRWrite RegWrite ImmSrc
CLK CLK
| | CLK |
v WE N 1916 A1/
0 Adr RD Instr
1 A EN
Instr / Data A2
Memory D
h) A3 i
WD 4 Reg.lster
g wD3 File
o R15
CLK

230
|\I Data

Result

42

Multicycle Datapath: Write to PC (R15)

Example: SUB R15, R8, R3

43

Multicycle Datapath: Write to PC (R15)

Example: SUB R15, R8, R3

e Result of instruction needs to be written to the PC register
 ALUResult already routed to the PC register, just assert PCWrite

44

Multicycle Datapath: Write to PC (R15)

Example: SUB R15, R8, R3
e Result of instruction needs to be written to the PC register

 ALUResult already routed to the PC register, just assert PCWrite
K

PCWrite AdrSrc IRWrite RegWrite ImmSrc ALUSrcA ALUSrcB ALUControl ResultSrc

CLK CLK CLK J\
CLK | | CLK |

. . . 1
, v WE S a ~ WE3 CLK
PC'_ A pc - . A instr 1916 A1 rRD1 H I A _O/ lSrCA‘ rL]
EN Adr A EN >3 ALUResult | ¥ | ALUOut oo
1
Instr / Data — A2 RD2 |-) sieB [< LJ o
Memory 3 - 01
D - A3 i 10
—1 WD o Reg-lster 4 —10
5 wD3 File
v — R15

Extimm

CLK ,—/[:
: 230 Extend
N Data L

Result

45

Multicycle Datapath: STR

PCWrite

CLK

M PC
EN

PC')

Write data in Rn to memory

AdrSrc MemWrite IRWrite RegWrite ImmSrc
CLK CLK CLK
| CLK |
WE : WE3
Instr |— A1 RD1 |+
0] Adr RD
. A EN
Instr / Data — A2 RD2 |
Memory o .
B L A3 Register
WD & ;
Im wD3 File
w R15
CLK | /
=0 | Extend Extlmm
Data

ALUSrcA ALUSrcB ALUControl

E1EQSIIM

01
10

1 SrcA

SrcB

~

ALUResuUlt

CLK

ResultSrc

ALUOut

Result

46

Multicycle Datapath: Data-Processing

With immediate addressing (i.e., an
immediate Src2), no additional changes
needed for datapath

PCWrite AdrSrc MemWrite IRWrite RegWrite ImmSrc ALUSrcA ALUSrcB ALUControl ResultSrc

CLK CLK CLK
CLK [CLK [kR
- V' WE - N WE3 CLK
PC'_ pc g . " Instr 19:16 A1 rRD1 K O/ |SrCA r|_|
EN d A EN . ALUResult u ALUOut S5

-
. —
Instr / Data L A2 RD2 |= <

SrcB 01
01 10
4 =10

Memory g 16:12 g
WD - A3 Register 1
5 wD3 File =

= R15 &

CLK /
23.0 Extend Extimm
a

47

Multicycle Datapath: Data-Processing

With register addressing (register Src2):
Read from Rn and Rm

PCWrite AdrSrc MemWrite IRWrite RegSrc RegWrite ImmSrc ALUSrcA ALUSrcB ALUControl ResultSrc
CLK CLK CLK J\
CLK | CLK | y
WE WE3 g a CLK
PC' Pc] 3 - Instr }— A1 RD1 H a 0] SN @
B . Add A o o X esult ALUOUt =]
1 0] rRA2 '
Instr / Data 1 A2 RD2 = 00 sreB 01
Memory 0 . | L = 01
B — A3 Register = 10
& wpD3 File &
‘” R15 .
D =0 Extend Extimm
| Data L
Resuilt

48

Multicycle Datapath: B

PCWrite

PC|

|

AdrSrc

BTA = (ExtImm) + (PC+8)
Extimm = Imm24 << 2 and sign-extended

0
1

Calculate branch target address:

MemWrite IRWrite RegSrc RegWrite ImmSrc
CLK CLK B CLK CLK
| | [~
o 1
N WE - 19:16 0 RA1 N WE3 o1 L M A ;
adr|l . RD N =151 =
30 S~
0] RA2
Instr / Data |_1 A2 RD2 |~ 00"
Memory o - | — s 01
8 1512 A3 . S_
WD I Regllster 5 4 —10
& WD3 File =
w R15 ®
Extend Extlmm

ALUSrcA ALUSrcB ALUControl

\I\R|LUResut N
—

>
P
c
n
©
@

CLK

ResultSrc

ALUOut

SrcB

2
|
<

L

49

Multicycle ARM Processor

PC'

e

PCWrite

CLK

Al i Iz
EN

AdrSrc

MemWrite

IRWrite

31:28

27:26

25:20

15:12

CLK

Control
Unit

Cond
Op

Funct

Rd

ResultSrc

ALUControl

ALUSrcB

ALUSrcA

ImmSrc

RegWrite

ALUFlags

Adr

WE

RD
A

Instr / Data
Memory

WD

CLK

ejeq

EN

CILK

RA1 A1

Instr 1511

RA2 A2

WD3

R15

WE3

A3 Register

RD1 =

RD2 =

File

CLK

Eje JayiM

——

23:0

Data

Extimm

ALUResult

CLK

ALUOut

Result

50

Multicycle Con

Cond,,,

trol

ALUFlags,.,

Opyp ——
Funct;, e

Rd 30 T

* First, discuss Decoder
* Then, Conditional Logic

CLK
)
g
| \FlagW,,| &
o)
PCS 5 |— Pcwrite
NextPC 5
RegW % ——— RegWrite
MemW .
| —— MemWrite
Decoder ——/ IRWrite
AdrSrc
ResultSrc, .,
ALUSIrcA
ALUSrcB,,
ImmSrc, .,
RegSrc, .,
ALUControl,
./

51

Multicycle Control: Decoder

Opyp ——
Functy, e

Rd 30 T

’ \ FlagW, .,
PCS
NextPC
RegW
| MemW
Pecoder IRWrite
AdrSrc
ResultSrc, .,
ALUSIrcA
ALUSrcB,,
ImmSrec, .,
RegSrc,.,
ALUControl,
—/

52

Multicycle Control: Decoder

PD CGIED GIED GIND GIED GIED GIED GIZD GEED GEED CGEED CGEED GEmD G G aamm amm e e ey

' |
I Rd,, PC Logic PCS I
' |
' |
' - |
| CLK RegW | |
I —— MemW Register |
! - IRWrite Enables I
I Main [—— NextPC '
I FSM | AdrSrc I
I OPro — — ResultSrc,, Multiplexer |
| 50 - ALUSrcA Selects I
| —— ALUSrcB,, I
! ALUO !
| Funct;, — P '
' |
40| ALU
: Dotoder— ALUControl,, :
I \ j— FlagW,, '
l 0 Instr }—— ImmSrc,, '
Pro Decoderf—— RegSrc,, l
' —

W e GEP GED GED GEPD GEDP GED GEDP GED GED GED GEP GEP GED GEP aue ene enn o

Decoder

Multicycle Control: Decoder

PD CGIED GIED GIND GIED GIED GIED GIZD GEED GEED CGEED CGEED GEmD G G aamm amm e e ey

PC Logic

Rd,, PCS

' |
' |
' |
' |
' |
I CLK RegW | I
I —— MemW Register |
l L IRWrite Enables '
l Main [—— NextPC I
I FSM | AdrSrc I
l OP10 — ResultSrc,, Multiplexer |
| 5.0 —— ALUSrcA Selects I
| —— ALUSrcB,, I
' ALUO !
| Funct;, — P '
' |
' sof AU L ALuControl, I
: \ j— FlagW,, :
l 0 Instr }—— ImmSrc,, '

Po Decoderf—— RegSrc,, l
' —

W e GEP GED GED GEPD GEDP GED GEDP GED GED GED GEP GEP GED GEP aue ene enn o

ALU Decoder and PC Logic same as single-cycle

Multicycle Control: Instr Decoder

Op1:0 AE)

Instr)

— ImerCm

ecoder
_J

. Reg SrC1 -0

RegSrc, = (Op == 10,)
RegSrc, = (Op == 01,)
ImmSrc,.,=0Op

Instruction Funct, RegSrc,

LDR 01 [X 1 0 X 01
STR 01 | X 0 0 1 01
DP immediate | 00 |1 X 0 X 00
DP register 00 |O X 0 0 00
B 10 | X X 1 X 10

55

Multicycle ARM Processor

PC'

e

PCWrite

CLK

Al i Iz
EN

AdrSrc

MemWrite

IRWrite

31:28

27:26

25:20

15:12

CLK

Control
Unit

Cond
Op

Funct

Rd

ResultSrc

ALUControl

ALUSrcB

ALUSrcA

ImmSrc

RegWrite

ALUFlags

Adr

WE

RD
A

Instr / Data
Memory

WD

CLK

ejeq

EN

CILK

RA1 A1

Instr 1511

RA2 A2

WD3

R15

WE3

A3 Register

RD1 =

RD2 =

File

CLK

Eje JayiM

——

23:0

Data

Extimm

ALUResult

CLK

ALUOut

Result

56

Multicycle Control: Main FSM

PD CGIED GIED GIND GIED GIED GIED GIZD GEED GEED CGEED CGEED GEmD G G aamm amm e e ey

' |
I Rd,, PC Logic PCS I
' |
' |
' - |
| CLK RegW | |
I —— MemW Register |
! - IRWrite Enables I
I Main [—— NextPC '
I FSM | AdrSrc I
I OPro — — ResultSrc,, Multiplexer |
| 50 - ALUSrcA Selects I
| —— ALUSrcB,, I
! ALUO !
| Funct;, — P '
' |
40| ALU
: Dotoder— ALUControl,, :
I \ j— FlagW,, '
l 0 Instr }—— ImmSrc,, '
Pro Decoderf—— RegSrc,, l
' —

W e GEP GED GED GEPD GEDP GED GEDP GED GED GED GEP GEP GED GEP aue ene enn o

Decoder

Main Controller FSM: Fetch

S0: Fetch
AdrSrc =0
AluSrcA =1
ALUSrcB =10
ALUOp =0
ResultSrc =10
IRWrite
NextPC

Reset

PCWrite

CLK

)

AdrSrc

MemWrite

Control
Unit

IRWrite

ResultSrc

31:28

ALUControl

27:26

Cond
Op

ALUSrcB

25:20

Funct

ALUSrcA

15:12

Rd

ImmSrc

RegWrite

ALUFlags

CLK

PG PC

= B il

0 1 XX 0 XX
8 CLK
CLK CLK
| CLK D |
WE © WE3
Instr RATY A% RD1 H A
RD
A EN
RA2
Instr / Data A2 RD2 1
Memory Py §
WD ol A3 Register b~
| wD3 File S
5 R15 o
23:0 | Extend Extimm
Data

4

ALUResult

081
-

10

Result

58

Main Controller FSM: Decode

S0: Fetch
AdrSrc =0
AluSrcA =1
ALUSrcB =10

S1: Decode
ALUSrcA =1
ALUSrcB =10

Reset

ALUOp =0 ALUOp =0
ResultSrc =10 ResultSrc =10
IRWrite

NextPC

PCWrite

CLK

)

AdrSrc

MemWrite

Control
Unit

IRWrite

ResultSrc

31:28

ALUControl

27:26

Cond

ALUSrcB

25:20

Qp
Funct

ALUSrcA

15:12

ImmSrc

Rd

RegWrite

ALUFlags

0 X 0 0 0 XX 1
CLK CLK CLK
CLK | CLK | Em
WE WE3 A
pc'| [M]ec Instr Al RD1 1= 0
- 0] Adr RD | —
EN 1 A EN
Instr / Data A2 RD2 =
Memory 3 A3 §
s Register T -
WD § wD3 File g, 4
g R15 &
230 Extend Extimm
Data L

ALUResult

ALUOut

o o
2 gf

10

Result]

59

Main Controller FSM: Address

S0: Fetch
AdrSrc =0
AluSrcA = 1

ALUSrcB =10
ALUOp =0

ResultSrc = 10

IRWrite

S1: Decode
ALUSrcA =1
ALUSrcB =10
ALUOp =0
ResultSrc = 10

Reset

S2: MemAdr
ALUSrcA=0
ALUSrcB = 01
ALUOp =0

PC

PCWrite

CLK

~

CLK

PC

AdrSrc

Control

MemWrite

Unit

IRWrite

ResultSrc

31:28

Cond

ALUControl

27:26

Op

ALUSrcB

25:20

Funct

ALUSrcA

15:12

Rd

ImmSrc

— Flags

RegWrite

T

ALUFlags

7

ALUResuit

XX

ALUOut

B3]
@ CLK
CLK oLk T K
WE Inst - “Raif 7 WES oy A
RD D30 4451 J7
Adr A £ b o
Instr / Data A2 RD2 |~ =
Memory 0) S
WD § L A3 Register =
o wD3 File)
a R15 5
CLK /
ﬂData z0 { Extend Extimm

Result

60

Main Controller FSM: Read Memory

S0: Fetch
AdrSrc =0
AluSrcA = 1
ALUSrcB =10
ALUOp =0
ResultSrc = 10
IRWrite
NextPC

Reset S1: Decode

ALUSTrcA = 1
ALUSrcB =10

ALUOp =0
ResultSrc = 10

S2: MemAdr

ALUSrcA =0
ALUSrcB = 01

ALUOp =0

LDR
Functy = 1

S3: MemRead
ResultSrc = 00

AdrSrc = 1

61

Multicycle ARM Processor

PC'

e

PCWrite

CLK

Al i Iz
EN

AdrSrc

MemWrite

IRWrite

31:28

27:26

25:20

15:12

CLK

Control
Unit

Cond
Op

Funct

Rd

ResultSrc

ALUControl

ALUSrcB

ALUSrcA

ImmSrc

RegWrite

ALUFlags

Adr

WE

RD
A

Instr / Data
Memory

WD

CLK

ejeq

EN

CILK

RA1 A1

Instr 1511

RA2 A2

WD3

R15

WE3

A3 Register

RD1 =

RD2 =

File

CLK

Eje JayiM

——

23:0

Data

Extimm

ALUResult

CLK

ALUOut

Result

62

Main Controller FSM: LLDR

0 S1: Decode

Reset AdrSrc =

AluSrcA = 1 ALUSIrcA =1
ALUSrcB = 10 ALUSIrcB =10
ALUOp =0 ALUOp =0

ResultSrc = 10 ResultSrc = 10

IRWrite

S$2: MemAdr
ALUSrcA=0
ALUSrcB =01
ALUOp =0

Functy = 1

S3: MemRead
ResultSrc = 00
AdrSrc =1

S4: MemWB
ResultSrc = 01

RegW

63

Main Controller FSM: STR

S0: Fetch
AdrSrc =0

Reset S1: Decode

AluSrcA =1 ALUSIcA = 1
ALUSIcB = 10 ALUSrcB =10
ALUOp =0 ALUOp =0
ResultSrc = 10 ResultSrc = 10

IRWrite

NextPC

Memory
Op =01

S2: MemAdr
ALUSrcA =0
ALUSrcB =01
ALUOp =0

Functy =1

S$5: MemWrite
ResultSrc = 00
AdrSrc =1

MemW

S3: MemRead
ResultSrc = 00
AdrSrc =1

S4: MemWB
ResultSrc = 01

RegW

Main Controller FSM: Data-Processing

Reset

Memory
Op =01

S2: MemAdr
ALUSrcA=0
ALUSrcB = 01
ALUOp =0

LDR
Functy =1

S3: MemRead
ResultSrc = 00

AdrSrc =1

S4: MemWB
ResultSrc = 01

ALUSrcB =10 ALUSrcB =10
ALUOp =0 ALUOp =0
ResultSrc = 10 ResultSrc = 10

IRWrite
NextPC

S1: Decode
ALUSrcA =1

Data Imm
Op=00
Functs = 1

S6: ExecuteR
ALUSrcA=0
ALUSrcB =00
ALUOp =1

S7: Executel
ALUSrcA=0
ALUSrcB = 01
ALUOp =1

STR
Funct, =0

S5: MemWrite
ResultSrc = 00
AdrSrc =1

MemW

S8: ALUWB
ResultSrc = 00
RegW

RegW

Main Controller FSM: Data-Processing

Reset

Memory
Op =01

S2: MemAdr
ALUSrcA=0
ALUSrcB = 01
ALUOp =0

LDR
Functy =1

S3: MemRead
ResultSrc = 00

AdrSrc =1

S4: MemWB
ResultSrc = 01

ALUSrcB =10 ALUSrcB =10
ALUOp =0 ALUOp =0
ResultSrc = 10 ResultSrc = 10

IRWrite
NextPC

S1: Decode
ALUSrcA =1

Data Imm
Op=00
Functs = 1

S6: ExecuteR
ALUSrcA=0
ALUSrcB =00
ALUOp =1

S7: Executel
ALUSrcA=0
ALUSrcB = 01
ALUOp =1

STR
Funct, =0

S5: MemWrite
ResultSrc = 00
AdrSrc =1

MemW

S8: ALUWB
ResultSrc = 00
RegW

RegW

Main Controller FSM

State
Fetch

Decode
MemAdr

MemRead
MemWB

MemWrite
ExecuteR
Executel
ALUWB
Branch

Datapath nOp

Instr —Mem[PC]; PC «— PC+4
ALUOut — PC+4

ALUOut < Rn + Imm

Data «— Mem[ALUOut]
Rd <« Data

Mem[ALUOut] — Rd
ALUOut < Rn op Rm
ALUOut < Rn op Imm
Rd < ALUOut

PC — R15 + offset

Reset

AluSrcA = 1 ALUSrcA =1
ALUSIeB = 10 ALUSrcB =10
ALUOp =0 ALUOp =0

ResultSrc = 10

S$1: Decode

ResultSrc = 10

IRWrite
NextPC Branch
M Data Imm Op=10
emory Op=00
Op =01 Functs = 1
S9: Branch
S$2: MemAdr S6: ExecuteR S7: Executel ALUSrcA=0
ALUSrcA=0 ALUSrcA=0 ALUSrcA =0 ALUSrcB = 01
ALUSrcB = 01 ALUSrcB = 00 ALUSIcB = 01 ALUOp =0
ALUOp =0 ALUOp =1 ALUOp =1 ResultSrc = 10

LDR
Functy = 1

83: MemRead
ResultSrc = 00

AdrSrc =1

S4: MemWB
ResultSrc = 01

Branch

STR

S5: MemWrite
ResultSrc = 00
AdrSrc = 1

MemW

S8: ALUWB
ResultSrc = 00
RegW

RegW

67

Main Controlle

Cond,,,

I

ALUFlags,.,

Opyp ——
Funct;, e

Rd 30 T

* First, discuss Decoder
* Then, Conditional Logic

CLK
0
-
| \FlagW,,| &
e
PGS 5 |— PCwrite
NextPC =
RegW % ——— RegWrite
MemW .
| —— MemWrite
Decoder ~— IRWrite
AdrSrc
ResultSrc, .,
ALUSrcA
ALUSrcB,,
ImmSre, .,
RegSrc, .,
ALUControl,
—/

68

Multicycle Processor Performance

e |nstructions take different number of cycles.

69

Multicycle Controller FSM

State
Fetch

Decode
MemAdr

MemRead
MemWB

MemWrite
ExecuteR
Executel
ALUWB
Branch

Datapath nOp

Instr —Mem[PC]; PC «— PC+4
ALUOut — PC+4

ALUOut < Rn + Imm

Data «— Mem[ALUOut]
Rd <« Data

Mem[ALUOut] — Rd
ALUOut < Rn op Rm
ALUOut < Rn op Imm
Rd < ALUOut

PC — R15 + offset

Reset

AluSrcA = 1 ALUSrcA =1
ALUSIeB = 10 ALUSrcB =10
ALUOp =0 ALUOp =0

S$1: Decode

ResultSrc = 10 ResultSrc = 10
IRWrite
NextPC Branch
M Data Imm Op=10
emory Op=00
Op =01 Functs = 1
S9: Branch
S$2: MemAdr S6: ExecuteR S7: Executel ALUSrcA=0
ALUSrcA=0 ALUSrcA=0 ALUSrcA =0 ALUSrcB = 01
ALUSrcB = 01 ALUSrcB = 00 ALUSIcB = 01 ALUOp =0
ALUOp =0 ALUOp =1 ALUOp =1 ResultSrc = 10

LDR
Functy = 1

83: MemRead
ResultSrc = 00

AdrSrc =1

S4: MemWB
ResultSrc = 01

Branch

STR

S5: MemWrite
ResultSrc = 00
AdrSrc = 1

MemW

S8: ALUWB
ResultSrc = 00
RegW

RegW

70

Multicycle Processor Performance

e |nstructions take different number of cycles:
— 3 cycles: B
— 4 cycles: DP, STR
— 5 cycles: LDR

71

Multicycle Processor Performance

e |nstructions take different number of cycles:
— 3 cycles: B
— 4 cycles: DP, STR
— 5 cycles: LDR

e CPlis weighted average

e SPECINT2000 benchmark suite:
— 25% loads
— 10% stores
— 13% branches
— 52% R-type

Multicycle Processor Performance

e |nstructions take different number of cycles:
— 3 cycles: B
— 4 cycles: DP, STR
— 5 cycles: LDR

e CPlis weighted average

e SPECINT2000 benchmark:
— 25% loads
— 10% stores
— 13% branches
— 52% R-type

Average CPI = (0.13)(3) + (0.52 + 0.10)(4) + (0.25)(5) = 4.12

73

Multicycle Processor Performance

Multicycle critical path:

* Assumptions:

 RFis faster than memory
* writing memory is faster than reading memory

T,

C

2 tpcq + 2l‘mux + max(tALU + tmuxa tmem) + tsetup

74

Multicycle Pertormance Example

Element

Parameter

Register clock-to-Q | #,., pc 40
Register setup Esetup 50
Multiplexer frux 25
ALU IALU 120
Decoder tiee 70
Memory read trem 200
Register file read {RFread 100
Register file setup ! RFsetup 60

1.,="

75

Multicycle Pertormance Example

Element Parameter

Register clock-to-Q | #,., pc 40

Register setup Esetup 50

Multiplexer frux 25

ALU IALU 120
Decoder tiee 70

Memory read trem 200
Register file read {RFread 100
Register file setup ! RFsetup 60

T, =1t T 2ty T Max[faryF g Imeml T Lsetup

= [40 + 2(25) + 200 + 50] ps = 340 ps

Multicycle Pertormance Example

For a program with 100 billion instructions
executing on a multicycle ARM processor

— CPI =4.12 cycles/instruction
— Clock cycle time: T_, = 340 ps

Execution Time =7

77

Multicycle Pertormance Example

For a program with 100 billion instructions
executing on a multicycle ARM processor

— CPI =4.12 cycles/instruction
— Clock cycle time: T_, = 340 ps

Execution Time = (# instructions) x CPl x T_

= (100 x 10°)(4.12)(340 x 1012
= 140 seconds

78

Multicycle Pertormance Example

For a program with 100 billion instructions
executing on a multicycle ARM processor

— CPI =4.12 cycles/instruction
— Clock cycle time: T_, = 340 ps

Execution Time = (# instructions) x CPl x T_
= (100 x 10°)(4.12)(340 x 1019
= 140 seconds
This is slower than the single-cycle processor (84 sec.)

79

Review: Single-Cycle Processor

N |

PC'

CLK

PC

Unit

31:28

Cond

27:26

Op

25:20
Funct

15:12

|J1SU|

A RD

)
Control

Flags
|—;_/

PCSrc |

MemtoReg

MemWrite

ALUControl

ALUSrc

ImmSrc
RegWrite

ALUFags

CILK

rat] Y Wwes

SrcA

A1l RD1

19:16 ‘:

Instruction
Memory

[0
1

15:12

.

A2 RD2

PCPlus4

A3
WD3

Register
File

4'P| PCPlus8
[

R15

=

PO SrcB
-|1]

| ALUResult
|

A

WhriteDData

—

1 Extend

Extlmm

CILK
N WE
ReadData
A RD
Data

Memory

WD
1
0

Result

80

PC’

Review: Multicycle ARM Processor

CLK

)

PCWrite

AdrSrc Contro
MemWrite| Unit

IRWrite

31:28

Cond
27:26 Op
25:20 Funct
15:12 Rd

ResultSrc

ALUControl

ALUSrcB

ALUSrcA

ImmSrc

RegWrite

/

ALUFlags
7 z
@D
CLK CLK
CLK CLK o ‘c:g |
I WE ki =210 RA1| A1 WE3 RD1 SrcA CLK
RD 1541
A 0 T o S| ALUResi LUOUt
Instr / Data 1 A2 RD2 srecB| < 01
Memory Py ' —
WD R == r A3 Register 10
E WwD3 File
& \ R15
o\ LN\ | e /
259 xten Extimm
Dta \\ : 7

\ Result

/

Only one memory

Extra registers
not needed in a

single-cycle
design

\

Only one ALU/adder

81

Qu1z Multicycle ARM Processor

Why do we need each of the non-architectural registers?
2. Explain why do we need the path colored red (pick a path)?
3. Explain the ALUResult bypassing the 3-input mux?
4. Why are there two muxes in front of RF?

5. What is the purpose of PCWrite and IRWrite and MemWrite and
RegWrite?

6. What is the purpose of AdrSrc (signal) and Adr (mux)?
7. Why do we store the instruction/data in a non-architectural register?
8. What if we don't have a register at the output of RF?

9. Analyze the critical path of the multicycle processor (page 424 of book)

= Hint: PC update, Memory read
82

Microprogramming

83

Microprogrammed Control

Multi-cycle microarchitecture enables a key new abstraction called
microprogramming

Hardwired control
o Physically connect the control lines to the actual machine instructions

a Instructions are divided into fields, and bits in the field are connected
to input lines that drive various digital logic components

Microprogrammed control

o Employs software consisting of microinstructions that carry out
instruction’s microoperations (each step in the instruction processing)

o Microinstructions are stored in memory (control store)
o Each microinstruction specifies the values of control signals

84

An Elegant Multi-Cycle Processor Design

Maurice Wilkes, “The Best Way to Design an Automatic
Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

THE BEST WAY TO DESIGN AN AUTOMATIC

CALCULATING MACHINE
By M. V. Wilkes, M.A., Ph.D., F.R.A.S. Y@@Br‘.

An elegant implementation:

a The concept of microcoded/microprogrammed machines

85

Microprogrammed Control Terminology

Control signals associated with the current state
o Microinstruction

Act of transitioning from one state to another

o Determining the next state and the microinstruction for the
next state

o Microsequencing

Control store stores control signals for every possible state
o Store for microinstructions for the entire FSM

Microsequencer determines which set of control signals will
be used in the next clock cycle (i.e., next state)

86

Microprogrammed ARM

0: Fetc

Reset AdrSrc =0 S$1: Decode
AluSrcA =1 ALUSrcA =1

ALUSreB = 10 ALUSrcB =10
ALUOp =0 ALUOp =0

ResultSrc = 10 ResultSrc = 10

|RWrite
NextPC Data | Branch
ata Imm -
Memory Data Reg Op = 00 Op=10
Op =01 Op=00 ERnEe

Funct; = 0

S9: Branch

S$2: MemAdr S6: ExecuteR S7: Executel ALUSrcA=0

ALUSrcA=0 ALUSrcA=0 ALUSrcA =0 ALUSrcB = 01

ALUSIrcB = 01 ALUSrcB = 00 ALUSrcB = 01 ALUOp =0
ALUOp =0 ALUOp =1 ALUOp =1 ResultSrc = 10

Branch

Funct, = 1

S5: MemWrite
ResultSrc = 00
AdrSrc = 1
MemW

S3: MemRead
ResultSrc = 00
AdrSrc =1

S8: ALUWB
ResultSrc = 00
RegW

S4: MemWB
ResultSrc = 01

RegW

N ““‘&\N‘ e"‘&w‘ %6&‘65&6\35(&((%% (\C\E}\)OQ

Q@Q \'\

Fetch
Decode
MemAdr
MemRead
MemWB
MemWrite
ExecuteR
Executel
ALUWB
Branch

current state E‘f §
Opo op; 5 5

L L]

Microsequencer
Next State Logic

14

y

Control Store

112

A4

Microinstruction ——

87

What Happens In A Clock Cycler?

The control signals (microinstruction) for the current state
control two things:

o Processing in the data path

o Generation of control signals (microinstruction) for the next
cycle

Datapath and microsequencer operate concurrently

88

Microprogrammed Control Structure

Three components: Microinstruction, Control store,
Microsequencer

Microinstruction: control signals that control the datapath
(26 of them) and help determine the next state (9 of them)

Each microinstruction is stored in a unigue location in the
control store (a special memory structure)

o Unigue location. address of the state corresponding to the
microinstruction

o Each state in the FSM corresponds to one microinstruction

Microsequencer determines the address of the next
microinstruction (i.e., next state)

89

Multicycle Microarchitecture:

Three components: Microinstruction, Control store,
Microsequencer

Microinstruction: control signals that control the datapath
(26 of them) and help determine the next state (9 of them)

Each microinstruction is stored in a unigue location in the
control store (a special memory structure)

o Unigue location. address of the state corresponding to the
microinstruction

o Each state in the FSM corresponds to one microinstruction

Microsequencer determines the address of the next
microinstruction (i.e., next state)

90

Microprogrammed Control Structure

A Simple Datapath Can Become
Very Powerful by Enabling a New Level of
Programmability Post-Fabrication

91

Current Instruction fields EXample

Branch? Interrupt?

| 4 Control
64 States Structure

Microsequencer

Microinstruction
26 signals to control
datapath
9 signals to help
generate the next
instruction 6 : ;
Microsegeuncer takes as Simple Design
input some other signals of the Control Structure

from the datapath

Control Store

26X 35

35

Microinstruction

9 %26

92

State Id

Each column is a 1-bit control signal

Control
tore with

64 States

000000 (State 0)
000001 (State 1)

000010 (State 2)

000011 (State 3)

000100 (State 4)

000101 (State 5)

000110 (State 6)

000111 (State 7)

001000 (State 8)

001001 (State 9)

001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)
010000 (State 16)
010001 (State 17)
010010 (State 18)
010011 (State 19)
010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)

Each entry in

the control store is a
microinstruction
corresponding

to the FSM state

FSM state number is
used to address

the control store

to get the relevant
microinstruction

93

The Power of Abstraction

The concept of a control store of microinstructions enables
the hardware designer with a new abstraction:
microprogramming

The designer can translate any desired operation to a
sequence of microinstructions

All the designer needs to provide is

o The sequence of microinstructions needed to implement the
desired operation

a The ability for the control logic to correctly sequence through
the microinstructions

a Any additional datapath elements and control signals needed

(no need if the operation can be “translated” into existing
control signals)

94

How to Change the Semantic Gap Tradeoffs?

= Translate from one ISA into a different “implementation” ISA

HLL

Small Semantic Gap

X86-64 ISA with
Complex Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

Implementation ISA with
Simple Inst

& Data Types

& Addressing Modes

ARM v8.4

HW
Control
Signals

95

Recall: How to Change the Semantic Gap Tradeotfs

= An Example: Rosetta 2 Binary Translator " ISA

Rosetta 2 [edit]

In 2020, Apple announced Rosetta 2 would be bundled with macOS Big

Sur, to aid in the Mac transition to Apple silicon. The software permits

many applications compiled exclusively for execution on x86-64-base
rocessors to be translated for execution on Apple silicon.2l(®]

Mac transition to
Apple silicon

In addition to the just-in-time (JIT) translation support, Rosetta 2 offers
ahead-of-time compilation (AOT), with the x86-64 code fully translated,
just once, when an application without a universal binary is installed on an
Apple silicon Mac.!°)

Rosetta 2's performance has been praised greatly.l'%l'!] In some
benchmarks, x86-64-only programs performed better under Rosetta 2 on
a Mac with an Apple M1 SOC than natively on a Mac with an Intel x86-64 Apple silicon - ARM architecture -

processor. One of the key reasons why Rosetta 2 provides such high level Universal 2 binary - Rosetta 2 -
Developer Transition Kit

of translation efficiency is the support of x86-64 memory ordering in Apple
M1 sOc.['?]

Although Rosetta 2 works for most software, some software doesn't work

at alll'®l or is reported to be "sluggish".['4! A lot of software can be made compatible with the new Macs by the vendor
recompiling the software, often a simple task; while for some software (such as software that includes assembly
language code, or that generates machine code), the changes to make them work aren't simple and cannot be
automated.

Similar to the first version, Rosetta 2 does not normally require user intervention. When a user attempts to launch an
x86-64-only application for the first time, macOS prompts them to install Rosetta 2 if it is not already available.
Subsequent launches of x86-64 programs will execute via translation automatically. An option also exists to force a
universal binary to run as x86-64 code through Rosetta 2, even on an ARM-based machine.['5]

https://en.wikipedia.org/wiki/Rosetta (software)#Rosetta 2 16 96

How to Change the Semantic Gap Tradeotts

= Translate from one ISA into a different “implementation” ISA

ISA

Microinstructions

HLL

Small Semantic Gap
ISA with
Complex Inst

& Data Types
& Addressing Modes

Hardware Translator
(Microsequencer)

Implementation ISA with
Simple Inst

& Data Types

& Addressing Modes

HW
Control
Signals

97

Advantages of Microprogrammed Control

Allows a very simple design to do powerful computation by
controlling the datapath (using a sequencer)

o High-level ISA translated into microcode (sequence of u-instructions)
a Microcode (u-code) enables a minimal datapath to emulate an ISA
o Microinstructions can be thought of as a user-invisible ISA (u-ISA)

Enables easy extensibility of the ISA
a Can support a new instruction by changing the microcode

o Can support complex instructions as a sequence of simple
microinstructions (e.g., MultiDimensional Array Updates)

Enables update of machine behavior

o A buggy implementation of an instruction can be fixed by changing the
microcode in the field

Easier if datapath provides ability to do the same thing in different ways

98

Update ot Machine Behavior

The ability to update/patch microcode in the field (after a
processor is shipped) enables

o Ability to add new instructions without changing the processor!
o Ability to “fix"” buggy hardware implementations

Historical Examples

o IBM 370 Model 145: microcode stored in main memory, can be
updated after a reboot
o IBM System z: Similar to 370/145.

Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.
o B1700 microcode can be updated while the processor is running

User-microprogrammable machine!
Wilner, “Microprogramming environment on the Burroughs B1700”, CompCon 1972.

o Systems today use microcode patches to fix HW bugs/issues
99

Can We Do Better?

100

Can We Do Better?

What limitations do you see with the multi-cycle design?

Limited concurrency

o Some hardware resources are idle during different phases of
instruction processing cycle

o “Fetch” logic is idle when an instruction is being “decoded” or
“executed”

o Most of the datapath is idle when a memory access is
happening

101

Can We Use the Idle Hardware to Improve Concurrency?

Goal: More concurrency - Higher instruction throughput
(i.e., more “work” completed in one cycle)

Idea: When an instruction is using some resources in its
processing phase, process other instructions on idle
resources not needed by that instruction

o E.g., when an instruction is being decoded, fetch the next
instruction

o E.g., when an instruction is being executed, decode another
instruction

o E.g., when an instruction is accessing data memory (ld/st),
execute the next instruction

o E.g., when an instruction is writing its result into the register
file, access data memory for the next instruction

102

Can Have Ditferent Instructions in Different Stages

Q

Q

Q

Q

Instruction Fetch (IF)

Instruction Decode and Register Read (ID/RF)
Execute (EX)

Memory Access (MEM)

Writeback (WB)

103

Can Have Ditferent Instructions in Different Stages

PC'

PCWrite

CLK

)

AdrSrc

Control

MemWrite

Unit

IRWrite

31:28

ResultSrc

Cond

27:26

ALUControl

25:20

ALUSrcB

Op

15:12

ALUSrcA

Funct
Rd

Flags
|_¥_,

ImmSrc

RegWrite

Of course, we need to be more careful than this!

ALUFlags
‘:‘? CLK
CLK CLK CLK N ‘%% CLK =
WE 19:16 RA1 WE3 A S A [—) CLK
| Mec =D instr |s | 4 A1 RD1 | o T ==
Adr A EN _ D | ALUResult ALUOut o0
3:0 B\ RA2 ~ = 0
Instr / Data - A2 RD2 |- - 0 srecB| < 01
Memory Py) | — = 01
—{ wpD R o | A3 Register el 410 &
=] wD3 File =
3 R15 o
oK — e
23:0 xten
Data i Extimm
Result
104

Pipelining

Pipelining: Basic Idea

More systematically:
o Pipeline the execution of multiple instructions
o Analogy: “Assembly line processing” of instructions

Idea:

a Divide the instruction processing cycle into distinct “stages” of
processing

o Ensure there are enough hardware resources to process one
instruction in each stage

o Process a different instruction in each stage

Instructions consecutive in program order are processed in
consecutive stages

Benefit: Increases instruction processing throughput (1/CPI)
Downside: Start thinking about this...

106

