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§ Multi-cycle microarchitecture

§ Pipelining 
§ Data and control hazards
§ State maintenance and interrupts

§ Out-of-order execution
§ Key to high performance in modern 

processors
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§ Multi-cycle microarchitecture (Section 7.4) 

Readings
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Multi-Cycle Microarchitecture
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n Each instruction takes a single clock cycle to execute
n Only combinational logic is used to implement instruction 

execution 
q No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state 
at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state 
at the end of a clock cycle
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Recall: Single-Cycle Microarchitecture (Very Basic)



Recall: The Instruction Processing “Cycle”

q FETCH
q DECODE 
q EVALUATE ADDRESS
q FETCH OPERANDS
q EXECUTE
q STORE RESULT
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Recall: The Instruction Processing “Cycle”

q FETCH
q DECODE + Register Read 
q EVALUATE ADDRESS/Execute
q FETCH OPERANDS (Mem Access)
q STORE RESULT (Writeback)
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Instruction Processing “Cycle” vs. Machine Clock Cycle

n Single-cycle machine: 
q All phases of the instruction processing cycle take a single 

machine clock cycle to complete

n Multi-cycle machine: 
q Each phase of the instruction processing cycle can take 

multiple machine clock cycles to complete
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Recall: Single-Cycle Machine

n Single-cycle machine

9

ASSequential
Logic 
(State)

Combinational
Logic

AS’ 

AS: Architectural State



Recall: Datapath and Control Logic

n An instruction processing engine consists of two components

q Datapath: Consists of hardware elements that deal with and 
transform data signals
n functional units that operate on data
n hardware structures (e.g., wires, muxes, decoders, tri-state bufs) 

that enable the flow of data into the functional units and registers
n storage units that store data (e.g., registers)

q Control logic: Consists of hardware elements that determine 
control signals, i.e., signals that specify what the datapath 
elements should do to the data
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A Single-Cycle Microarchitecture: Analysis

n Every instruction takes 1 cycle to execute
q CPI (Cycles per instruction) is strictly 1

n How long each instruction takes is determined by how long 
the slowest instruction takes to execute
q Even though many instructions do not need that long to 

execute

n Clock cycle time of the microarchitecture is determined by 
how long it takes to complete the slowest instruction
q Critical path of the design is determined by the processing 

time of the slowest instruction
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What is the Slowest Instruction to Process?
n Let’s go back to the basics

n All phases of the instruction processing cycle take a single 
machine clock cycle to complete

q Instruction Fetch (IF)
q Instruction Decode and Register Read (ID/RF)
q Execute (EX)
q Memory Access (MEM)
q Writeback (WB)

n Does every instruction take the same time (latency) to 
complete?
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What is Really the Slowest Instruction to Process?

n Real world: Memory is slow (not magic)

n What if memory sometimes takes 150ns to access?

n Does it make sense to have a simple register to register 
add or jump to take {150ns + all else to perform a memory 
operation}?

n And, what if you need to access memory more than once to 
process an instruction?
q Which instructions require this?
q Do you provide multiple ports to memory?
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n Contrived 
q All instructions run as slow as the slowest instruction

n Inefficient
q All instructions run as slow as the slowest instruction
q Must provide worst-case combinational resources in parallel as required by 

any instruction
q Need to replicate a resource if it is needed more than once by an 

instruction during different parts of the instruction processing cycle

n Not necessarily the simplest way to implement an ISA
q Tough for complex instructions, e.g., REP MOVS (x86) or INDEX (VAX)

n Not easy to optimize/improve performance
q Optimizing the common case (frequent instructions) does not work 
q Need to optimize the worst case all the time
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Single-Cycle uArch: Complexity



n Goal: Let each instruction take (close to) only as much time 
it really needs

n Idea
q Determine clock cycle time independently of instruction 

processing time
q Each instruction takes as many clock cycles as it needs to take

n Multiple state transitions per instruction
n The states followed by each instruction is different
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Multi-Cycle Microarchitectures



n ISA specifies abstractly what AS’ should be, given an 
instruction and AS
q It defines an abstract finite state machine where

n State = programmer-visible state 
n Next-state logic = instruction execution specification

q From ISA point of view, there are no “intermediate states” 
between AS and AS’ during instruction execution
n One state transition per instruction

n Microarchitecture implements how AS is transformed to AS’
q There are many choices in implementation 
q We can have programmer-invisible state to optimize the speed of 

instruction execution: multiple state transitions per instruction
n Choice 1: AS à AS’ (transform AS to AS’ in a single clock cycle)
n Choice 2: AS à AS+MS1 à AS+MS2 à AS+MS3 à AS’ (take multiple 

clock cycles to transform AS to AS’)
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Recall: The “Process Instruction” Step



AS = Architectural (programmer visible) state 
at the beginning of an instruction

Step 1: Process part of instruction in one clock cycle

Step 2: Process part of instruction in the next clock cycle

  …

AS’ = Architectural (programmer visible) state 
at the end of a clock cycle
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Multi-Cycle Microarchitecture



n Critical path design
q Can keep reducing the critical path independently of the worst-

case processing time of any instruction

n Can optimize the common case
q Can optimize the number of states it takes to execute “important” 

instructions that make up much of the execution time

n Efficient/balanced design
q No need to provide more capability or resources than really 

needed 
n An instruction that needs resource X multiple times does not require 

multiple X’s to be implemented
n Leads to more efficient hardware: Can reuse hardware components 

needed multiple times for an instruction
18

Benefits of  Multi-Cycle Design



n Need to store the intermediate results at the end of each 
clock cycle
q Hardware overhead for microarchitectural registers
q Register setup/hold overhead (i.e., sequencing overhead) is 

paid multiple times for an instruction
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Downsides of  Multi-Cycle Design



n Execution time of a single instruction
q {CPI}  x  {clock cycle time} 

n Execution time of an entire program
q Sum over all instructions [{CPI}  x  {clock cycle time}]
q {# of instructions}  x  {Average CPI}  x  {clock cycle time}

n Single-cycle microarchitecture performance 
q CPI = 1
q Clock cycle time = long

n Multi-cycle microarchitecture performance
q CPI = different for each instruction

n Average CPI à hopefully small
q Clock cycle time = short
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In multi-cycle, we have 
two degrees of freedom
to optimize independently

CPI: Cycles Per Instruction

Remember: Performance Analysis



n Key Idea for Realization

q One can implement the “process instruction” step as a 
finite state machine that sequences between states and 
eventually returns back to the “fetch instruction” state

q A state is defined by the control signals asserted in it

q Control signals for the next state are determined in 
current state
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Multi-Cycle Microarchitectures



n Instruction processing cycle divided into “states”
n A stage in the instruction processing cycle can take multiple states

n A multi-cycle microarchitecture sequences from state to 
state to process an instruction 
n The behavior of the machine in a state is completely determined by 

control signals in that state

n The behavior of the entire processor is specified fully by a 
finite state machine

n In a state (clock cycle), control signals control two things:
n How the datapath should process the data
n How to generate the control signals for the (next) clock cycle
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A Basic Multi-Cycle Microarchitecture
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Remember the Single-Cycle Uarch



§ Single-cycle microarchitecture:
§ -- cycle time limited by longest instruction (LDR) à low clock 

frequency 
§ -- three adders/ALUs and two memories à high hardware cost

§ Multi-cycle microarchitecture:
§ + higher clock frequency
§ + simpler instructions take only a few clock cycles
§ + reuse expensive hardware across multiple cycles
§ -- hardware overhead for storing intermediate results
§ -- sequential logic overhead paid many times for each instruction

§ Multi-cycle requires the same design steps as single cycle: 
§ datapath 
§ control logic
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Why do we Want Multi-Cycle?



What Can We Optimize with Multi-Cycle
§ Single-cycle microarchitecture uses two memories

q One memory stores instructions, the other data
q We want to use a single memory (lower cost)

§ Single-cycle microarchitecture needs three adders 
q ALU, PC, Branch address calculation
q We want to use only one ALU for all operations (lower cost)

§ Single-cycle microarchitecture: each instruction takes one 
cycle
q The slowest instruction slows down every single instruction
q We want to determine clock cycle time independently of instruction 

processing time
q Divide each instruction into multiple clock cycles
q Simpler instructions can be very fast (compared to the slowest)
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Overview: Multicycle ARM Processor

Only one memory Only one ALU/adder
Extra registers 
not needed in a 
single-cycle 
design
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Let’s Construct 
the Multi-Cycle Datapath for 

32-bit ARM
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§ LDR R0, [R1, #32]

§ We need to:
§ Read the instruction from memory
§ Then read R1 from the register file
§ Add the immediate value (#32) to calculate the 

memory address
§ Read the value at this memory address 
§ Write to the register R0 this value

Consider the LDR Instruction
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Replace Instruction and Data memories with a single 
unified memory – more realistic

Multicycle State Elements
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STEP 1: Fetch instruction

LDR Rd, [Rn, imm12]

Multicycle Datapath: Instruction fetch

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12
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STEP 2: Read source operands from RF

Multicycle Datapath: LDR Register Read

LDR Rd, [Rn, imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

31



STEP 3: Compute the memory address

Multicycle Datapath: LDR Address

LDR Rd, [Rn, imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12
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Multicycle Datapath: LDR Memory Read

STEP 4: Read data from memory

Multicycle Datapath: LDR Memory Read

LDR Rd, [Rn, imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12
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STEP 5: Write data back to register file

Multicycle Datapath: LDR Write Register

LDR Rd, [Rn, imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12
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Multicycle Datapath: Increment PC

STEP 6: Increment PC

Multicycle Datapath: Increment PC
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PC can be read/written by instruction

Multicycle Datapath: Access to PC
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PC can be read/written by instruction
• Read: R15 (PC+8) available in Register File

Multicycle Datapath: Access to PC
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Example: ADD R1, R15, R2

Multicycle Datapath: Read to PC (R15)
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Example: ADD R1, R15, R2
• R15 needs to be read as PC+8 from Register File (RF) in 2nd step
• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15 

input of RF

Multicycle Datapath: Read to PC (R15)
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Example: ADD R1, R15, R2
• R15 needs to be read as PC+8 from Register File (RF) in 2nd step
• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15 

input of RF
– SrcA = PC (which was already updated in step 1 to PC+4)
– SrcB = 4
– ALUResult = PC + 8 

• ALUResult is fed to R15 input port of RF in 2nd step (which is then 
routed to RD1 output of RF)

Multicycle Datapath: Read to PC (R15)
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Example: ADD R1, R15, R2
• R15 needs to be read as PC+8 from Register File (RF) in 2nd step
• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15 

input of RF

Multicycle Datapath: Read to PC (R15)
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PC can be read/written by instruction
• Read: R15 (PC+8) available in Register File
• Write: Be able to write result of instruction to PC

Multicycle Datapath: Access to PC
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Example:  SUB R15, R8, R3

Multicycle Datapath: Write to PC (R15)
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Example:  SUB R15, R8, R3
• Result of instruction needs to be written to the PC register
• ALUResult already routed to the PC register, just assert PCWrite

Multicycle Datapath: Write to PC (R15)

44



Example:  SUB R15, R8, R3
• Result of instruction needs to be written to the PC register
• ALUResult already routed to the PC register, just assert PCWrite

Multicycle Datapath: Write to PC (R15)
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Write data in Rn to memory

Multicycle Datapath: STR
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With immediate addressing (i.e., an 
immediate Src2), no additional changes 
needed for datapath

Multicycle Datapath: Data-Processing
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With register addressing (register Src2):
 Read from Rn and Rm

Multicycle Datapath: Data-Processing
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Calculate branch target address: 
        BTA = (ExtImm) + (PC+8)
 ExtImm = Imm24 << 2 and sign-extended 

Multicycle Datapath: B
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Multicycle ARM Processor
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• First, discuss Decoder
• Then, Conditional Logic

Multicycle Control
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Multicycle Control: Decoder
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Decoder

Multicycle Control: Decoder
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ALU Decoder and PC Logic same as single-cycle

Multicycle Control: Decoder
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RegSrc0 = (Op == 102)
RegSrc1 = (Op == 012)
ImmSrc1:0 = Op

ImmSrc1:0
RegSrc1:0

Instr
DecoderOp1:0

Instruction Op Funct5 Funct0 RegSrc0 RegSrc1 ImmSrc1:0
LDR 01 X 1 0 X 01

STR 01 X 0 0 1 01

DP immediate 00 1 X 0 X 00

DP register 00 0 X 0 0 00

B 10 X X 1 X 10

Multicycle Control: Instr Decoder
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Multicycle ARM Processor
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Decoder

Multicycle Control: Main FSM
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Main Controller FSM: Fetch
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Main Controller FSM: Decode
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Main Controller FSM: Address
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Main Controller FSM: Read Memory
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Multicycle ARM Processor
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Main Controller FSM: LDR
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Main Controller FSM: STR
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Main Controller FSM: Data-Processing
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Main Controller FSM: Data-Processing
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Main Controller FSM
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• First, discuss Decoder
• Then, Conditional Logic

Main Controller
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• Instructions take different number of cycles.

Multicycle Processor Performance
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Multicycle Controller FSM
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• Instructions take different number of cycles:
– 3 cycles: B
– 4 cycles: DP, STR
– 5 cycles: LDR

Multicycle Processor Performance
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• Instructions take different number of cycles:
– 3 cycles: B
– 4 cycles: DP, STR
– 5 cycles: LDR

• CPI is weighted average
• SPECINT2000 benchmark suite: 

– 25% loads
– 10% stores 
– 13% branches
– 52% R-type

Multicycle Processor Performance
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• Instructions take different number of cycles:
– 3 cycles: B
– 4 cycles: DP, STR
– 5 cycles: LDR

• CPI is weighted average
• SPECINT2000 benchmark: 

– 25% loads
– 10% stores 
– 13% branches
– 52% R-type

Average CPI = (0.13)(3) + (0.52 + 0.10)(4) + (0.25)(5) = 4.12

Multicycle Processor Performance
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Multicycle critical path:
• Assumptions:
• RF is faster than memory
• writing memory is faster than reading memory

Tc2 = tpcq + 2tmux + max(tALU + tmux, tmem) + tsetup

  

Multicycle Processor Performance
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Tc2 = ?

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Multicycle Performance Example
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Tc2 = tpcq + 2tmux + max[tALU + tmux, tmem] + tsetup
     = [40 + 2(25) + 200 + 50] ps = 340 ps

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Multicycle Performance Example
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For a program with 100 billion instructions 
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction
– Clock cycle time: Tc2 = 340 ps

Execution Time = ?

 

Multicycle Performance Example
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For a program with 100 billion instructions 
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction
– Clock cycle time: Tc2 = 340 ps

Execution Time = (# instructions) × CPI × Tc
                   = (100 × 109)(4.12)(340  × 10-12)
                   = 140 seconds

 

Multicycle Performance Example
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For a program with 100 billion instructions 
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction
– Clock cycle time: Tc2 = 340 ps

Execution Time = (# instructions) × CPI × Tc
                   = (100 × 109)(4.12)(340  × 10-12)
                   = 140 seconds
This is slower than the single-cycle processor (84 sec.)

 

Multicycle Performance Example
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Review: Single-Cycle Processor
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Review: Multicycle ARM Processor

Only one memory Only one ALU/adder
Extra registers 
not needed in a 
single-cycle 
design
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Quiz: Multicycle ARM Processor
1. Why do we need each of the non-architectural registers?

2. Explain why do we need the path colored red (pick a path)? 

3. Explain the ALUResult bypassing the 3-input mux?

4. Why are there two muxes in front of RF?

5. What is the purpose of PCWrite and IRWrite and MemWrite and 
RegWrite?

6. What is the purpose of AdrSrc (signal) and Adr (mux)?

7. Why do we store the instruction/data in a non-architectural register?

8. What if we don’t have a register at the output of RF?

9. Analyze the critical path of the multicycle processor (page 424 of book)
§ Hint: PC update, Memory read 



Microprogramming
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Microprogrammed Control
n Multi-cycle microarchitecture enables a key new abstraction called 

microprogramming

n Hardwired control
q Physically connect the control lines to the actual machine instructions
q Instructions are divided into fields, and bits in the field are connected 

to input lines that drive various digital logic components

n Microprogrammed control 
q Employs software consisting of microinstructions that carry out 

instruction’s microoperations (each step in the instruction processing)
q Microinstructions are stored in memory (control store)
q Each microinstruction specifies the values of control signals
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An Elegant Multi-Cycle Processor Design
n Maurice Wilkes, “The Best Way to Design an Automatic 

Calculating Machine,” Manchester Univ. Computer 
Inaugural Conf., 1951.

n An elegant implementation:
q The concept of microcoded/microprogrammed machines
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Microprogrammed Control Terminology
n Control signals associated with the current state

q Microinstruction

n Act of transitioning from one state to another
q Determining the next state and the microinstruction for the 

next state
q Microsequencing

n Control store stores control signals for every possible state
q Store for microinstructions for the entire FSM

n Microsequencer determines which set of control signals will 
be used in the next clock cycle (i.e., next state)

86



87

Reg
W
Mem
W
IRW
rite
Nex
tPC
AdrS
rc
Resu
ltSrc
1

Resu
ltSrc
0

ALU
SrcA
ALU
SrcB
1

ALU
SrcB
0
Bran
ch
ALU
Op

Fetch
Decode
MemAdr
MemRead
MemWB
MemWrite
ExecuteR
ExecuteI
ALUWB
Branch

Microsequencer
Next State Logic

Control Store

Microinstruction

op0 op1 Fu
nc

t 0
Fu

nc
t 1

4

12

current state

Microprogrammed ARM



What Happens In A Clock Cycle?
n The control signals (microinstruction) for the current state 

control two things:
q Processing in the data path
q Generation of control signals (microinstruction) for the next 

cycle

n Datapath and microsequencer operate concurrently
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Microprogrammed Control Structure
n Three components: Microinstruction, Control store, 

Microsequencer

n Microinstruction: control signals that control the datapath  
(26 of them) and help determine the next state (9 of them)

n Each microinstruction is stored in a unique location in the 
control store (a special memory structure)
q Unique location: address of the state corresponding to the 

microinstruction
q Each state in the FSM corresponds to one microinstruction

n Microsequencer determines the address of the next 
microinstruction (i.e., next state)
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Multicycle Microarchitecture: 
n Three components: Microinstruction, Control store, 

Microsequencer

n Microinstruction: control signals that control the datapath  
(26 of them) and help determine the next state (9 of them)

n Each microinstruction is stored in a unique location in the 
control store (a special memory structure)
q Unique location: address of the state corresponding to the 

microinstruction
q Each state in the FSM corresponds to one microinstruction

n Microsequencer determines the address of the next 
microinstruction (i.e., next state)
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A Simple Datapath Can Become 
Very Powerful by Enabling a New Level of 

Programmability Post-Fabrication
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Microprogrammed Control Structure



Simple Design 
of the Control Structure

Example
Control

Structure
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C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store
6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block
diagram

on the LC-3b instruction being executed during the current instruction cycle. This state
carries out the DECODE phase of the instruction cycle. If the IRD control signal in the
microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer
(Figure C.5) will take its source from the six bits formed by 00 concatenated with the
four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-
3b instruction being processed, the next address of the control store will be one of 16
addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =
1010 and 1011. That is, each of the 16 next states is the first state to be carried out
after the instruction has been decoded in state 32. For example, if the instruction being
processed is ADD, the address of the next state is state 1, whose microinstruction is
stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

Current Instruction fields
Branch? Interrupt?

§ 64 States

§ Microinstruction
§ 26 signals to control 

datapath
§ 9 signals to help 

generate the next 
instruction

§ Microseqeuncer takes as 
input some other signals 
from the datapath 
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The Power of Abstraction
n The concept of a control store of microinstructions enables 

the hardware designer with a new abstraction: 
microprogramming

n The designer can translate any desired operation to a 
sequence of microinstructions

n All the designer needs to provide is 
q The sequence of microinstructions needed to implement the 

desired operation
q The ability for the control logic to correctly sequence through 

the microinstructions
q Any additional datapath elements and control signals needed 

(no need if the operation can be “translated” into existing 
control signals)
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How to Change the Semantic Gap Tradeoffs?

n Translate from one ISA into a different “implementation” ISA
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Recall: How to Change the Semantic Gap Tradeoffs

n Translate from one ISA into a different “implementation” ISA
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How to Change the Semantic Gap Tradeoffs

n Translate from one ISA into a different “implementation” ISA
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Advantages of Microprogrammed Control
n Allows a very simple design to do powerful computation by 

controlling the datapath (using a sequencer)
q High-level ISA translated into microcode (sequence of u-instructions)
q Microcode (u-code) enables a minimal datapath to emulate an ISA
q Microinstructions can be thought of as a user-invisible ISA (u-ISA)

n Enables easy extensibility of the ISA
q Can support a new instruction by changing the microcode
q Can support complex instructions as a sequence of simple 

microinstructions (e.g., MultiDimensional Array Updates)

n Enables update of machine behavior
q A buggy implementation of an instruction can be fixed by changing the 

microcode in the field
n Easier if datapath provides ability to do the same thing in different ways
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Update of Machine Behavior
n The ability to update/patch microcode in the field (after a 

processor is shipped) enables 
q Ability to add new instructions without changing the processor!
q Ability to “fix” buggy hardware implementations

n Historical Examples
q IBM 370 Model 145: microcode stored in main memory, can be 

updated after a reboot
q IBM System z: Similar to 370/145.

n Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM 
JR&D, May/Jul 2004.

q B1700 microcode can be updated while the processor is running
n User-microprogrammable machine!
n Wilner, “Microprogramming environment on the Burroughs B1700”, CompCon 1972.

q Systems today use microcode patches to fix HW bugs/issues 
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Can We Do Better?



n What limitations do you see with the multi-cycle design?

n Limited concurrency
q Some hardware resources are idle during different phases of 

instruction processing cycle
q “Fetch” logic is idle when an instruction is being “decoded” or 

“executed”
q Most of the datapath is idle when a memory access is 

happening
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Can We Do Better?



n Goal: More concurrency à Higher instruction throughput 
(i.e., more “work” completed in one cycle)

n Idea: When an instruction is using some resources in its 
processing phase, process other instructions on idle 
resources not needed by that instruction
q E.g., when an instruction is being decoded, fetch the next 

instruction
q E.g., when an instruction is being executed, decode another 

instruction
q E.g., when an instruction is accessing data memory (ld/st), 

execute the next instruction
q E.g., when an instruction is writing its result into the register 

file, access data memory for the next instruction
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Can We Use the Idle Hardware to Improve Concurrency?



q Instruction Fetch (IF)

q Instruction Decode and Register Read (ID/RF)

q Execute (EX)

q Memory Access (MEM)

q Writeback (WB)
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Can Have Different Instructions in Different Stages 



104Of course, we need to be more careful than this!

Can Have Different Instructions in Different Stages 
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Pipelining



n More systematically:
q Pipeline the execution of multiple instructions
q Analogy: “Assembly line processing” of instructions

n Idea:
q Divide the instruction processing cycle into distinct “stages” of 

processing
q Ensure there are enough hardware resources to process one 

instruction in each stage
q Process a different instruction in each stage

n Instructions consecutive in program order are processed in 
consecutive stages

n Benefit: Increases instruction processing throughput (1/CPI)
n Downside: Start thinking about this…
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Pipelining: Basic Idea


