
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

§ Multi-cycle microarchitecture

§ Pipelining
§ Data and control hazards
§ State maintenance and interrupts

§ Out-of-order execution
§ Key to high performance in modern

processors

Agenda for Remaining Lectures

Micro-architecture
SW/HW Interface

Program/Language
Algorithm
Problem

Logic
Devices

System Software

Electrons

2

§ Multi-cycle microarchitecture (Section 7.4)

Readings

3

Multi-Cycle Microarchitecture

4

Acknowledgement: Selection of Slides from Digital Design and Computer Architecture,
Onur Mutlu, ETH Zurich, Spring 2022

n Each instruction takes a single clock cycle to execute
n Only combinational logic is used to implement instruction

execution
q No intermediate, programmer-invisible state updates

AS = Architectural (programmer visible) state
at the beginning of a clock cycle

Process instruction in one clock cycle

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

5

Recall: Single-Cycle Microarchitecture (Very Basic)

Recall: The Instruction Processing “Cycle”

q FETCH
q DECODE
q EVALUATE ADDRESS
q FETCH OPERANDS
q EXECUTE
q STORE RESULT

6

Recall: The Instruction Processing “Cycle”

q FETCH
q DECODE + Register Read
q EVALUATE ADDRESS/Execute
q FETCH OPERANDS (Mem Access)
q STORE RESULT (Writeback)

7

Instruction Processing “Cycle” vs. Machine Clock Cycle

n Single-cycle machine:
q All phases of the instruction processing cycle take a single

machine clock cycle to complete

n Multi-cycle machine:
q Each phase of the instruction processing cycle can take

multiple machine clock cycles to complete

8

Recall: Single-Cycle Machine

n Single-cycle machine

9

ASSequential
Logic
(State)

Combinational
Logic

AS’

AS: Architectural State

Recall: Datapath and Control Logic

n An instruction processing engine consists of two components

q Datapath: Consists of hardware elements that deal with and
transform data signals
n functional units that operate on data
n hardware structures (e.g., wires, muxes, decoders, tri-state bufs)

that enable the flow of data into the functional units and registers
n storage units that store data (e.g., registers)

q Control logic: Consists of hardware elements that determine
control signals, i.e., signals that specify what the datapath
elements should do to the data

10

A Single-Cycle Microarchitecture: Analysis

n Every instruction takes 1 cycle to execute
q CPI (Cycles per instruction) is strictly 1

n How long each instruction takes is determined by how long
the slowest instruction takes to execute
q Even though many instructions do not need that long to

execute

n Clock cycle time of the microarchitecture is determined by
how long it takes to complete the slowest instruction
q Critical path of the design is determined by the processing

time of the slowest instruction

11

What is the Slowest Instruction to Process?
n Let’s go back to the basics

n All phases of the instruction processing cycle take a single
machine clock cycle to complete

q Instruction Fetch (IF)
q Instruction Decode and Register Read (ID/RF)
q Execute (EX)
q Memory Access (MEM)
q Writeback (WB)

n Does every instruction take the same time (latency) to
complete?

12

What is Really the Slowest Instruction to Process?

n Real world: Memory is slow (not magic)

n What if memory sometimes takes 150ns to access?

n Does it make sense to have a simple register to register
add or jump to take {150ns + all else to perform a memory
operation}?

n And, what if you need to access memory more than once to
process an instruction?
q Which instructions require this?
q Do you provide multiple ports to memory?

13

n Contrived
q All instructions run as slow as the slowest instruction

n Inefficient
q All instructions run as slow as the slowest instruction
q Must provide worst-case combinational resources in parallel as required by

any instruction
q Need to replicate a resource if it is needed more than once by an

instruction during different parts of the instruction processing cycle

n Not necessarily the simplest way to implement an ISA
q Tough for complex instructions, e.g., REP MOVS (x86) or INDEX (VAX)

n Not easy to optimize/improve performance
q Optimizing the common case (frequent instructions) does not work
q Need to optimize the worst case all the time

14

Single-Cycle uArch: Complexity

n Goal: Let each instruction take (close to) only as much time
it really needs

n Idea
q Determine clock cycle time independently of instruction

processing time
q Each instruction takes as many clock cycles as it needs to take

n Multiple state transitions per instruction
n The states followed by each instruction is different

15

Multi-Cycle Microarchitectures

n ISA specifies abstractly what AS’ should be, given an
instruction and AS
q It defines an abstract finite state machine where

n State = programmer-visible state
n Next-state logic = instruction execution specification

q From ISA point of view, there are no “intermediate states”
between AS and AS’ during instruction execution
n One state transition per instruction

n Microarchitecture implements how AS is transformed to AS’
q There are many choices in implementation
q We can have programmer-invisible state to optimize the speed of

instruction execution: multiple state transitions per instruction
n Choice 1: AS à AS’ (transform AS to AS’ in a single clock cycle)
n Choice 2: AS à AS+MS1 à AS+MS2 à AS+MS3 à AS’ (take multiple

clock cycles to transform AS to AS’)
16

Recall: The “Process Instruction” Step

AS = Architectural (programmer visible) state
at the beginning of an instruction

Step 1: Process part of instruction in one clock cycle

Step 2: Process part of instruction in the next clock cycle

 …

AS’ = Architectural (programmer visible) state
at the end of a clock cycle

17

Multi-Cycle Microarchitecture

n Critical path design
q Can keep reducing the critical path independently of the worst-

case processing time of any instruction

n Can optimize the common case
q Can optimize the number of states it takes to execute “important”

instructions that make up much of the execution time

n Efficient/balanced design
q No need to provide more capability or resources than really

needed
n An instruction that needs resource X multiple times does not require

multiple X’s to be implemented
n Leads to more efficient hardware: Can reuse hardware components

needed multiple times for an instruction
18

Benefits of Multi-Cycle Design

n Need to store the intermediate results at the end of each
clock cycle
q Hardware overhead for microarchitectural registers
q Register setup/hold overhead (i.e., sequencing overhead) is

paid multiple times for an instruction

19

Downsides of Multi-Cycle Design

n Execution time of a single instruction
q {CPI} x {clock cycle time}

n Execution time of an entire program
q Sum over all instructions [{CPI} x {clock cycle time}]
q {# of instructions} x {Average CPI} x {clock cycle time}

n Single-cycle microarchitecture performance
q CPI = 1
q Clock cycle time = long

n Multi-cycle microarchitecture performance
q CPI = different for each instruction

n Average CPI à hopefully small
q Clock cycle time = short

20

In multi-cycle, we have
two degrees of freedom
to optimize independently

CPI: Cycles Per Instruction

Remember: Performance Analysis

n Key Idea for Realization

q One can implement the “process instruction” step as a
finite state machine that sequences between states and
eventually returns back to the “fetch instruction” state

q A state is defined by the control signals asserted in it

q Control signals for the next state are determined in
current state

21

Multi-Cycle Microarchitectures

n Instruction processing cycle divided into “states”
n A stage in the instruction processing cycle can take multiple states

n A multi-cycle microarchitecture sequences from state to
state to process an instruction
n The behavior of the machine in a state is completely determined by

control signals in that state

n The behavior of the entire processor is specified fully by a
finite state machine

n In a state (clock cycle), control signals control two things:
n How the datapath should process the data
n How to generate the control signals for the (next) clock cycle

22

A Basic Multi-Cycle Microarchitecture

23

Remember the Single-Cycle Uarch

§ Single-cycle microarchitecture:
§ -- cycle time limited by longest instruction (LDR) à low clock

frequency
§ -- three adders/ALUs and two memories à high hardware cost

§ Multi-cycle microarchitecture:
§ + higher clock frequency
§ + simpler instructions take only a few clock cycles
§ + reuse expensive hardware across multiple cycles
§ -- hardware overhead for storing intermediate results
§ -- sequential logic overhead paid many times for each instruction

§ Multi-cycle requires the same design steps as single cycle:
§ datapath
§ control logic

24

Why do we Want Multi-Cycle?

What Can We Optimize with Multi-Cycle
§ Single-cycle microarchitecture uses two memories

q One memory stores instructions, the other data
q We want to use a single memory (lower cost)

§ Single-cycle microarchitecture needs three adders
q ALU, PC, Branch address calculation
q We want to use only one ALU for all operations (lower cost)

§ Single-cycle microarchitecture: each instruction takes one
cycle
q The slowest instruction slows down every single instruction
q We want to determine clock cycle time independently of instruction

processing time
q Divide each instruction into multiple clock cycles
q Simpler instructions can be very fast (compared to the slowest)

25

Overview: Multicycle ARM Processor

Only one memory Only one ALU/adder
Extra registers
not needed in a
single-cycle
design

26

Let’s Construct
the Multi-Cycle Datapath for

32-bit ARM

27

§ LDR R0, [R1, #32]

§ We need to:
§ Read the instruction from memory
§ Then read R1 from the register file
§ Add the immediate value (#32) to calculate the

memory address
§ Read the value at this memory address
§ Write to the register R0 this value

Consider the LDR Instruction

28

Replace Instruction and Data memories with a single
unified memory – more realistic

Multicycle State Elements

29

STEP 1: Fetch instruction

LDR Rd, [Rn, imm12]

Multicycle Datapath: Instruction fetch

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

30

STEP 2: Read source operands from RF

Multicycle Datapath: LDR Register Read

LDR Rd, [Rn, imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

31

STEP 3: Compute the memory address

Multicycle Datapath: LDR Address

LDR Rd, [Rn, imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

32

Multicycle Datapath: LDR Memory Read

STEP 4: Read data from memory

Multicycle Datapath: LDR Memory Read

LDR Rd, [Rn, imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

33

STEP 5: Write data back to register file

Multicycle Datapath: LDR Write Register

LDR Rd, [Rn, imm12]

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 1 1 1 0 0 L Rn Rd imm12

34

Multicycle Datapath: Increment PC

STEP 6: Increment PC

Multicycle Datapath: Increment PC

35

PC can be read/written by instruction

Multicycle Datapath: Access to PC

36

PC can be read/written by instruction
• Read: R15 (PC+8) available in Register File

Multicycle Datapath: Access to PC

37

Example: ADD R1, R15, R2

Multicycle Datapath: Read to PC (R15)

38

Example: ADD R1, R15, R2
• R15 needs to be read as PC+8 from Register File (RF) in 2nd step
• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15

input of RF

Multicycle Datapath: Read to PC (R15)

39

Example: ADD R1, R15, R2
• R15 needs to be read as PC+8 from Register File (RF) in 2nd step
• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15

input of RF
– SrcA = PC (which was already updated in step 1 to PC+4)
– SrcB = 4
– ALUResult = PC + 8

• ALUResult is fed to R15 input port of RF in 2nd step (which is then
routed to RD1 output of RF)

Multicycle Datapath: Read to PC (R15)

40

Example: ADD R1, R15, R2
• R15 needs to be read as PC+8 from Register File (RF) in 2nd step
• So (also in 2nd step) PC + 8 is produced by ALU and routed to R15

input of RF

Multicycle Datapath: Read to PC (R15)

41

PC can be read/written by instruction
• Read: R15 (PC+8) available in Register File
• Write: Be able to write result of instruction to PC

Multicycle Datapath: Access to PC

42

Example: SUB R15, R8, R3

Multicycle Datapath: Write to PC (R15)

43

Example: SUB R15, R8, R3
• Result of instruction needs to be written to the PC register
• ALUResult already routed to the PC register, just assert PCWrite

Multicycle Datapath: Write to PC (R15)

44

Example: SUB R15, R8, R3
• Result of instruction needs to be written to the PC register
• ALUResult already routed to the PC register, just assert PCWrite

Multicycle Datapath: Write to PC (R15)

45

Write data in Rn to memory

Multicycle Datapath: STR

46

With immediate addressing (i.e., an
immediate Src2), no additional changes
needed for datapath

Multicycle Datapath: Data-Processing

47

With register addressing (register Src2):
 Read from Rn and Rm

Multicycle Datapath: Data-Processing

48

Calculate branch target address:
 BTA = (ExtImm) + (PC+8)
 ExtImm = Imm24 << 2 and sign-extended

Multicycle Datapath: B

49

Multicycle ARM Processor

50

• First, discuss Decoder
• Then, Conditional Logic

Multicycle Control

51

Multicycle Control: Decoder

52

Decoder

Multicycle Control: Decoder

53

ALU Decoder and PC Logic same as single-cycle

Multicycle Control: Decoder

54

RegSrc0 = (Op == 102)
RegSrc1 = (Op == 012)
ImmSrc1:0 = Op

ImmSrc1:0
RegSrc1:0

Instr
DecoderOp1:0

Instruction Op Funct5 Funct0 RegSrc0 RegSrc1 ImmSrc1:0
LDR 01 X 1 0 X 01

STR 01 X 0 0 1 01

DP immediate 00 1 X 0 X 00

DP register 00 0 X 0 0 00

B 10 X X 1 X 10

Multicycle Control: Instr Decoder

55

Multicycle ARM Processor

56

Decoder

Multicycle Control: Main FSM

57

Main Controller FSM: Fetch

58

Main Controller FSM: Decode

59

Main Controller FSM: Address

60

Main Controller FSM: Read Memory

61

Multicycle ARM Processor

62

Main Controller FSM: LDR

63

Main Controller FSM: STR

64

Main Controller FSM: Data-Processing

65

Main Controller FSM: Data-Processing

66

Main Controller FSM

67

• First, discuss Decoder
• Then, Conditional Logic

Main Controller

68

• Instructions take different number of cycles.

Multicycle Processor Performance

69

Multicycle Controller FSM

70

• Instructions take different number of cycles:
– 3 cycles: B
– 4 cycles: DP, STR
– 5 cycles: LDR

Multicycle Processor Performance

71

• Instructions take different number of cycles:
– 3 cycles: B
– 4 cycles: DP, STR
– 5 cycles: LDR

• CPI is weighted average
• SPECINT2000 benchmark suite:

– 25% loads
– 10% stores
– 13% branches
– 52% R-type

Multicycle Processor Performance

72

• Instructions take different number of cycles:
– 3 cycles: B
– 4 cycles: DP, STR
– 5 cycles: LDR

• CPI is weighted average
• SPECINT2000 benchmark:

– 25% loads
– 10% stores
– 13% branches
– 52% R-type

Average CPI = (0.13)(3) + (0.52 + 0.10)(4) + (0.25)(5) = 4.12

Multicycle Processor Performance

73

Multicycle critical path:
• Assumptions:
• RF is faster than memory
• writing memory is faster than reading memory

Tc2 = tpcq + 2tmux + max(tALU + tmux, tmem) + tsetup

Multicycle Processor Performance

74

Tc2 = ?

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Multicycle Performance Example

75

Tc2 = tpcq + 2tmux + max[tALU + tmux, tmem] + tsetup
 = [40 + 2(25) + 200 + 50] ps = 340 ps

Element Parameter Delay (ps)
Register clock-to-Q tpcq_PC 40

Register setup tsetup 50

Multiplexer tmux 25

ALU tALU 120

Decoder tdec 70

Memory read tmem 200

Register file read tRFread 100

Register file setup tRFsetup 60

Multicycle Performance Example

76

For a program with 100 billion instructions
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction
– Clock cycle time: Tc2 = 340 ps

Execution Time = ?

Multicycle Performance Example

77

For a program with 100 billion instructions
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction
– Clock cycle time: Tc2 = 340 ps

Execution Time = (# instructions) × CPI × Tc
 = (100 × 109)(4.12)(340 × 10-12)
 = 140 seconds

Multicycle Performance Example

78

For a program with 100 billion instructions
executing on a multicycle ARM processor

– CPI = 4.12 cycles/instruction
– Clock cycle time: Tc2 = 340 ps

Execution Time = (# instructions) × CPI × Tc
 = (100 × 109)(4.12)(340 × 10-12)
 = 140 seconds
This is slower than the single-cycle processor (84 sec.)

Multicycle Performance Example

79

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3
WD3

RD2

RD1
WE3

A2

CLK

Register
File

0
1

A RD
Data

Memory
WD

WE

1
0

PC1
0

PC'

Instr

19:16

15:12

23:0

25:20

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

Result

27:26

ImmSrc

PCSrc

MemWrite
MemtoReg

ALUSrc

RegWrite

Op
Funct

Control
Unit

ALUFlags

CLK

ALUControl

AL
U

PCPlus8 R15

3:0

Cond31:28

Flags

15:12 Rd

+

4

15
RA1

RA2

0 1

Extend

0
1

0
1

R
egSrc

Review: Single-Cycle Processor

80

Review: Multicycle ARM Processor

Only one memory Only one ALU/adder
Extra registers
not needed in a
single-cycle
design

81

82

Quiz: Multicycle ARM Processor
1. Why do we need each of the non-architectural registers?

2. Explain why do we need the path colored red (pick a path)?

3. Explain the ALUResult bypassing the 3-input mux?

4. Why are there two muxes in front of RF?

5. What is the purpose of PCWrite and IRWrite and MemWrite and
RegWrite?

6. What is the purpose of AdrSrc (signal) and Adr (mux)?

7. Why do we store the instruction/data in a non-architectural register?

8. What if we don’t have a register at the output of RF?

9. Analyze the critical path of the multicycle processor (page 424 of book)
§ Hint: PC update, Memory read

Microprogramming

83

Microprogrammed Control
n Multi-cycle microarchitecture enables a key new abstraction called

microprogramming

n Hardwired control
q Physically connect the control lines to the actual machine instructions
q Instructions are divided into fields, and bits in the field are connected

to input lines that drive various digital logic components

n Microprogrammed control
q Employs software consisting of microinstructions that carry out

instruction’s microoperations (each step in the instruction processing)
q Microinstructions are stored in memory (control store)
q Each microinstruction specifies the values of control signals

84

An Elegant Multi-Cycle Processor Design
n Maurice Wilkes, “The Best Way to Design an Automatic

Calculating Machine,” Manchester Univ. Computer
Inaugural Conf., 1951.

n An elegant implementation:
q The concept of microcoded/microprogrammed machines

85

Microprogrammed Control Terminology
n Control signals associated with the current state

q Microinstruction

n Act of transitioning from one state to another
q Determining the next state and the microinstruction for the

next state
q Microsequencing

n Control store stores control signals for every possible state
q Store for microinstructions for the entire FSM

n Microsequencer determines which set of control signals will
be used in the next clock cycle (i.e., next state)

86

87

Reg
W
Mem
W
IRW
rite
Nex
tPC
AdrS
rc
Resu
ltSrc
1

Resu
ltSrc
0

ALU
SrcA
ALU
SrcB
1

ALU
SrcB
0
Bran
ch
ALU
Op

Fetch
Decode
MemAdr
MemRead
MemWB
MemWrite
ExecuteR
ExecuteI
ALUWB
Branch

Microsequencer
Next State Logic

Control Store

Microinstruction

op0 op1 Fu
nc

t 0
Fu

nc
t 1

4

12

current state

Microprogrammed ARM

What Happens In A Clock Cycle?
n The control signals (microinstruction) for the current state

control two things:
q Processing in the data path
q Generation of control signals (microinstruction) for the next

cycle

n Datapath and microsequencer operate concurrently

88

Microprogrammed Control Structure
n Three components: Microinstruction, Control store,

Microsequencer

n Microinstruction: control signals that control the datapath
(26 of them) and help determine the next state (9 of them)

n Each microinstruction is stored in a unique location in the
control store (a special memory structure)
q Unique location: address of the state corresponding to the

microinstruction
q Each state in the FSM corresponds to one microinstruction

n Microsequencer determines the address of the next
microinstruction (i.e., next state)

89

Multicycle Microarchitecture:
n Three components: Microinstruction, Control store,

Microsequencer

n Microinstruction: control signals that control the datapath
(26 of them) and help determine the next state (9 of them)

n Each microinstruction is stored in a unique location in the
control store (a special memory structure)
q Unique location: address of the state corresponding to the

microinstruction
q Each state in the FSM corresponds to one microinstruction

n Microsequencer determines the address of the next
microinstruction (i.e., next state)

90

A Simple Datapath Can Become
Very Powerful by Enabling a New Level of

Programmability Post-Fabrication

91

Microprogrammed Control Structure

Simple Design
of the Control Structure

Example
Control

Structure

92

C.4. THE CONTROL STRUCTURE 9

Microinstruction

R

Microsequencer

BEN

x2

Control Store
6

IR[15:11]

6

(J, COND, IRD)

269

35

35

Figure C.4: The control structure of a microprogrammed implementation, overall block
diagram

on the LC-3b instruction being executed during the current instruction cycle. This state
carries out the DECODE phase of the instruction cycle. If the IRD control signal in the
microinstruction corresponding to state 32 is 1, the output MUX of the microsequencer
(Figure C.5) will take its source from the six bits formed by 00 concatenated with the
four opcode bits IR[15:12]. Since IR[15:12] specifies the opcode of the current LC-
3b instruction being processed, the next address of the control store will be one of 16
addresses, corresponding to the 14 opcodes plus the two unused opcodes, IR[15:12] =
1010 and 1011. That is, each of the 16 next states is the first state to be carried out
after the instruction has been decoded in state 32. For example, if the instruction being
processed is ADD, the address of the next state is state 1, whose microinstruction is
stored at location 000001. Recall that IR[15:12] for ADD is 0001.

If, somehow, the instruction inadvertently contained IR[15:12] = 1010 or 1011, the

Current Instruction fields
Branch? Interrupt?

§ 64 States

§ Microinstruction
§ 26 signals to control

datapath
§ 9 signals to help

generate the next
instruction

§ Microseqeuncer takes as
input some other signals
from the datapath

93

14APPENDIXC. THEMICROARCHITECTUREOFTHE LC-3B, BASICMACHINE

J LD
.P

C

LD
.B

EN

LD
.IR

LD
.M

DR

LD
.M

AR

LD
.R

EG
LD

.C
C

Co
nd

IR
D

Ga
teP

C
Ga

teM
DR

Ga
teA

LU
Ga

teM
AR

M
UX

Ga
teS

HF
PC

M
UX

DR
M

UX
SR

1M
UX

AD
DR

1M
UX

AD
DR

2M
UX

M
AR

M
UX

010000 (State 16)
010001 (State 17)

010011 (State 19)
010010 (State 18)

010100 (State 20)
010101 (State 21)
010110 (State 22)
010111 (State 23)
011000 (State 24)
011001 (State 25)
011010 (State 26)
011011 (State 27)
011100 (State 28)
011101 (State 29)
011110 (State 30)
011111 (State 31)
100000 (State 32)
100001 (State 33)
100010 (State 34)
100011 (State 35)
100100 (State 36)
100101 (State 37)
100110 (State 38)
100111 (State 39)
101000 (State 40)
101001 (State 41)
101010 (State 42)
101011 (State 43)
101100 (State 44)
101101 (State 45)
101110 (State 46)
101111 (State 47)
110000 (State 48)
110001 (State 49)
110010 (State 50)
110011 (State 51)
110100 (State 52)
110101 (State 53)
110110 (State 54)
110111 (State 55)
111000 (State 56)
111001 (State 57)
111010 (State 58)
111011 (State 59)
111100 (State 60)
111101 (State 61)
111110 (State 62)
111111 (State 63)

001000 (State 8)
001001 (State 9)
001010 (State 10)
001011 (State 11)
001100 (State 12)
001101 (State 13)
001110 (State 14)
001111 (State 15)

000000 (State 0)
000001 (State 1)
000010 (State 2)
000011 (State 3)
000100 (State 4)
000101 (State 5)
000110 (State 6)
000111 (State 7)

AL
UK

M
IO

.E
N

R.
W

LS
HF

1

DA
TA

.S
IZ

E

Figure C.7: Specification of the control store

Control
Store with
64 States

Each entry in
the control store is a
microinstruction
corresponding
to the FSM state

FSM state number is
used to address
the control store
to get the relevant
microinstruction

Each column is a 1-bit control signal

State Id

The Power of Abstraction
n The concept of a control store of microinstructions enables

the hardware designer with a new abstraction:
microprogramming

n The designer can translate any desired operation to a
sequence of microinstructions

n All the designer needs to provide is
q The sequence of microinstructions needed to implement the

desired operation
q The ability for the control logic to correctly sequence through

the microinstructions
q Any additional datapath elements and control signals needed

(no need if the operation can be “translated” into existing
control signals)

94

How to Change the Semantic Gap Tradeoffs?

n Translate from one ISA into a different “implementation” ISA

95

HLL

HW
Control
Signals

Small Semantic Gap

Implementation ISA with
Simple Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

ISA with
Complex Inst
& Data Types
& Addressing Modes

X86-64

ARM v8.4

Recall: How to Change the Semantic Gap Tradeoffs

n Translate from one ISA into a different “implementation” ISA

96

HLL

HW
Control
Signals

Small Semantic Gap

Implementation ISA with
Simple Inst
& Data Types
& Addressing Modes

Software or Hardware Translator

ISA with
Complex Inst
& Data Types
& Addressing Modes

X86-64

ARM v8.4

How to Change the Semantic Gap Tradeoffs

n Translate from one ISA into a different “implementation” ISA

97

HLL

HW
Control
Signals

Small Semantic Gap

Implementation ISA with
Simple Inst
& Data Types
& Addressing Modes

Hardware Translator
(Microsequencer)

ISA with
Complex Inst
& Data Types
& Addressing Modes

ISA

Microinstructions

Advantages of Microprogrammed Control
n Allows a very simple design to do powerful computation by

controlling the datapath (using a sequencer)
q High-level ISA translated into microcode (sequence of u-instructions)
q Microcode (u-code) enables a minimal datapath to emulate an ISA
q Microinstructions can be thought of as a user-invisible ISA (u-ISA)

n Enables easy extensibility of the ISA
q Can support a new instruction by changing the microcode
q Can support complex instructions as a sequence of simple

microinstructions (e.g., MultiDimensional Array Updates)

n Enables update of machine behavior
q A buggy implementation of an instruction can be fixed by changing the

microcode in the field
n Easier if datapath provides ability to do the same thing in different ways

98

Update of Machine Behavior
n The ability to update/patch microcode in the field (after a

processor is shipped) enables
q Ability to add new instructions without changing the processor!
q Ability to “fix” buggy hardware implementations

n Historical Examples
q IBM 370 Model 145: microcode stored in main memory, can be

updated after a reboot
q IBM System z: Similar to 370/145.

n Heller and Farrell, “Millicode in an IBM zSeries processor,” IBM
JR&D, May/Jul 2004.

q B1700 microcode can be updated while the processor is running
n User-microprogrammable machine!
n Wilner, “Microprogramming environment on the Burroughs B1700”, CompCon 1972.

q Systems today use microcode patches to fix HW bugs/issues
99

100

Can We Do Better?

n What limitations do you see with the multi-cycle design?

n Limited concurrency
q Some hardware resources are idle during different phases of

instruction processing cycle
q “Fetch” logic is idle when an instruction is being “decoded” or

“executed”
q Most of the datapath is idle when a memory access is

happening

101

Can We Do Better?

n Goal: More concurrency à Higher instruction throughput
(i.e., more “work” completed in one cycle)

n Idea: When an instruction is using some resources in its
processing phase, process other instructions on idle
resources not needed by that instruction
q E.g., when an instruction is being decoded, fetch the next

instruction
q E.g., when an instruction is being executed, decode another

instruction
q E.g., when an instruction is accessing data memory (ld/st),

execute the next instruction
q E.g., when an instruction is writing its result into the register

file, access data memory for the next instruction
102

Can We Use the Idle Hardware to Improve Concurrency?

q Instruction Fetch (IF)

q Instruction Decode and Register Read (ID/RF)

q Execute (EX)

q Memory Access (MEM)

q Writeback (WB)

103

Can Have Different Instructions in Different Stages

104Of course, we need to be more careful than this!

Can Have Different Instructions in Different Stages

105

Pipelining

n More systematically:
q Pipeline the execution of multiple instructions
q Analogy: “Assembly line processing” of instructions

n Idea:
q Divide the instruction processing cycle into distinct “stages” of

processing
q Ensure there are enough hardware resources to process one

instruction in each stage
q Process a different instruction in each stage

n Instructions consecutive in program order are processed in
consecutive stages

n Benefit: Increases instruction processing throughput (1/CPI)
n Downside: Start thinking about this…

106

Pipelining: Basic Idea

