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Speed of a Circuit

Arbitrary
Circuitinputs outputs

tpd

§ At a high level, an arbitrary digital circuit processes a group of 
inputs and produces a group of outputs

§ We needs metrics to quantify the speed with which we can process inputs 
to produce outputs (i.e., the performance of a circuit)
§ Latency:  The time required to produce one group of outputs once the 

inputs arrive (propagation delay, end-to-end latency)
§ Throughput: The number of input groups processed per unit of time



Example: Latency/Throughput
§ What is the latency and throughput for a tray of cookies?

§ Step 1: Roll cookies (5 minutes)

§ Step 2: Bake in the oven (15 minutes)

§ Once cookies are baked, start another tray

§ Latency (hours/tray):

§ Throughput (trays/hour):



Parallelism
§ Many scenarios in the real-world requires us to increase the 

throughput of the digital system

§ # add operations per second (ALU)

§ # instructions per second (CPU)

§ Parallelism is a key technique for increasing throughput and 
processing several inputs at the same time



Spatial Parallelism
§ Spatial Parallelism:  Use multiple copies of hardware 

(circuit) to get multiple tasks done at the same time

Arbitrary
Circuit

Arbitrary
Circuit

Arbitrary
Circuit

Arbitrary
Circuit

§ Suppose a task has a latency of L second
§ No spatial parallelism:  Throughput is 1/L (one task per L second)
§ N copies of hardware:  Throughput is N/L (N tasks per L second)
§ Gain in throughput (speedup) = N 



Spatial Parallelism does not reduce the 
latency of the circuit.  We can finish more 
tasks per unit of time.  But each task still 
takes L seconds 



Temporal Parallelism
§ Temporal Parallelism (pipelining):

§ Break down a circuit into stages
  
§ Each task passes through all stages 

§ Multiple tasks are spread through stages  



Automotive Pipeline



Pipelining
§ If a task of latency L is broken into N stages, and all stages are 

of equal length, then the throughput is N/L 

§ The challenge of pipelining is to find stages of equal length

§ Let’s go back to baking cookies
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Cookie Parallelism
§ Ben and Jon are making cookies.  Let’s study the latency and 

throughput of rolling and baking many cookie trays with

§ No parallelism

§ Spatial parallelism

§ Pipelining

§ Spatial parallelism + pipelining



No Parallelism (Ben Only)

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55 60

Ben 2 Ben 2
Ben 3 Ben 3

Latency (hours/tray):
Throughput (trays/hour):



Spatial Parallelism (Ben & Jon) 

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55

Jon 1 Jon 1

60

Ben 2 Ben 2
Jon 2 Jon 2

Ben 3 Ben 3
Jon 3 Jon 3

Note: Jon owns a tray and oven (hardware duplication)

Latency (hours/tray):
Throughput (trays/hour):



Pipelining (Ben Only)

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55 60

Ben 2 Ben 2
Ben 3 Ben 3

Ben 4

Note: Ben decides not to waste a separate tray and oven

Latency (hours/tray):
Throughput (trays/hour):



Spatial + Temporal Parallelism

Time (mins)

0

Ben 1

5 10 15 20 25

Ben 1

30 35 40 45 50 55

Jon 1 Jon 1

60

Ben 2 Ben 2
Jon 2 Jon 2

Ben 3 Ben 3
Jon 3 Jon 3

Ben 4
Jon 4Latency (hours/tray):

Throughput (trays/hour):



Answers Explained
§ No parallelism

§ Latency is clearly 20 minutes (1/3 hours/tray)
§ Throughput is 3 trays per hour

§ Spatial parallelism
§ Latency remains unchanged as it still takes 20 mins to finish a tray
§ Throughput is doubled via duplication: 6 trays per hour

§ Pipelining
§ Latency for a single tray remains unchanged
§ Throughput: Ben puts a new tray in the oven every 15 minutes, so the 

throughput is 4 trays per hour
§ Note that in the first hour, Ben loses 5 minutes to fill the pipeline

§ Spatial parallelism + pipelining
§ Latency remains unchanged
§ Throughput: Ben & Jon combo puts two trays in the oven every 15 

minutes, so the throughput is 8 trays per hour



Sequential Laundry
Time

Alice

Bob

Tim

Wash Dry Fold Hang

A new load begins every 2 hours

6 
PM

8 
PM



Pipelined Laundry
Time

Alice

Bob

Tim

q A new load begins every 30 mins
q 120 mins divided by 4 
q Speed-up of 4!

6 
PM

8 
PM

6:
30

 



§ Divide a large combinational circuit into shorter stages 

§ Insert registers between the stages

§ The outputs of one stage are copied into a register and communicated 
to the next stage

§ Run the pipelined circuit at a higher clock frequency

§ Each clock cycle, data flows through the pipeline from left to the right

§ Multiple tasks can be spread across the pipeline

Pipelining Circuits



Pipelined Microarchitecture
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Stages in “Instruction Processing” 

ExtImm

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PC1

0
PC'

In
str

19:16

15:12

23:0

SrcB

ALUResult ReadData

WriteData

SrcA

PCPlus4

 
Result

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1

RA2

Extend

0

1

0

1

ExtImmE

CLK

A RD

Instruction
Memory

+

4

A1

A3

WD3

RD2

RD1
WE3

A2

CLK

Register
File

0

1

A RD

Data
Memory
WD

WE

1

0

PCF1

0
PC'

In
strD

19:16

15:12

23:0

SrcBE

ALUResultE ReadDataW

WriteDataE

SrcAE

PCPlus4F

 

ResultW

CLK

AL
U

PCPlus8
R15

3:0

+

4

15
RA1D

RA2D

Extend

0

1

0

1

CLK CLK CLK CLK

Fetch Decode Execute Memory Writeback
In
strF

ALUOutM ALUOutW

WA3D

Single-Cycle

Pipelined

FETCH DECODE/RF-READ EXECUTE
MEM

ACCESS W
RI

TE
BA

CK



21

Pipelined Microarchitecture: Key Idea
§ Multiple instructions (up to 5) can be in the pipeline in any 

cycle

§ Each instruction can be in a different stage
§ Idea is for “maximizing utilization” of hardware resources

§ Stages must be isolated from one another using pipelined 
register (non-arch. registers).   Referred to as “PPR”

§ The work of a stage should be preserved in a PPR each cycle
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Key Idea (Continued)
§ The work of a stage should be preserved in a PPR each cycle

§ PPR acts as a source of data the next stage needs in a 
subsequent cycle

§ If any subsequent stage down the pipeline needs data from an 
earlier stage it must be passed through the PPRs

§ .... Things don’t always go smoothly as we shall see! 
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Stages
§ Fetch (F)

§ Decode/RF-Read (D or DE/DEC or RF)

§ Execute (E or EX)

§ Memory (M or MEM)

§ Writeback (W or WB)
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Pipeline Register Names
§ PC is often referred to as the Fetch PPR

§ B/w Fetch and Decode: Decode PPR

§ B/w Decode and Execute: Execute PPR

§ Similarly, Memory PPR

§ Writeback PPR
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Timing Diagrams
§ To visualize the execution of many instructions in a pipeline we 

can use timing diagrams where:

§ Time is on the horizontal axis

§ Instructions are on the vertical axis
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Timing Diagrams
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Performance Analysis
§ In the previous slide, what is the execution time and instructions 

per second (IPS) for the single-cycle microarchitecture?
§ 1.47 Billion Instructions per Second

§ What about the pipelined microarchitecture?
§ The length of the pipeline stage is set by the slowest stage to 

be 200 ps
§ 1 instruction per 200 ps
§ 5 billion instructions per second
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Instruction Latency with Pipelining
§ Pipelining does not help to reduce the latency of a single 

instruction

§ Latency of a single instruction increases
§ Sequencing overhead of pipeline registers
§ Clock cycle time decided by slowest pipeline stage (internal 

fragmentation due to imbalanced stages)

§ Pipelining helps increase the throughput of an entire workload
§ Workload = Number of instructions
§ Workload must be “sufficiently” large
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Abstract Diagrams of Pipelined uArch
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RF Read/Write in Pipelined uArch
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writeback can be visible to a younger instruction’s reg read
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Simplified View of Pipelining

F D E M W
C1 C2 C3 C4 C5 C6 C7 C8

F D E M W
F D E M W

F D E M W
F D E M W

F D E M W

I1
I2
I3
I4à

 Insts
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Let’s complete the picture
§ Start with the single-cycle microarchitecture

§ And insert pipeline registers
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§ Once we insert pipeline registers, we would need to 

pass the results of one stage to the next stage via the 
pipeline registers

§ What is the outcome of the FETCH stage?
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q Stages and their boundaries are indicated in blue

q Signals are given a suffix (F, D, E, M, or W) to indicate the stage in 
which they reside
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Pipeline Operation

I1:  ADD  R0,  R5,  #10
I2:  ADD  R1,  R5,  #10
I3:  ADD  R2,  R5,  #10
I4:  STR  R0,  [R7, #4]
I5:  STR  R1,  [R7, #8] 
I6:  STR  R2,  [R7, #12] 

§ Consider the example instruction sequence
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q Is the pipeline fully utilized?   NO
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q No more instructions to execute



48

Performance Analysis
§ The 6 instructions took 10 cycles to finish execution

§ Cycles per Instruction (CPI) is : 10/6 = 1.66
§ Conversely, instruction per cycle (IPC) is: 0.6

§ Ideally, we want the IPC to be close to 1
§ One instruction finished every cycle

§ Why is IPC less than 1?
§ It takes some time to fill and some time to drain the pipeline 
§ During this time pipeline is operating below its potential



Recall: Pipelined Laundry
Time

Alice

Bob

Tim

q A new load begins every 30 mins
q 120 mins divided by 4 
q Speed-up of 4!

6 
PM

8 
PM

6:
30

 

§ Is this really the case?
§ Actual speed-up is 2
§ Whereas 4 is ideal
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Pipeline Idealism vs. Reality 
§ Pipeline fill time:  The time it takes to fill the pipeline and make it 

operate at maximum efficiency

§ Pipeline drain time: The time that is wasted when there is no 
more work to do in the pipeline

§ The two factors limit the pipeline from delivering ideal speed-up
§ In the case when the amount of work is small relative to the 

number of stages in the pipeline

§ Let’s revisit the previous example
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Performance Analysis
§ The 6 instructions took 10 cycles to finish execution

§ Cycles per Instruction (CPI) is : 10/6 = 1.66
§ Conversely, instruction per cycle (IPC) is: 0.6

§ What if we have 1 billion instructions instead of 6?
§ CPI = (4 + 1000000000)/1000000000  = ~1

§ Computer programs execute billions of instructions, so the 
overhead of filling/draining is amortized
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Pipelined Data

§ From Fetch to Decode: Instruction and PC+4
§ From Decode to Execute: Two register values and extended immediate
§ From Execute to Memory: ALUResultE and WriteDataE

§ WriteDataE is one of the registers read from the RF, and M stage may need it for writing to 
memory in the case of an STR instruction

§ From Memory to Writeback: Output of ALU (ALUOutM) and data read from memory (ALUOutW)

§ Think: What is the width of each pipeline register?
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Bug in Pipelined Hardware!

§ There is a “hardware bug” in the pipelined 
microarchitecture
§ Can you spot it?
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§ The error is in the register file write logic that operates in the writeback stage

§ The data value comes from ResultW, a Writeback stage signal
§ But the write address comes from InstrD15:12 (WA3D), a Decode stage signal
§ Without correction, during cycle 5, the result of the instruction in the 

writeback stage would be incorrectly written to a different destination register
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Bug in Pipelined Hardware!
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§ Without correction, during cycle 5, the result of the LDR instruction would be 
incorrectly written to R5 instead of R2

Bug in Pipelined Hardware!

Time (cycles)

LDR R2, [R0, #40] RF 40

R0
RF

R2
+ DM

RF R10

R9
RF

R3
+ DM

RF R5

R1
RF

R4
- DM

RF R13

R12
RF

R5
& DM

RF 20

R1
RF

R6
+ DM

RF 42

R11
RF

R7
| DM

ADD R3, R9, R10

SUB R4, R1, R5

AND R5, R12, R13

STR R6, [R1, #20]

ORR R7, R11, #42

1 2 3 4 5 6 7 8 9 10

ADD

IM

IM

IM

IM

IM

IM LDR

SUB

AND

STR

ORR
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Corrected Pipelined Datapath
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§ Here is the corrected pipelined datapath

§ The WA3 signal is now pipelined along through the Execution, Memory, and 
Writeback stages so it remains sync with the rest of the instruction

§ WA3W and ResultW are fed back together to the register file in the 
Writeback stage
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Optimized Pipelined Datapath
§ Remove adder by using PCPlus4F after PC has been updated to PC+4
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Balanced Pipeline (1)
§ Let’s revisit another factor that hinders ideal pipeline speedup

§ Ideally, we want the computation to be pipelined, evenly partitioned 
into k uniform-latency subcomputations
§ If the latency (clocking period) of the original computation is T, 

then the clocking period of the pipelined computation is T/k

§  Balancing pipelines is challenging

§ Is the ARM pipelined microarchitecture balanced?

§ What can we do to make it more balanced?
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Balanced Pipeline (Example 1)
Single-Cycle Computation

P0 P1 P2 P3

T

P4 P5 P6 P7 P8

§ Are the 8 stages dividing the original computation sufficiently 
balanced?
§ Yes, the ideal speed-up is 8 (ignoring sequencing overheads)

§ Unbalanced workload partitioning reduces speed-up (next example)
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Balanced Pipeline (Example 2)
Single-Cycle Computation

P0 P1

T

P2 P3 P4 P5 P6

§ Are the 8 stages dividing the original computation sufficiently 
balanced?
§ NO, the cycle time (frequency) should account for the slowest stage (worst-case 

stage delay)
§ Each stage must incur the same latency as P0. Latency of computation is very high 

compared to the original computation
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Control Unit for Pipelined uArch
§ Same control signals as the single-cycle processor

§ Therefore, uses the same control unit

§ The control unit examines the Op and Funct fields of the 
instruction in the Decode stage to produce the control signals

§ These control signals must be pipelined along with the data

§ Remember: The control unit also examines the Rd field (back flow)

§ Special treatment for RegWrite and WA3 (backward flow)
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Pipelined Processor Control
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q No need to send the circled signals to the next stage because they are no longer needed



Pipeline Hazards
§ When multiple instructions are handled concurrently there is a 

danger of hazard

§ Hazards are a part of real life

§ Some coping strategies: Get around, precaution, mitigate harm after

   



Pipeline Hazards (Three Types)
§ Structural hazard

§ When two instructions want to use the same resource
§ Memory for instructions (F) and data (M) 
§ Register file is accessed in two different stages (what are 

those?)
§ Data hazard

§ When a dependent instruction wants the result of an earlier 
instruction

§ Control hazard
§ When a PC-changing instruction is in the pipeline (why is this a 

hazard?)



Hazard Mitigation
§ Hardware for concurrent instruction execution must deal with 

hazards

§ From the processor’s perspective:
§ Different solutions with different tradeoffs

§ Architectural state requires “serious” repair
§ Architectural state is untouched, and hazard avoided
§ Dedicated logic may be needed for hazard avoidance
§ Defensive mindset: stall the CPU until hazard is gone

§ Power, energy, latency are all considerations 
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Pipeline Hazards (Another View)
§ Instructions and data generally flow from left to right

§ Right-to-left flow affect future instructions and leads to hazards

§ Writeback stage places the result into the register file     
(potential for data hazard) 

§  Selection of next PC, choice of PC + 4 or branch target       
address 
§ Also backward flow and a hazard: control hazard
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Pipeline Hazards (Another View)
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§ Identify backward flows (control and data)



Data Dependences
§ In Von Neumann model, instructions depend on each other for data

§ One type of dependence is called true dependence

§ Data (True) Dependence:  One instruction produces a result that the 
subsequent instruction consumes

§ Instruction chains with dependences need special care in pipelined uarch 

ADD   R0,  R0,  #4
LDR   R1,  [R0, #0]
SUB   R2,  R1,  #1

ADD   R0,  R1,  #4
LDR   R2,  [R3, #0]
ADD   R4,  R5,  #1

NO dependences b/w instructionsDependence b/w ADD & LDR 
Dependence b/w LDR and SUB



Read-After-Write Hazards
§ True dependences lead to read-after-write hazards

§ Think: These hazards are not possible in a single-cycle 
microarchitecture

§ Two Very Important points to remember:
§ True dependencies are a property of the program 

(programmer’s intention is expressed by way of them)

§ Hazards are a property of microarchitecture
§ A dependency may or may not lead to a hazard 
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Pipeline Hazards (Example)

Time (cycles)

ADD R1, R4, R5 RF R5

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM ADD

ORR

SUB

Write in one half, and read on 
other half to eliminate hazard 

§ Look at the instructions on the left.   There are three data hazards

§ Use a clever register read/write policy to eliminate one hazard
§ What can we do about the remaining two hazards?



Solution # 1: Software Interlocking
§ Insert NOPS in code at compile time

§ NOP is an instruction that does nothing
§ Idea: Insert enough NOPS for results to be ready

§ Rearrange code at compile time 
§ Move dependent useful instructions forward
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Example: Software Interlocking

Time (cycles)

ADD R1, R4, R5 RF R5

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM ADD

ORR

SUB

NOP

NOP

RF RFDMNOPIM

RF RFDMNOPIM

9 10
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Solution # 1: Software Interlocking

§ Drawbacks of software interlocking

§ Programming is complicated 

§ Speed is degraded
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Solution # 2: Forwarding or Bypassing
§ Hardware solution: Data hazards can be solved by forwarding or 

bypassing (except some special scenarios)

§ Extra hardware to send result from the Memory or Writeback 
stage to a “dependent” instruction in Execute stage 
§ Key: We can bypass the register file and get results early 

from pipeline register

§ Requires adding muxes in front of the ALU to select the operand 
from one of the many sources 
§ (1) RF, (2) Memory PPR, (3) Writeback PPR
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Data Forwarding

Time (cycles)

ADD R1, R4, R5 RF R5

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM ADD

ORR

SUB

Why Forwarding Works?

§ Sum from the ADD instruction is computed by ALU in cycle 3 
and is needed by the AND instruction in cycle 4

§ No need to wait for the results to appear in register file
75



Forwarding Exercise

F D E M W
F D E M W

F D E M W
F D E M W

I1
I2
I3
I4

C1 C2 C3 C4 C5 C6 C7 C8 D

à
 Insts

§ Is forwarding from I1(M) to I2(E) valid?
§ Is forwarding from I1(W) to I3(E) valid?
§ Is forwarding from I1(W) to I2(E) valid?

E
M
W

PPR Code



Data Forwarding

§ When is forwarding necessary?
§ Check if source register read in EX stage matches 

destination register written in MEM or WB stage
§ If so, forward result

Time (cycles)

ADD R1, R4, R5 RF R5

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM ADD

ORR

SUB

Forwarding Example

77

Next 2 
younger 
“dependent” 
instructions 
expose a 
hazard



Data Forwarding

§ When an instruction in Execute stage has a source 
register that matches the destination register of 
an instruction in Memory or Writeback stage

§ Let’s write equations for generating control signals 
that indicate whether to forward or not 

Necessary Conditions for Forwarding
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Data ForwardingNecessary Conditions for Forwarding
§ Execute stage register matches Memory stage register?
 Match_1E_M = (RA1E == WA3M)
 Match_2E_M = (RA2E == WA3M)

§ Execute stage register matches Writeback stage register?
 Match_1E_W = (RA1E == WA3W)
 Match_2E_W = (RA2E == WA3W)

 

§ If it matches, forward result:
       
       if          (Match_1E_M • RegWriteM)  ForwardAE = 10; 
       else if  (Match_1E_W • RegWriteW) ForwardAE = 01; 
       else                                 ForwardAE = 00;
  ForwardBE same but with Match2E

79



Data ForwardingPipelined Processor with Forwarding
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R
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InstrF

CLK

ALUOutM ALUOutW
WA3E WA3M WA3W

CLK CLK

MemWriteE
MemtoRegE
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CondE

C
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Flags'

Cond
Unit
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Forw
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Data ForwardingLoad-Use Hazard
§ Recall: Execution of Load has a two-cycle latency (E + M)

§ LDR does not finish reading data until the end of the MEM 
stage 
§ The result cannot be forwarded to the EX-stage of the next 

instruction
§ We call Load followed by its use a Load-Use hazard

§ Load-Use hazard cannot be solved with forwarding

§ Solution: stalling the pipeline until the data is available



Stalling

Time (cycles)

LDR R1, [R4, #40] RF 40

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM LDR

ORR

SUB

Trouble!

Load-Use Hazard
§ The LDR instruction received data from memory at the end 

of cycle 4

§ The AND instruction needs that data at the beginning of 
cycle 4

§ We cannot go backward in time and fix things up! 



StallingStalls to Resolve Load-Use Hazards
§ The dependent instruction can be detected as the “user” of 
LDR after it has been decoded at the end of Decode stage

§ Idea: Stall the dependent instruction in the Decode stage 
for one cycle (until LDR completes the memory read)

§ Furthermore, the instruction immediately behind the “user” 
of LDR must remain in the Fetch stage because the Decode 
stage is full



Stalling

Time (cycles)

LDR R1, [R4, #40] RF 40

R4
RF

R1
+ DM

RF R3

R1
RF

R8
& DM

RF R1

R6
RF

R9
| DM

RF R7

R1
RF

R10
- DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM

IM LDR

ORR

SUB

9

RF R3

R1

IM ORR

Stall

Stalls to Resolve Load-Use Hazards
§ Stall the dependent instruction (AND) in Decode stage

§ AND remains in Decode, and ORR remains in Fetch

§ Cycle 5: result forwarded from WB of LDR to EX of AND



What does a stall look like?
§ Stalling stage X does three things

§ Stalls stage X (obviously)

§ Stalls stage X – 1 

§ Sends a bubble in stage X + 1 



Stall in the Decode stage

Cycle # Fetch Decode Execute Memory Writeback

1: i1

2: i2 i1

3: i3 i2 i1

4: i3 (Stall) i2 (Stall) Bubble i1

5: i4 i3 i2 Bubble i1

6: i5 i4 i3 i2 Bubble

7: i5 i4 i3 i2

💭

💭

💭



StallingPipeline Bubbles
§ EX is unused in cycle 4
§ MEM is unused in cycle 5
§ WB is unused in cycle 6

§ This used stage propagating through the pipeline is called a 
bubble

§ It behaves like a NOP instruction



StallingImplementing Stalls
§ Stalling a stage requires disabling the pipeline register, so that the 

contents do not change
§ Remember: All previous stages must also be stalled

§ Bubble is introduced by clearing the pipeline register directly after 
the stalling stage 
§ Prevents bogus information from propagating forward

§ Forgetting to introduce a bubble may wrongly update the 
architectural state  

§ Stalls degrade performance so must be used only when needed 



StallingLogic to Compute Stalls and Flushes
§ Is either source register in the Decode stage the same as the one 

being written in the Execute stage?

  Match_12D_E = (RA1D == WA3E) + (RA2D == WA3E)

§ Is a LDR in the Execute stage AND Match_12D_E?

  ldrstall = Match_12D_E • MemtoRegE
  StallF = StallD = FlushE = ldrstall



Pipelined CPU with Stalls to Solve Load-Use Hazard

Figure 7.54 in textbook



StallingControl Hazards
§ Control hazards are due to changes to sequential control flow 

§ Branch (B) instructions
§ Writes to PC (R15) by regular instructions

§ The pipelined processor does not know which instruction to fetch 
next

§ Branch decision has not been made by the time instruction is 
fetched



StallingSolving Control Hazards
§ There are two solutions

§ Stall the pipeline on a branch instruction
§ Instruction is fetched in the first stage
§ Branch is resolved in the last (fifth) stage
§ Four stall cycles is a very high penalty for a branch

§ Predict the branch outcome (aka. branch prediction)
§ If the outcome is correct, continue execution (zero penalty)
§ If the outcome is wrong (branch misprediction), clean up the pipeline, and 

restart from the correct target instruction
§ Branch misprediction penalty depends on when recovery is initiated



StallingSimplest Branch Predictor
§ Predict-always-untaken

§ Keep fetching the next sequential instructions

§ Predict-always-taken 
§ CPU stalls for four cycles because target address not available
 

§ Both predictors above use a static prediction policy

§ Dynamic branch prediction
§ Different predictions for different executions of same branch
§ Takes recent branch behavior into account



StallingFlushing when Branch is Taken
§ Fetching the next instruction is an example of predict-always-untaken

§ Four instructions flushed when branch is taken 
§ Misprediction penalty of 4 wasted cycles for taken branches 
§ Idea: Predict the branch early

Time (cycles)

B 3C RF RFDM

RF R3

R1
RF& DM

RF R1

R6
RF| DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM B

ORR

20

24

28

2C

34... ...

9

Flush
these

instructions

64 ADD R12, R3, R4 RF R4

R3
RF

R12+ DMIM ADD

RF R7

R1
RF- DMIM SUB

RF R8

R1
RF- DMIM SUBSUB R11, R1, R830

10



StallingEarly Branch Resolution
§ The earliest stage branch target is known is EX
§ Update the PC in the next cycle to save two cycles

§ Flush the two instructions in the F and D stages 

Time (cycles)

B 3C RF RFDM

RF R3

R1
RF& DM

RF R1

R6
RF| DM

AND R8, R1, R3

ORR R9, R6, R1

SUB R10, R1, R7

1 2 3 4 5 6 7 8

AND

IM

IM

IM B

ORR

20

24

28

2C

34... ...

9

Flush
these

instructions

64 ADD R12, R3, R4 RF R4

R3
RF

R12+ DMIM ADD

SUB R11, R1, R830

10



StallingHardware Changes for Early Resolution
§ Idea: Determine the branch target address (BTA) in the EX-stage

§ Branch misprediction penalty = 2 cycles

§ Hardware changes
§ Add a branch multiplexer before PC register to select BTA from 
ALUResultE

§ Add BranchTakenE select signal for this multiplexer (only 
asserted if branch condition satisfied)



StallingPipelined Processor Early Resolution
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StallingFlush Logic with Early Branch Resolution

§ Flush Decode if branch is taken

 FlushD = BranchTakenE

§ Flush Execute if branch is taken

 FlushE = BranchTakenE



StallingStall + Flush Logic with Early Branch 
Resolution + Load-Use Hazard
§ Stall Fetch if load-use hazard is discovered
 StallF = ldrStallD
§ Flush Decode if branch is taken
 FlushD = BranchTakenE
§ Flush Execute if branch is taken
 FlushE = ldrStallD + BranchTakenE
§ Stall Decode if load-use hazard is discovered
 StallD = ldrStallD



StallingFlush and Stall Logic for Writes to PC 
§ Writes to PC still stall the CPU for 4 cycles (contrast with B 

instruction)

§ PCSrcW still asserted for writes to PC 

§ Stall Fetch if PC write is discovered in Decode, Execute, or Memory
 StallF = PCSrcD + PCSrcE + PCSrcM

§ Flush Decode if PC write is discovered in Decode, Execute, Memory, 
or Writeback 

 FlushD = PCSrcD + PCSrcE + PCSrcM + PCSrcW 



StallingFlush and Stall Logic for Writes to PC 
§ Explaining the logic for StallF control signal

§ Cycle #1: PC-changing instruction (I) is fetched
§ Cycle #2:  I is decoded and PCSrcD is asserted
§ Cycle #3:  I is executed and PCSrcE is asserted
§ Cycle #4:  I is in M stage and PCSrcM is asserted
§ Cycle #5:  PCSrcW is asserted, and new PC is written to the ResultW bus

§ PC is a register so will be updated in the next clock cycle (cycle # 6)
§ In cycle #5, StallF is asserted, so that the next cycle the PC register is set up 

properly to capture the new value of instruction address (ResultW)
§ In the first four cycles, StallF is deasserted to not cause a change to PC



StallingFlush and Stall Logic for Writes to PC 
§ Explaining the logic for FlushD control signal

§ Cycle #1: PC-changing instruction (I) is fetched
§ Cycle #2:  I is decoded and PCSrcD is asserted
§ Cycle #3:  I is executed and PCSrcE is asserted
§ Cycle #4:  I is in M stage and PCSrcM is asserted
§ Cycle #5:  PCSrcW is asserted, and new PC is written to the ResultW bus

§ If we keep FlushD asserted during cycle 5, then at the beginning of cycle # 6 
when rising edge arrives, register will still read all zeroes

§ In cycle # 6, FlushD is released so in cycle # 7, when the correct instruction 
advances to the Decode register, the instruction is captured at the edge of 
the clock (in cycle # 7)



StallingFull Control Stalling Logic (page # 440)
§ PCWrPendingF = 1 if write to PC in Decode, Execute or Memory
 PCWrPendingF = PCSrcD + PCSrcE + PCSrcM
§ Stall Fetch if PCWrPendingF
 StallF = ldrStallD + PCWrPendingF 
§ Flush Decode if PCWrPendingF OR PC is written in Writeback OR branch is 

taken
 FlushD = PCWrPendingF + PCSrcW + BranchTakenE
§ Flush Execute if branch is taken
 FlushE = ldrStallD + BranchTakenE
§ Stall Decode if ldrStallD (as before)
 StallD = ldrStallD

PC write is in progress in D, E, M

Stall fetch if LDR-Use hazard or PC 
write in D, E, or M

Flush D if PC write in progress in D, 
E, M, or W, or branch taken in E

Stall Decode if LDR-Use hazard



StallingARM Processor with Full Hazard Handling
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When to Forward?
§ Read-after-write hazard between two instructions where the first 

or “older” instruction is not a load

ADD R0, R1, R2
SUB R4, R0, #1

MUL R12, R2, R3
ADD R0, R12, #1



Recall: Forwarding Exercise

F D E M W
F D E M W

F D E M W
F D E M W

I1
I2
I3
I4

C1 C2 C3 C4 C5 C6 C7 C8 D

à
 Insts

§ Is forwarding from I1(M) to I2(E) valid?
§ Is forwarding from I1(W) to I3(E) valid?
§ Is forwarding from I1(W) to I2(E) valid?

E
M
W

PPR Code



When to Stall?
§ Load-use hazard

§ Stall the Decode and Fetch stages when the “use” is discovered

§ PC-changing instructions
§ Stall Fetch for four cycles



When to Flush?
§ Load-use hazard

§ Flush the Execute pipeline register

§ PC-changing instructions
§ Keep flushing the Decode stage until the new instruction (branch 

target) is available in the Decode pipeline register

§  Branch instructions
§ When branch is resolved early in the Execute stage, flush the 

pipeline registers in the Decode and Execute stages



How does the CPU Stall and Flush?
§ Stall

§ Use Enable input to hold/retain the value stored in the 
pipeline register

§ Flush
§ Use the Clear input to zero the register contents



Superscalar Processor

110



StallingSuperscalar: Idea and Datapath
§ Multiple copies of datapath hardware to execute instructions simultaneously
§ Example: 2-way superscalar fetches and executes 2 instructions per cycle

§ Requires 6-ported register file (4 reads, 2 writes), 2 ALUs, 2-ported data memory
§ Ideal CPI = 0.5 and IPC = 2
§ Dependencies and hazards inhibit ideal IPC
§ Above figure does not show forwarding and hazard detection logic



StallingSuperscalar: Pipeline Operation
§ Example program where IPC = 2 is possible



StallingSuperscalar: Impact of Dependencies
§ Example of program with data dependences

§ The program requires 5 cycles to issue six instructions with an IPC 
of 1.2



StallingIn-Order Superscalar: Tradeoffs
§ Superscalar processors encompass spatial + temporal parallelism

§ Two pipelined lanes in one CPU with duplicated resources

§ 2-wide, 4-wide, and 6-wide superscalars are common (wide = way)

§ Too many dependencies (data + control) in real programs
§ Hard to find many instructions to issue (in order) every cycle
§ Out-of-order CPUs unlock this bottleneck

§ Large number of execution units and complex forwarding and hazard 
detection logic costs area, power, and energy



Branch Prediction

115



Static Branch Prediction
§ Static policy #1: Always predict that the branch is not taken

§ Static policy # 2: Always predict that the branch will be taken

§ The cost of a branch misprediction (branch misprediction penalty) 
increases for superscalars 

§ Effort to process “wrong path” instructions is wasted

§ We need more accurate branch predictors (>99% accuracy)



Dynamic Branch Prediction
q Predict the outcome of a branch instruction (in fetch stage) based 

on the recent behavior of the branch

§ What do we need?

§ Branch identification (PC uniquely identifies a branch)

§ Recent branch behavior (taken/untaken last time)



Branch Identification & Behavior
§ Branch identification

§ Use the branch address in instruction memory
§ Can grab it from PC

§ Branch behavior
§ Outcome of the condition test from ALU
§ Also need to store the branch target the last time the 

branch executed



One-Bit Predictor
§ Branch History Table (BHT) or Branch Prediction Buffer

§ A small amount of memory indexed by the low-order bits of 
branch address

§  Key Idea: Store a single bit that says branch was recently taken 
or not BHT

0

1

0

0

1

1

1

branch 
address

1-bit 
predictionm

Due to limited entries in the table, there are conflicts (aka. aliasing)



Operation
§ Placement & Access:  Fetch stage

§ Predicted untaken: Fetch PC + 4
§ Predicted taken: Compute/predict target address and fetch from target

§ Outcome matches prediction:  Noting to do
§ Outcome does not match prediction: 

§ Flip the entry in the BHT
§ Flush the pipeline (EXECUTE, DECODE, FETCH), and update the PC

§ Is correctness affected by misprediction?
§ Is performance affected by misprediction?



Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT T

i = 

Direction

New State

Current State/Prediction

MOV  R1,  #0
   MOV  R0,  #1 
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R1,  R1,  R0
   B FOR
DONE

§ What is the prediction accuracy of a 1-bit branch predictor?



Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT T

i = 

Direction

New State

Current State/Prediction

MOV  R1,  #0
   MOV  R0,  #1 
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R1,  R1,  R0
   B FOR
DONE

§ What is the prediction accuracy of a 1-bit branch predictor?



Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT T

i = 

Direction

New State

Current State/Prediction

MOV  R1,  #0
   MOV  R0,  #1 
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R1,  R1,  R0
   B FOR
DONE

§ What is the prediction accuracy of a 1-bit branch predictor?



Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT T

i = 

Direction

New State

Current State/Prediction

MOV  R1,  #0
   MOV  R0,  #1 
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R1,  R1,  R0
   B FOR
DONE

§ What is the prediction accuracy of a 1-bit branch predictor?



Accuracy/Perf of 1-bit Predictor
Consider the following loop:

1 2 3 4 5 6 7 8 9 10

NT NT NT NT NT NT NT NT NT T

T NT NT NT NT NT NT NT NT NT

NT NT NT NT NT NT NT NT NT T

i = 

Direction

New State

Current State/Prediction

MOV  R1,  #0
   MOV  R0,  #1 
FOR
   CMP  R0,  #10
   BGE  DONE
   ADD  R1,  R1,  R0
   ADD  R1,  R1,  R0
   B FOR
DONE

§ What is the prediction accuracy of a 1-bit branch predictor?



Anomalous Decision
§ Accuracy of one-bit predictor is 80% for a branch that is NOT 

TAKEN 90% of the time

§ Anomaly: When branches that are strongly biased toward one 
direction suddenly takes a different path/direction

§ A 1-bit predictor is “thrown off” by a single anomolous decision



Smith’s Algorithm
§ 1979: James E. Smith patents branch prediction at Control Data

§ Notices the performance pathology of 1-bit predictor at loop 
termination

§ Key insight:  Add hysterisis (inertia) to the predictor’s state

§ The same outcome must occur multiple times to reach the strong states

§ A saturating counter maps the outcomes of several recent branches on to a 
counter with different states



k = 2
§ Four states

§ Strongly not-taken (SN or 00)

§ Weakly not-taken (WN or 01)

§ Weakly taken (WT or 10)

§ Strongly taken (ST or 11)



Smith’s Algorithm

Predict 
Taken

Predict 
Taken

Predict 
Untaken

Predict 
Untaken 

Untaken

taken

Untaken

taken

takenUntaken

Untaken

taken

01

1011

00



Smith’s Predictor Hardware (k = 2)

branch address

BHT

00

01

10

11

….

2m k-bit counters

m

branch predictionMSB

saturating counter
increment/decrement

branch outcome

updated counter value



Accuracy of Smith’s Predictor
Below: Accuracy of Smith1 (1-bit counter) and Smith2 (2-bit counter) on a 
sequence of branches with a single anomolous decision

Branch
Direction

Smith1 Smith2 

State Prediction State Prediction

1 1 1 11 1

1 1 1 11 1

0
anomaly

1 1
(misprediction)

11 1
(misprediction)

1
anomaly

0 0 
(misprediction)

10 1

1 1 1 11 1

1 1 1 11 1
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1 1 1 11 1

1 1 1 11 1
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Accuracy of Smith’s Predictor
Below: Accuracy of Smith1 (1-bit counter) and Smith2 (2-bit counter) on a 
sequence of branches with a single anomolous decision
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Branch Target Buffer (BTB)
§ Buffer = A small memory for storing “some” information

§  Recall the CPU needs to know in the fetch stage
§ Branch direction 
§ Branch target address

§ BTB stores the target addresses for taken branches

§ Does not make sense to search the BTB for targets of untaken 
branches



Operation with BTB
§ Branch is predicted to be taken

§ Get target address from BTB

§ Branch is predicted untaken
§ PC = PC + 4

§ If the prediction is correct
§ Continue normal execution

§ If the prediction is incorrect
§ Initiate pipeline flush (details are not in scope)



§ In real programs, the behavior of one branch is correlated 
with that of another

§ Key drawback of previous predictors: A predictor that uses 
the outcomes of only a single branch to predict the behavior 
of that branch does not capture correlation b/w branches 

§ Correlating branch predictors use branch history and branch 
address to predict the branch outcome

§ Correlating branch predictors consider the local history of a 
branch and global history across all branches

if  (aa == 2)
 aa = 0;
if  (bb == 2)
 bb = 0
if  (aa != bb)
 {…}

Correlating Branch Predictors



A Lot More to Say on Branch Prediction!
§ Important component of a modern processor

§ Especially superscalar and out-of-order processors

§ Prediction accuracy above 99%

§ State of art: Deep neural networks, machine learning approaches

§ Random branches are increasingly common (ML, NLP, GPT)



Locality and its Exploitation

139
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¢ Principle of Locality: Programs tend to use data and instructions with 
addresses near or equal to those they have used recently

¢ Temporal locality:  
§ Recently referenced items are likely 

to be referenced again in the near future

¢ Spatial locality:  
§ Items with nearby addresses tend 

to be referenced close together in time

Locality
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¢ Data references
§ Reference array elements in succession 

(stride-1 reference pattern).
§ Reference variable sum each iteration.

¢ Instruction references
§ Reference instructions in sequence.
§ Cycle through loop repeatedly. 

sum = 0;
for (i = 0; i < n; i++)
 sum += a[i];
return sum;

Spatial locality
Temporal locality

Spatial locality
Temporal locality

Locality Example
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¢ Some fundamental and enduring properties of hardware and 
software:
§ Fast storage technologies cost more per byte, have less capacity, and require more 

power (heat!). 
§ The gap between CPU and main memory speed is widening.
§ Well-written programs tend to exhibit good locality.

¢ These fundamental properties complement each other beautifully.

¢ They suggest an approach for organizing memory and storage systems 
known as a memory hierarchy.

Memory Hierarchies
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Example Memory 
     Hierarchy Regs

L1 cache 
(SRAM)

Main memory
(DRAM)

Local secondary storage
(local disks)

Larger,  
slower, 
and 
cheaper 
(per byte)
storage
devices

Remote secondary storage
(e.g., Web servers)

Local disks hold files 
retrieved from disks 
on remote servers

L2 cache 
(SRAM)

L1 cache holds cache lines 
retrieved from the L2 cache.

CPU registers hold words 
retrieved from the L1 cache.

L2 cache holds cache lines
 retrieved from L3 cache

L0:

L1:

L2:

L3:

L4:

L5:

Smaller,
faster,
and 
costlier
(per byte)
storage 
devices

L3 cache 
(SRAM)

L3 cache holds cache lines
 retrieved from main memory.

L6:

Main memory holds 
disk blocks retrieved 
from local disks.
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¢ Cache: A smaller, faster storage device that acts as a staging area for a subset of the 
data in a larger, slower device.

¢ Fundamental idea of a memory hierarchy:
§ For each k, the faster, smaller device at level k serves as a cache for the larger, slower device at 

level k+1.

¢ Why do memory hierarchies work?
§ Because of locality, programs tend to access the data at level k more often than they access the 

data at level k+1. 
§ Thus, the storage at level k+1 can be slower, and thus larger and cheaper per bit.

¢ Big Idea:  The memory hierarchy creates a large pool of storage that costs as much 
as the cheap storage near the bottom, but that serves data to programs at the rate 
of the fast storage near the top.

Cache
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory
Larger, slower, cheaper memory
viewed as partitioned into “blocks”

Data is copied in block-sized 
transfer units. Blocks are large 
to exploit spatial locality

Smaller, faster, more expensive
memory caches a  subset of
the blocks

4

4

4

10

10

10

General Cache Concepts
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 14

14
Block b is in cache:
Hit!

General Cache Concepts: Hit
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0 1 2 3

4 5 6 7

8 9 10 11

12 13 14 15

8 9 14 3Cache

Memory

Data in block b is neededRequest: 12

Block b is not in cache:
Miss!

Block b is fetched from
memoryRequest: 12

12

12

12

Block b is stored in cache
• Placement policy:

determines where b goes
• Replacement policy:

determines which block
gets evicted (victim)

General Cache Concepts: Miss
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Cache Hierarchy in Real-Life CPU
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Cache Hierarchy in Real-Life CPU



Carnegie Mellon

150Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition

¢ Each memory access costs 100s of cycles (we assumed 1 cycle data memory access for simplicity)

¢ Cache hit cost 1– 4 cycles

¢ Cache miss costs close to 100 cycles

¢ Therefore, an in-order pipelined CPU stalls for 100 cycles when memory is busy

¢ Next steps
§ Aggressive in-order CPU that keeps doing useful work in the presence of cache miss (until a 

RAW hazard is unavoidable)
§ Out-of-order CPU that continues doing useful work in the presence of cache miss and RAW 

hazard

Real pipelines have caches and real 
memory latencies!


