
Convener: Shoaib Akram
shoaib.akram@anu.edu.au

Instruction-Level Parallelism (ILP)

2

Instruction-Level Parallelism (ILP)
§ Overlapping the execution of instructions is called instruction-level

parallelism

§ We have seen ILP by in-order pipelines
§ Scalar pipeline (partial overlap)
§ Superscalar pipeline (full overlap)

§ Full overlap requires multiple functional units and datapaths

§ ILP processors bet that many instructions in the program are independent
of each other

§ We will now see more aggressive ILP exploitation

Dependences and Hazards
§ Uncovering ILP aggressively requires understanding dependences

and hazards

§ Recall: Dependence is a program’s property

§ Recall: Hazard is a microarchitecture property

§ We have seen
§ Read-after write hazard (due to true dependences)
§ Control hazard (due to branches in programs)

1. LDR R2, [R6, #0]

2. ADD R3, R2, R5

§ Data or true dependence
§ 2 needs the result of 1

§ We have a single (dependent) instruction chain
1
2

True dependence

1. LDR R2, [R6, #0]

2. ADD R3, R2, R5

3. LDR R4, [R6, #0]

4. ADD R7, R4, R9

True dependences

§ Two independent instruction chains

1
2

3
4

1. LDR R2, [R6, #0]

2. ADD R6, R3, R5

Anti dependence

§ Anti dependence
§ 2 needs to write what 1 needs to read

§ “Fake” or “false” dependence
§ R6 in 2 can be replaced by (renamed to) R7 to eliminate the

(false) dependency

1. LDR R2, [R6, #0]

2. ADD R2, R7, R8

Output dependence

§ Output dependence
§ 1 and 2 wants to write to the same register

§ Again, it is a false dependence
§ We can rename register R2 in 2 to eliminate the dependence

Dependences and Hazards
§ True dependence results in

§ Read-after-write hazard (RAW)
§ Anti-dependence results in

§ Write-after-read hazard (WAR)
§ Output dependence results in

§ Write-after-write hazard (WAW)

§ Single-cycle CPU
§ None of the dependences result in a hazard (no concurrent execution)

§ Basic ARM 5-stage in-order pipeline
§ Multiple instructions in different stages (possibility of RAW)

§ The CPUs we study today will exhibit WAR and WAW hazards

From In-Order to Out-of-Order

10

In-Order Pipeline
§ In-order pipeline: Instructions are fetched, decoded, and executed in

program order

§ CPU does no reordering of instructions to avoid stalls or execute
independent instructions during a cache miss

§ The simple in-order pipeline we have seen exploits limited parallelism

§ It “completely” stall because of
§ Cache misses
§ Floating point multiply and divide

§ We will make it more aggressive and see that there is still a problem

§ Assume ARM 5-stage pipeline with a cache and realistic memory (100 cycles)

§ It has no option but to stall on a cache miss due to structural dependency
§ One ALU capable of executing “one operation” at a time
§ Memory can only handle “one request” at a time
§ If the MEM stage stalls, then EX stalls, and the entire pipelines stalls

§ We will use a different more “aggressive” in-order pipeline to understand
problem with in-order pipelines
§ Many ALUs and memory capable of handling multiple requests at a time
§ Eliminating the structural dependency and rearranging stages
§ Fetches, decodes, and issues one instruction in order every cycle to the

functional units, but many of them can be in execution in any cycle

ARM In-Order 5-Stage Pipe + Cache

§ Decode and register read stages are separate

§ Memory access happens in the execute stage

§ Memory can handle multiple memory requests

§ A data cache is used to exploit locality

§ Register read stage also implements the issue policy
§ Issuing is sending an instruction to the ALU for execution

when operands are ready

Stall-on-Use Pipeline Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

§ Assumptions about execute stage

§ Non-blocking execute stage (multiple functional units)

§ Many functional units (concurrent instruction execution)

§ Instructions do not stall due to structural dependency

§ Load is divide into:
§ address generation (agen)
§ data cache access (D$)
§ memory access (if load miss or cache miss)

Stall-on-Use Pipeline Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

FE
DE

RR
EX

WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

§ Assumptions about issue logic in RR stage:

§ RAW hazard: Instruction stalls if its source registers
are not ready

§ WAW: Instruction stalls if its destination register is
“busy”

§ WAR hazard: Not a problem in in-order pipelines. In-
order issue ensures read by first instruction happens
before write by second instruction

Scenario 1: Load miss followed by independent instructions

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE
i2
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i1

Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE
i2 FE
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i2

i1 Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR
i2 FE DE
i3 FE
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i3

i2

i1

Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@
i2 FE DE RR
i3 FE DE
i4 FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

i3

i2

i1

Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX
i3 FE DE RR
i4 FE DE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i5

i4

i3

i1
i2

miss

Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX WB
i3 FE DE RR EX
i4 FE DE RR

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i6

i5

i4

i1
i3

miss

i2

Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i7

i6

i5

i1
i4

i3

miss

Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i8

i7

i6

i1
i5

i4

miss

Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i1

Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR EX WB
i3 FE DE RR EX WB
i4 FE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i1

Scenario 1: load miss followed by independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, [R3, #1]

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

Aggressive in-order pipeline does work “underneath a load miss” to
hide the memory latency

Scenario 2: Load miss followed by dependent instruction,
followed by independent instructions

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE
i2
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

i1

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE
i2 FE
i3
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i2

i1 Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR
i2 FE DE
i3 FE
i4

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i3

i2

i1

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@

i2 FE DE RR
i3 FE DE
i4 FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

i3

i2

i1

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR RR
i3 FE DE DE
i4 FE FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

i3

i2

i1

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss…
i2 FE DE RR RR RR RR RR RR
i3 FE DE DE DE DE DE DE
i4 FE FE FE FE FE FE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

i3

i2

i1

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX
i3 FE DE DE DE DE DE DE RR
i4 FE FE FE FE FE FE DE

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i5

i4

i3

i1

i2

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX
i4 FE FE FE FE FE FE DE RR

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i6

i5

i4

i2

i3

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX WB
i4 FE FE FE FE FE FE DE RR EX

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i7

i6

i5

i3

i4

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX WB
i4 FE FE FE FE FE FE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

1 2 3 4 5 6 7 8 9 10 11 12 13
i1 FE DE RR EX@ EXD$ …miss… WB
i2 FE DE RR RR RR RR RR RR EX WB
i3 FE DE DE DE DE DE DE RR EX WB
i4 FE FE FE FE FE FE DE RR EX WB

Fetch

Decode

Register Read

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

i4

Scenario 2: load miss followed by dependent instruction, followed by
independent instructions

 i1: LDR R2, [R1, #0]

 i2: ADD R4, R2, #1

 i3: ADD R6, R5, #2

 i4: ADD R7, R6, #3

Even aggressive in-order pipeline cannot hide the latency of a load
miss when confronted with a RAW hazard. Independent
instructions wait, hindering ILP exploitation

§ i2 must wait for i1
§ i2 depends on i1

§ i3, i4 do not need to wait for the i1-i2 dependent chain (they are
independent)

§ But the i3-i4 chain stalls
§ Key insight: In-order issue translates into a structural hazard
§ RR stage (issue stage) blocked by the stalled i2

§ In-order issue policy is the problem
§ If a younger instruction has a RAW hazard with an older instruction (must stall

and it’s ok!)
§ What about instructions after it?

§ Some of the younger instructions may be independent
§ This is where the problem lies!

What have we established?

§ Out of order pipeline
§ An instruction stalls if it has a RAW hazard with a previous

instruction (that’s ok!)

§ Independent instructions after it do not stall: they may issue
out of program order (OOO)

Nature of OOO

§ OOO pipeline unblocks RR (issue) using a new instruction buffer for stalled
data-dependent instructions

§ It is called “reservation stations”, “issue buffer”, “issue queue”,
“scheduler”, “scheduling window”

§ Stalled instructions do not impede instruction fetch

§ Younger ready instructions issue and execute out of order with respect to
older non-ready instructions

§ Issue queue opens up the pipeline to future independent instructions
§ Tolerate long latencies (cache misses, floating point)
§ Exploit ILP better

Issue Queue

Dynamic Scheduling

§ Deciding the order in which instructions are executed, and each ordering is
called a schedule
§ The goal is to maximize ILP
§ All dependences must be respected

§ Static scheduling
§ Compiler decides the ordering of instruction execution
§ It relies on hardware for correct execution (hazard detection)
§ ARM 5-stage pipeline is statically scheduled
§ 2-way in-order superscalar we saw before is also statically scheduled

§ Dynamic scheduling
§ Hardware decides the ordering transparently to software
§ “Smart hardware, dumb software”

Instruction Scheduling

§ Dynamic scheduling: Deciding which instructions to execute next,
using extra hardware, possibly reordering them to avoid stalls

§ In a dynamically scheduled pipeline, instructions are issued in-
order but can bypass each other and execute out of order

§ Issue queue enables dynamically scheduled processors

§ Dynamically scheduled processors are superscalar, but we will
assume scalar execution to simplify illustration of principles

What is dynamic scheduling?

Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Out-of-Order Scalar Pipeline (v.1)

In-order fetch/dispatch engine

OOO issue/execute engine

Issue Queue (IQ)
insert instructions in order

remove instructions out of order

Version # 1: CDC 6600 Scoreboard
§ The idea of a scoreboard was introduced by Control Data

Corporation (CDC) in CDC6600 machine

§ New stages
§ Dispath stage
§ Issue stage

§ New components
§ Scoreboard
§ Common Data Bus (CDB)

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

tag (wakeup)

CDC 6600 Scoreboard (Key Additions)
§ Dispath stage

§ Copy the instruction from the RR/DI PPR to the issue queue (if there is
an empty slot in the queue)

§ Set v to 1 (means busy) for the occupied slot in the instruction queue

§ Issue stage
§ If both operands are ready, the issue stage sends the instruction to the

execution unit
§ Deallocate the issue queue entry by setting v = 0

§ Scoreboard
§ When an instruction has register rN as a destination (N = 0 – 7), set the

corresponding bit to 0 (NOT READY)
§ Instructions capture the tag if v=0 and value otherwise (from RF)

CDC 6600 Scoreboard (Key Additions)
§ How are instructions selected for execution?

§ The issue queue waits for destination tags to appear
§ When the destination tag appears, it wakes up all instructions waiting

for that tag
§ One of the “ready” instructions is sent to the execute next
§ Easy way to remember: Capture-Tag-And-Go-For-Execution

§ Common Data Bus (CDB)
§ The values are broadcasted over the CDB bypassing register file writes
§ This bus implements forwarding
§ Values are forwarded to the issue queue, register file, and execute stage

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0]
i2: ADD r4, r2, #1
i3: ADD r6, r5, #2
i4: ADD r7, r6, #3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE
i2: ADD r4, r2, #1
i3: ADD r6, r5, #2
i4: ADD r7, r6, #3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

i1

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE
i2: ADD r4, r2, #1 FE
i3: ADD r6, r5, #2
i4: ADD r7, r6, #3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

i2

i1

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR
i2: ADD r4, r2, #1 FE DE
i3: ADD r6, r5, #2 FE
i4: ADD r7, r6, #3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

i3

i2

i1 r2, #0, #44
★

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI
i2: ADD r4, r2, #1 FE DE RR
i3: ADD r6, r5, #2 FE DE
i4: ADD r7, r6, #3 FE

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #-7
r7 #345

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

data

i4

i3

i2

i1

r4, r2, #1
★

r2, #0, #44

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS
i2: ADD r4, r2, #1 FE DE RR DI
i3: ADD r6, r5, #2 FE DE RR
i4: ADD r7, r6, #3 FE DE

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 -
r7 #345

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 0
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 r2 1 #0 1 #44
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i4

i3

i1

r6, #15, #2

★
r4, r2, #1

i2

i1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@

i2: ADD r4, r2, #1 FE DE RR DI IS
i3: ADD r6, r5, #2 FE DE RR DI
i4: ADD r7, r6, #3 FE DE RR

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 -
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 0
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r2 1 #0 1 #44
1 r4 0 r2 1 #1
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i4

i2

r7, r6, #3

★r6, #15, #2

i3

i1 i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss …
i2: ADD r4, r2, #1 FE DE RR DI IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS
i4: ADD r7, r6, #3 FE DE RR DI

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 -
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 0
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r2 1 #0 1 #44
1 r4 0 r2 1 #1
1 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2 r7, r6, #3

i4

i1
i2

i3

💥

💥
 cache miss

r2, @44

i3

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 -
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 0
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 r7 0>1 r6 1 #3
1 r4 0 r2 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2

i1

i4

i4

💥

💥
 cache miss

r2, @44

i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss …
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS EX
i4: ADD r7, r6, #3 FE DE RR DI IS

i3
r6,
#15,
2

★ r6 ★

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #17
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
1 r4 0 r2 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2

i1

💥

💥
 cache miss

r2, @44

i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss …
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB
i4: ADD r7, r6, #3 FE DE RR DI IS EX

i4
r7,
#17,
3

★ r7

★

i3 r6, #17

★ ★

★ r6, #17

★

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
1 r4 0 r2 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2

i1

💥

💥
 cache miss

r2, @44

i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss …
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB
i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

i4 r7, #20

★ ★

★ r7, #20

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
1 r4 0>1 r2 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

i2

i1

💥

💥
 cache miss

r2, @44

i2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss …
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS IS IS IS
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB
i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

★ r2
★

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 -
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 0
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
0 r4 1 #666 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss … WB
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB
i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

★ r4

★ ★

★

★ r2, #666

i1 r2, #666

i2
r4,
#666,
#1

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #667
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
0 r4 1 #666 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss … WB
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX WB
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB
i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

★ ★

★ r4, #667

i2 r4, #667

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #667
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
0 r4 1 #666 1 #1
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss … WB
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS IS IS IS EX WB
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB
i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #667
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0
r1
r2
r3
r4
r5
r6
r7

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: FE DE RR DI IS EX@ EXD$ … miss … WB
i2: FE DE RR DI IS IS IS IS IS IS EX WB
i3: FE DE RR DI IS EX WB
i4: FE DE RR DI IS EX WB

What have we studied?
§ Dynamically scheduled superscalar processor

§ Hardware does “dynamic scheduling” during program execution

§ Can reorder instructions to extract maximum ILP

§ Hardware can construct different “instruction schedules” based on different
executions of the same sequence of instructions
§ To account for change in branch behavior

§ Dynamically scheduled processors extract ILP by gathering instructions in a large
instruction window and then performing dataflow analysis
§ If operands ready and no hazards, execute the instruction
§ Multiple independent instruction chains are in execution in any cycle

Two problems with OOO v.1
§ Cannot recover from misspeculation (aka misprediction)

§ Younger instructions are speculative with respect to older instructions
§ Possible to have older predicted branches that have not executed yet

§ Exceptions are not precise, i.e., register file is being updated out of the
original program order

§ Reverts to in-order when two producers have the same destination register
§ WAR and WAW lead to stalls
§ Must stall younger producer in Register Read stage until older producer

executes

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #7
r5 #15
r6 #17
r7 #20

Scoreboard
v

r0 1
r1 1
r2 1
r3 1
r4 1
r5 1
r6 1
r7 1

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 r7 1 #17 1 #3
0 - 1 #666 1 #0
0 r6 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss … WB
i2: BNE i7 FE DE RR DI IS IS IS IS IS IS EX
i3: ADD r6, r5, #2 FE DE RR DI IS EX WB
i4: ADD r7, r6, #3 FE DE RR DI IS EX WB

Can’t recover
original values

of r6, r7

Misprediction
detected

Can’t flush i3,
i4: they are
“long gone”

i1 r2, #666

★ r2, #666

i2 #666 != #0
branch to i7
mispredict

Register File
Fetch

Decode

Register Read

Dispatch

Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$

value
r0 #10
r1 #44
r2 -
r3 #33
r4 -
r5 #15
r6 #-7
r7 -

Scoreboard
v

r0 1
r1 1
r2 0
r3 1
r4 0
r5 1
r6 1
r7 0

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 r7 0>1 r2 1 #3
1 r4 0>1 r2 1 #1
0 r2 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

data

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RR DI IS EX@ EXD$ … miss …
i2: ADD r4, r2, #1 FE DE RR DI IS IS IS
i3: ADD r2, r5, #2 FE DE RR DI IS EX
i4: ADD r7, r2, #3 FE DE RR DI IS

Incorrect
handling of

WAW: i1 will
overwrite i3,

later

i3

what happens if we
do not stall i3 in RR
until i1 executes?

Correct
Wakeup: RAW

Incorrect
Wakeup: WAR

i2 i4

i1

💥

💥
 cache miss

r2, @44

i4
i2

★ r2

r2,
#15,
2

Precise Interrupts

70

Precise Interrupts
§ A interrupt is precise if

§ all instructions prior to the interrupt-generating instruction update the
architectural state in program order

§ the instruction generating the interrupt updates the architetcural state
in the same order as it would on a single-cycle in-order machine

§ To implement precise interrupts in a dynamically scheduled CPU, we need a
way to execute instructions OOO, but make them update the architectural
state in program order

Example

i1: ADD R0, R0, #4
i2: LDR R1, [R0, #0]
i3: ADD R2, R2, #1
i4: ADD R3, R3, #2
i5: ADD R4, R3, #1
i6: SUB R5, R1, #1

§ In an OOO processor (CDC 6600), the following scenario is perfectly legitimate
§ LDR is waiting for data from memory (cache miss)
§ i3, i4, and i5 have finished execution out of order

§ Later on, LDR generates a software exception (illegal memory address)
§ The CPU branches to the exception handler, setting PC to handler address
§ When handler is run, it should see the architectural state (RF) in a state consistent

with the sequential programming model
§ But the contents of RF reflect that i3, i4, and i5 have finished execution

§ We say that the exception is not precise, and CPU does not implement precise
exceptions (or interrupts)

Hardware Speculation

73

§ Combines four key ideas

§ Register renaming to avoid WAR and WAW hazards

§ Dynamic branch prediction to avoid control hazards

§ Dynamic scheduling to execute instruction OOO

§ Reorder buffer (ROB) for precise interrupts and recovery from
misprediction (misspeculation)

Hardware Speculation

Two Humps in a Modern Pipeline

n Hump 1: Reservation stations (scheduling window)
n Hump 2: Reordering (reorder buffer, aka instruction window

or active window)

75

F D

E

W
E E E E E E E E

E E E E

E E E E E E E E . . .

Integer add

Integer mul

FP mul

Load/store

R
E
O
R
D
E
R

S
C
H
E
D
U
L
E

TAG and VALUE Broadcast Bus

in order out of order in order

Photo credit: http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

S
C
H
E
D
U
L
E

R
E
O
R
D
E
R

http://true-wildlife.blogspot.ch/2010/10/bactrian-camel.html

Out-of-Order Pipeline (v.2)
§ Solution for WAR/WAW and (im)precise interrupts: Reorder Buffer (ROB)

§ ROB enables OOO execution, while at the same time supports recovery
from mispredictions and exceptions

§ ROB also implements register renaming
§ Rename non-unique destination tags (architectural register

specifiers) to unique destination tags (ROB tags)

§ Source tags are renamed as well, linking without ambiguity
consumers to their producers

§ No reverting back to in-order due to WAR and WAW hazards, as they
are eliminated after renaming

Renaming Example

i1: ADD R0, R7, #4
i2: ADD R1, R0, #1
i3: ADD R0, R8, #8
i4: ADD R2, R0, #1

i1: ADD ROB0, R7, #4
i2: ADD ROB1, ROB0, #1
i3: ADD ROB2, R8, #8
i4: ADD ROB3, ROB2, #1

§ Original sequence to the left. “Renamed sequence” is to the right
§ Each destination register is renamed to a unique ROB tag
§ Assuming R7 and R8 in RF are up to date

§ WAW b/w i1 and i3 is eliminated

§ All true dependences are still respected

§ ROB0, ROB1, are an expanded set of microarchitectural registers
§ They are not visible to the programmer (non-architectural)

Operation with ROB (1-Page Cheat sheet)
The “Register File” is replaced with an expanded set of registers split into two parts

§ Architectural Register File (ARF): Contains values of architectural registers as if produced by an in-order pipeline. That is, contains committed (non-
speculative) versions of architectural registers to which the pipeline may safely revert to if there is a misprediction or exception.

§ Reorder Buffer (ROB): Contains speculative versions of architectural registers. There may be multiple speculative versions for a given architectural register.
ROB is a circular FIFO with head and tail pointers

§ A list of oldest to youngest instructions in program order
§ Instruction at ROB Head is oldest instruction
§ Instruction at ROB Tail is youngest instruction

New Rename Stage (after Decode and before Register Read)
§ The new instruction is allocated to the ROB entry pointed to by ROB Tail. This is also its unique “ROB tag”.
§ Source register specifiers are renamed to the expanded set of registers, the ARF+ROB. Renaming pinpoints the location of the value: ARF or ROB, and where in

the ROB (ROB tag of producer). Thus, renaming unambiguously links consumers to their producers.
§ Destination register specifier is renamed to the instruction’s unique ROB tag.
§ Rename Map Table (RMT) contains the bookkeeping for renaming. (Intel calls it the Register Alias Table (RAT).)

Register Read Stage
§ Obtain source value from ARF or ROB (using renamed source)
§ If renamed to ROB, ROB may indicate value not ready yet

§ Producer hasn’t executed yet
§ Keep renamed source as proxy for value

§ A consumer instruction obtains its source values from ARF, ROB, and/or bypass, depending on situation:
§ ARF: if producer of value has retired from ROB
§ ROB: if producer of value has executed but not yet retired from ROB
§ Bypass: if producer of value has not yet executed

Writeback Stage
§ Instruction writes its speculative result OOO into ROB instead of ARF (at its ROB entry)

New Retire Stage safely commits results from ROB to ARF in program order
Misprediction/exception recovery

§ Offending instruction posts misprediction or exception bit in its ROB entry OOO
§ Wait until offending instruction reaches head of ROB (oldest unretired instruction)
§ Squash all instructions in pipeline and ROB, and restore RMT to be consistent with an empty pipeline

Expanded Registers
§ The “Register File” is replaced with an expanded set of registers split into

two parts

§ Architectural Register File (ARF): Contains values of architectural
registers as if produced by an in-order pipeline. That is, contains
committed (non-speculative) versions of architectural registers to which
the pipeline may safely revert to if there is a misprediction or exception.

§ Reorder Buffer (ROB): Contains speculative versions of architectural
registers. There may be multiple speculative versions for a given
architectural register.
§ ROB is a circular buffer with head (H) and tail (T) pointers

Register Renaming: Operational Details
§ New Rename Stage (after Decode and before Register Read)

§ The new instruction is allocated to the ROB entry pointed to by ROB Tail. This is also
its unique “ROB tag”

§ Source register specifiers are renamed to the expanded set of registers, the
ARF+ROB. Renaming pinpoints the location of the value: ARF or ROB, and where in
the ROB (ROB tag of producer). Thus, renaming unambiguously links consumers to
their producers.

§ Destination register specifier is renamed to the instruction’s unique ROB tag

§ Rename Map Table (RMT) contains the book-keeping for renaming. (Intel calls it the
Register Alias Table (RAT))

Register Renaming
§ Register Read Stage

§ Obtain source value from ARF or ROB (using renamed source)

§ If renamed to ROB, ROB may indicate value not ready yet
§ Producer hasn’t executed yet
§ Keep renamed source as proxy for value

§ A consumer instruction obtains its source values from ARF, ROB, and/or bypass,
depending on situation:
§ ARF: if producer of value has retired from ROB
§ ROB: if producer of value has executed but not yet retired from ROB
§ Bypass: if producer of value has not yet executed

Writeback, Retirement, and Recovery
§ Writeback Stage

§ Instruction writes its speculative result OOO into ROB instead of ARF (at
its ROB entry)

§ New Retire Stage safely commits results from ROB to ARF in program order

§ Misprediction/exception recovery
§ Offending instruction posts misprediction or exception bit in its ROB

entry OOO
§ Wait until offending instruction reaches head of ROB (oldest unretired

instruction)
§ Squash all instructions in pipeline and ROB, and restore RMT to be

consistent with an empty pipeline

Out-of-Order Scalar Pipeline (v.2)

Dynamic
Scheduler

Fetch, Decode,
and RF-Read

in-order issue to respect true
dependences

out-of-order execute for
maximizing ILP

Reorder Buffer

in-order retirement to update
the ARF in program order

Based on IBM 360/91

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0]
i2: BNEZ r2, i7
i3: ADD r2, r5, #2
i4: ADD r7, r2, #3

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PCvalue
rob0
rob1
rob2
rob3
rob4
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

Rename
Map Table
(RMT)

v
ROB
Tag

r0
r1
r2
r3
r4
r5
r6
r7

tag (wakeup)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE
i2: BNEZ r2, i7
i3: ADD r2, r5, #2
i4: ADD r7, r2, #3

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PCvalue
rob0
rob1
rob2
rob3
rob4
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup) HT

i1

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE
i2: BNEZ r2, i7 FE
i3: ADD r2, r5, #2
i4: ADD r7, r2, #3

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PCvalue
rob0
rob1
rob2
rob3
rob4
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup) HT

i1

i2

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN
i2: BNEZ r2, i7 FE DE
i3: ADD r2, r5, #2 FE
i4: ADD r7, r2, #3

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1

value
rob0
rob1
rob2
rob3 -
rob4
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

i3

i1

H
T

tag (wakeup)

★rob3, #0, r1 Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob3
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR
i2: BNEZ r2, i7 FE DE RN
i3: ADD r2, r5, #2 FE DE
i4: ADD r7, r2, #3 FE

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i1

H

T

tag (wakeup)

i3

i4

i2 Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob3
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

rob4, rob3, #0

rob3, #0, #44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI
i2: BNEZ r2, i7 FE DE RN RR
i3: ADD r2, r5, #2 FE DE RN
i4: ADD r7, r2, #3 FE DE

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i1

H

T

tag (wakeup)

i3

i4

i2

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

rob4, rob3, #0

rob3, #0, #44

★rob5, r5, #2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS
i2: BNEZ r2, i7 FE DE RN RR DI
i3: ADD r2, r5, #2 FE DE RN RR
i4: ADD r7, r2, #3 FE DE RN

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 rob3 1 #0 1 #44
0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i1

H

T

tag (wakeup)

i3

i4

i2

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

rob4, rob3, #0

★

rob5, #15, #2

i1

rob6, rob5, #3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@

i2: BNEZ r2, i7 FE DE RN RR DI IS
i3: ADD r2, r5, #2 FE DE RN RR DI
i4: ADD r7, r2, #3 FE DE RN RR

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob3 1 #0 1 #44
1 rob4 0 rob3 1 #0
0

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i4

i3

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

rob5, #15, #2

rob6, rob5, #3

i2i1 rob3, #0, #44

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss…
i2: BNEZ r2, i7 FE DE RN RR DI IS IS
i3: ADD r2, r5, #2 FE DE RN RR DI IS
i4: ADD r7, r2, #3 FE DE RN RR DI

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob3 1 #0 1 #44
1 rob4 0 rob3 1 #0
1 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i4

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

rob6, rob5, #3

i2
i1

i3

💥

💥
 rob3,

@44 miss

i3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss…
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX
i4: ADD r7, r2, #3 FE DE RN RR DI IS

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 0 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 -
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 rob6 0>1 rob5 1 #3
1 rob4 0 rob3 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

add r4, r2, r7

i1

i4

💥

i4
i2i3

★ rob5 ★

rob5, #15, #2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss…
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 0 0 0 i4

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 #17
rob6 -
rob7

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
1 rob4 0 rob3 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i5
Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 1 rob6

add r4, r2, r7

i1
💥

i2i4

★ rob6 ★

rob6, #17, #3

i3
rob5, #17

★ rob5, #17

★
★

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss…
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
1 rob4 0 rob3 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i5 Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

add rob7, rob5,
rob6

i1
💥

i2

★ rob6

i4
rob6, #20

★ rob6, #20
★

★

i3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss…
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 0 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 -
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
1 rob4 0>1 rob3 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2

H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

add rob7, #17,
#20

i1
💥

i2

★ rob3

i3 i4

★

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2
H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

add rob7, #17,
#20

★

i1

★ rob3, #0

★

i3 i4

rob3, #0

#0!=#0 is false, not-taken, no misp
rob4, #0, #0

★
rob4, #0, #0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #0
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

i2

★ rob4, no mispred

★

i3 i4

rob4, no misp

i1

★

i5

Don’t reset:
rob5 != rob3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #0
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

i3 i4i2

★ rob7

rob7, #17, #20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

i3 i4

rob7, #37

★

★

Reset:
rob5 == rob5

★★ rob7, #37

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #37
r5 #15
r6 #-7
r7 #20

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem H
T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 rob7
r5 0 -
r6 0 -
r7 0 rob6

i4

★
★

Reset:
rob6 == rob6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #37
r5 #15
r6 #-7
r7 #20

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 rob7
r5 0 -
r6 0 -
r7 0 -

★

★

Reset:
rob7 == rob7

HT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 1 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 1 0 0 i5

value
rob0
rob1
rob2
rob3 #0
rob4 -
rob5 #17
rob6 #20
rob7 #37

…
rob31

value
r0 #10
r1 #44
r2 #17
r3 #33
r4 #37
r5 #15
r6 #-7
r7 #20

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #0 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

v i1 (Fetch)

Cycle # 1

Cycle # 2
v i1 (Decode)
v i2 (Fetch)

Cycle # 3
v i1 (Rename)

1. Allocate entry for i1 in ROB at rob3
v Tail of ROB is at rob3

2. Rename the destination operand (r2) to rob3
3. Increment the tail pointer of ROB to rob4
4. Set v[r2]=1 in RMT
5. One source operand is a constant 0
6. Rename the second source operand r1 to ARF[r1] because

in RMT: v[r1]=0
v i2 (Decode)
v i3 (Fetch)

v The fetch is speculative as i2 is a branch and it may be taken
(our branch prediction strategy is always-untaken)

Cycle # 4
v i1 (Register Read)

1. Read the value of the second source operand from the
register file: ARF[r1] is 44

v i2 (Rename)
1. Allocate an entry for i2 in ROB at rob4
2. Rename the destination r2 to rob4
3. Move ROB tail to rob5
4. Rename the source operand r2 to rob3 because in RMT:

v[r2]=1
v Carry this tag to the issue queue (later) and wait for the

value to be produced by the producer (i1)
v i3 (Decode)
v i4 (Fetch)

Cycle # 5
v i1 (Dispatch)

1. Instruction is being copied into the issue queue
v There are free entries in the issue queue

v i2 (Register Read)
1. Nothing to read from register file (source operand is not ready)

v i3 (Rename)
1. Allocate an entry for i3 in ROB at rob5
2. Rename the destination r2 to rob5, keep v[r2]=1 in RMT
3. Move ROB tail to rob6
4. Rename the source operand r5 to ARF[r5] because in RMT:

v[r5]=0
v i4 (Decode)

Cycle # 6
v i1 (Issue)

1. Instruction is now inside the issue queue
v v=1 to indicate the slot in the issue queue has been occupied
v The scheduler will pick this instruction for execution (next cycle)
v Source operands ready (rs1 rdy=1 and rs2 rdy=1)

v i2 (Dispatch)
1. Instruction is being copied into the issue queue

v i3 (Register Read)
1. Read ARF[r5]=#15

v i4 (Rename)
1. Allocate an entry for i4 in ROB at rob6 (tail moves to r7)
2. Rename the destination r7 to rob6, set v[r7]=1 in RMT
3. Rename r2 to rob5 because in RMT: v[r2]=1

Cycle # 7
v i1 (Execute(Agen))

1. Instruction has been issued to the functional unit (agen) for address
calculation: source operands are #0 and #44

2. The corresponding issue queue slot has been freed (v=0)
v i2 (Issue)

1. Instruction is now inside the issue queue
v v=1 to indicate the slot in the issue queue has been occupied
v The scheduler will pick this instruction for execution when both

source operands are ready (rs1 rdy=0)
v i3 (Dispatch)

1. Instruction is being copied into the issue queue
v i4 (Register Read)

1. Nothing to read from register file (source operand is not ready)

Cycle # 8
v i1 (Execute(D$))

1. Instruction is checking the SRAM data cache for value
v i2 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard
v i3 (Issue)

1. Instruction is now inside the issue queue
v v=1 to indicate the slot in the issue queue has been occupied
v The scheduler will pick this instruction for execution next cycle as

source operands are ready (rs1 rdy=1 and rs2 rdy=1)
v ALU is free for executing another instruction

v i4 (Dispatch)
1. Instruction is being copied into the issue queue

Cycle # 9
v i1 (Execute(...miss...))

1. Cache miss is being resolved (data being read from main memory)
v i2 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard
v i3 (Execute)

1. Instruction is issued to the Tiny ALU (deallocated from issue queue)
2. At the end of the cycle, the instruction send its destination tag (rob5)

to the wakeup logic in front of the issue queue
v i4 (Issue)

1. Instruction is now inside the issue queue (will execute next cycle)
v v=1 to indicate the slot in the issue queue has been occupied
v rs1 rdy changes from 0 to 1 as the wakeup logic has been

notified of the availability of rob5; and rs2 rdy=1

Cycle # 10
v i1 (Execute(...miss...))

1. Cache miss is being resolved (data being read from main memory)
v i2 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard
v i3 (Writeback)

1. Instruction writes the result to its destination entry in the ROB (rob5)
2. Broadcasts the tag/value over the CDB to forward it to waiting insts.

v i4 (Execute)
1. Instruction is issued to the Tiny ALU (deallocated from issue queue)
2. At the end of the cycle, the instruction sends its tag (rob6) to the

wakeup logic

Cycle # 11
v i1 (Execute(...miss...))

1. Cache miss is being resolved (data being read from main memory)
v i2 (Issue)

1. Instruction remains in the issue queue due to a RAW hazard
v i3 (Retire)

1. Instruction is waiting to reach the head of ROB to update the ARF with
the value it has computed for r2

2. Since older instructions haven’t executed yet, and head of ROB is
blocked, i3 will wait for its turn to reach the head of ROB

v i4 (Writeback)
1. Instruction writes the result to its destination entry in the ROB (rob6)
2. Broadcasts the tag/value (rob6, #20) over the CDB to forward it to

waiting insts.

Cycle # 12
v i1 (Execute(...miss...))

1. Cache miss is resolved and instruction sends its dst. tag (rob3) to the
issue queue waking up i2

v i2 (Issue)
1. Instruction wakes up as its rs1 rdy changes from 0 to 1

v i3 (Retire)
1. Instruction is waiting to reach the head of ROB

v i4 (Retire)
1. Instruction is waiting to reach the head of ROB to update the ARF with

the value it has computed for r7
2. Since older instructions haven’t executed yet, and head of ROB is

blocked, i4 will wait for its turn to reach the head of ROB

Cycle # 13
v i1 (Writeback)

1. Instruction writes its result (0) to the dst entry in ROB at rob3
v i2 (Execute)

1. The branch condition is evaluated and there is no misprediction as the
branch is (after execution) not taken

2. Instruction grabbed r2 (renamed to rob3) from the CDB (forwarding)
v i3 (Retire)

1. Instruction is waiting to reach the head of ROB
v i4 (Retire)

1. Instruction is waiting to reach the head of ROB

Cycle # 14
v i1 (Retire)

1. Instruction is at the head of ROB and in the retire stage
2. Updates ARF[r2] with the value it has in its entry on ROB
3. It checks the ROB tag in RMT and since tag corresponding to r2 in

RMT is not rob3, it leaves the v bit unchanged
4. Increment ROB head (moves to rob4)

v i2 (Writeback)
1. No value to writeback as the instruction is a branch
2. Branch instruction sets the misp bit in ROB to 0 as the branch is not

taken, and the prediction was that branch is not taken
v i3 and i4 (Retire)

1. Instructions are waiting to reach the head of ROB

Cycle # 15
v i1 (null)

v Instruction has retired (its gone!)
v i2 (Retire)

1. Nothing to write to ARF, so just retire from the pipeline
2. Move head of ROB to rob5

v i3 and i4 (Retire)
1. Instructions are waiting to reach the head of ROB

Cycle # 16
v i1 (null)

v Instruction has retired (its gone!)
v i2 (null)

v Instruction has retired (its gone!)
v i3 (Retire)

1. Head of ROB so writes value (#17) to ARF[r2]
2. It checks the ROB tag in RMT and since tag corresponding to r2 in

RMT is rob5, it resets the v bit to 0
3. Move head of ROB to rob6

v i4 (Retire)
1. Instruction is waiting to reach the head of ROB

Cycle # 17
v i1 (null)

v Instruction has retired (its gone!)
v i2 (null)

v Instruction has retired (its gone!)
v i3 (null)

v Instruction has retired (its gone!)
v i4 (Retire)

1. Head of ROB so writes value (#20) to ARF[r7]
2. It checks the ROB tag in RMT and since tag corresponding to r7 in

RMT is rob67, it resets the v bit to 0
3. Move head of ROB to rob7

Instruction i5
v Cycle #9 (Fetch)

v Fetch is not blocked due to a branch and RAW hazard in the pipeline
v Cycle #10 (Decode)
v Cycle #11 (Rename)

1. Allocate entry at rob7 in ROB (increment the tail)
2. Rename two source operands to rob5 and rob6 because v[r2]and

v[r7] in RMT are 1
v Cycle #12 (Register Read)

1. Both renamed src operands are available in the ROB. Capture the values
v Cycle #13 (Dispatch)
v Cycle # 14 (Issue)à Selected to execute next cycle
v Cycle # 15 (Execute)à Wakeup waiting instructions
v Cycle # 16 (Writeback)
v Cycle # 17-18 (Retire) à Head = Tail (Done!)

Observations
§ Compared to scoreboard only

§ ROB did not degrade performance
§ Fetch did not stall as before (tolerated D$ miss)

§ In-order retirement did not impede OOO, speculative execution

§ Recovery
§ ROB was not called upon for recovery

§ But can see the danger of misprediction without ROB

§ Only leverages ROB for renaming

Recovery
Revise the previous scenario assuming mispredicted branch

§ i1 (load instruction) gets the value #666 instead of #0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #666
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob6 1 #17 1 #3
0 rob4 1 #666 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

i2
H

T

tag (wakeup)

i5

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

add rob7, #17,
#20

★

i1

★ rob3, #666

★

i3 i4

rob3, #666

#666!=#0 is true, taken, misp
rob4, #0, #0

★
rob4, #666, #0

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 1 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #666
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #11
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

1 rob7 1 #17 1 #20
0 rob4 1 #666 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

H

T

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 1 rob5
r3 0 -
r4 1 rob7
r5 0 -
r6 0 -
r7 1 rob6

i2

★ rob4, misp.

★

rob4, misp.

i5

i5

i3 i4i1

★

Don’t reset:
rob5 != rob3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #666
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #666 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

i2

Recover RMT by
flash-clearning
all valid bits

★

Flush ROB by
setting T=H

★

Flush all pipeline stages. (i5) They
contain younger instructions than
the ROB head, i.e., branch

★

In-order to Out-of-Order
Fetch

Decode

RF Read/Issue

Execute

Writeback

+ Big
ALUTiny

ALU

agen

D$
Mem

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$
Mem

Issue Queue (IQ)

Insert instructions in order

Expanded Register File:
 ARF (committed state) + ROB (speculative state)
 Provides for recovery and eliminated WAR/WAW

Remove instructions out of order

Commit instructions in-order from ROB to ARF

Architectural
Register File
(ARF)

Fetch

Decode

Rename

Register Read

Dispatch

Issue

Execute

Writeback

Retire

+ Big
ALUTiny

ALU

agen

D$

dst rdy exc misp PC

r2 1 0 0 i1
- 0 0 0 i2

r2 1 0 0 i3
r7 1 0 0 i4
r4 0 0 0 i5

value
rob0
rob1
rob2
rob3 #666
rob4 -
rob5 #17
rob6 #20
rob7 -

…
rob31

value
r0 #10
r1 #44
r2 #666
r3 #33
r4 #7
r5 #15
r6 #-7
r7 #345

v dst
tag

rs1
rdy

rs1
tag/value

rs2
rdy

rs2
tag/value

0 rob7 1 #17 1 #20
0 rob4 1 #666 1 #0
0 rob5 1 #15 1 #2

Issue Queue (IQ)

Common Data Bus (CDB)

Mem

HT

tag (wakeup)

Rename
Map Table
(RMT)

v
ROB
Tag

r0 0 -
r1 0 -
r2 0 -
r3 0 -
r4 0 -
r5 0 -
r6 0 -
r7 0 -

i2

i7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
i1: LDR r2, [r1,#0] FE DE RN RR DI IS EX@ EXD$ …miss… WB RT
i2: BNEZ r2, i7 FE DE RN RR DI IS IS IS IS IS IS EX WB RT
i3: ADD r2, r5, #2 FE DE RN RR DI IS EX WB RT RT RT RT RT
i4: ADD r7, r2, #3 FE DE RN RR DI IS EX WB RT RT RT RT
i5: Can fetch more insts FE DE RN RR DI IS EX
i7: FE

OOO Execution of Loads and Stores
§ Loads and stores also execute out of order

§ A load and a store can be done safely out of order, provided they access
different addresses

§ If a load and store access the same address, then the reordering could
result in a hazard

§ Load is before the store in program order (WAR)

§ Store is before the load in program order (RAW)

Speculative Load Execution
§ Load execute speculatively, i.e., before the addresses of all older stores are

known

§ Load searches for all speculative (older) stores with matching addresses
§ Load gets the “best it can get” (cache, main memory, ROB, RF,)
§ If it gets a stale value, recovery mechanism will save the day

§ On execution, store cancels all speculative (younger) loads with matching
addresses

§ In fact, once we have speculation support, we can predict other things
§ Speculating on register values (value prediction)!

IBM 360/91 Floating Point Unit
§ ARF+ROB is based on Tomasulo’s Algorithm (1967)

§ Execute multiple floating-point instructions concurrently

§ The original machine was imprecise (no ROB) and used issue queue
for renaming

§ It used “stall on branch,” hence exploited limited ILP

ARF + ROB Summary

Register
File

commit
r31

ROB values
rob127

rob87

rob31

r6

r5 =

r5 =

ßHead

ßTail

Rename
Map
Table
(RMT)

v ROB tag
r0

r31

r6

r0

ROB ready
bits

§ Physical register file = ARF + ROB
§ Committ values by moving ROB value at
 head into ARF

Recovery
§ Wait until exception/misprediction
 reaches head
§ T = H
§ Reset all “v” bits in RMT

Revision: Main Concepts
§ Dynamic branch prediction

§ Choosing which instructions to execute next
§ Speculation

§ Allowing the execution of instructions before control dependences are resolved (with
the ability to undo the effects of an incorrectly speculated sequence)

§ Dynamic scheduling
§ Dealing with the scheudling of different combinations of instructions
§ Dynamic scheduling with speculation exploits limited ILP as branches must resolve

prior to actually executing instructions in the predicted path
§ Register renaming

§ Renaming logical registers to an extended set of physical registers to avoid WAR/WAW
§ Hardware-based speculation

§ Dynamic branch prediction + dynamic scheduling + speculation
§ Renaming is an optional but important optimization

§ Precise interrupts
§ On an exception, the architectural state must correspond to the sequential execution

Modern Processor Design: Key to High Performance
§ Eliminate false dependences with register renaming

§ Use dynamic branch prediction to “speculatively” fetch instructions and fill
the issue queue with many instructions

§ Issue instructions out of order to keep all functional units busy

§ Use superscalar to fetch, decode,, issue “many instructions” each cycle

§ Key reason for above: Hide memory latency. Work underneath a cache miss

§ Waiting for memory KILLS performance. Memory accesses are common

Modern Processor Design: Key to High Performance
§ Remember: Not much ILP in a small instruction sequence (too

many dependences)

§ Remember: Need a large scheduling window (aka lots of slots in
the issue queue) to find independent instructions (with properly
sized ROB)

§ Modern processors use a variation on ARF+ROB approach

§ MUST understand prior designs to build new, better, ones for
emerging applications

A Historical Debate
§ Historical debate: How best to exploit ILP?

§ Dynamically in hardware (dynamic = during program execution)
§ Portable: no need to recompile code to run on a different processor
§ Hardware has more knowledge of program, e.g., loop counters, branch

directions, program inputs
§ Power, energy, and security issues

§ Statically in software (static = during program compilation)
§ Compiler can do whole-program optimizations
§ Compiler has more time to analyze code to find ILP
§ Compiler does not know about program inputs, so it needs to guess too much
§ A commercial failure

ILP Exploitation: Three Classes
§ Statically scheduled superscalar processor

§ Compiler reorganizes (schedules) instructions during program creation
§ Hardware does no reordering of instructions
§ Dependency checks in hardware
§ Compiler can rely on hardware for correct execution

§ VLIW (Very Long Instruction Word) processor
§ Static scheduling by compiler. Instruction words are very large. Up to 28 insts. in a bundle
§ Compiler does “very smart and deep” program analysis to construct “good instruction

schedules with high ILP”
§ Conceptually same as above. “Smart compiler, dumb hardware.”
§ No dependency checking in hardware

§ Dynamically scheduled superscalar processor
§ Hardware does scheduling during program execution (can reorder instructions for ILP)
§ Hardware can construct different “instruction schedules” based on different executions of the

same set of basic blocks (different branch outcomes)

