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Plan of Week 2

§ Week 1: Digital abstraction and binary digits

§ Week 1: Number systems for binary variables

§ This Week: Boolean logic & Logic gates (contd)

§ This Week: Combinational logic (more than just gates) 



Broadening our horizon
“one layer at a time”



Classification of Digital Circuits
§ Combinational Circuit:  Output depends only on the 

combination of input values
§ Memory-less (a distinct and critical feature)
§ All logic gates are combinational

§ Sequential Circuit:  Output depends on the current and 
history of inputs
§ The sequence of inputs over time determine the output
§ Sequential circuits have a state or memory
§ Example: Elevator controller (State: on the ground, in 

transit, at the top)
Section 2.1 of H&H



§ Example:  Suppose a combinational circuit, consisting of an 
AND gate, with two inputs, A and B

time à t0 t1 t2 t3 t4 t5 t6
A 0 1 1 0 1 0 1
B 0 1 0 0 1 0 1

Output 0 1 0 0 1 0 1

§ At time t6, the sequence of changes to A and B between t0 – t5 
is irrelevant.   

§ Output is strictly determined by the values of A and B at t6

Combinational Behavior



Combinational Circuits

Functional Spec
Timing Spec

§ Functional specification:  What is the behavior of the circuit?

§ What is the output for a given combination of input values?

§ Timing specification:  How long does the circuit takes to produce 
the output? 
§ Worst-case:  10 nanoseconds
§ Best-case:     1 nanoseconds

inputs outputs



Combinational Circuits

§ Hierarchy:  The top-level circuit, CL, is made up for of two 
combinational sub-circuits, CL1 and CL2 

§ Nodes:  n1 is an internal wire or node

inputs outputsCL1 CL2

n1

CL

§ Abstraction:  The input and output interface, and the 
functional and timing specification is enough for someone 
to use CL



§ Steps in implementing combinational Logic

§ Initial specification (e.g., in English)

§ Construct the truth table

§ Derive the Boolean equation

§ Simplify the Boolean equation (use Boolean algebra)

§ Implement the equation using logic gates

Implementing Combinational 
Logic

Functional 
specification



[Happiness detector] Alex is not happy if there is a work-related deadline 
or the beach is closed due to bad weather.  Design a circuit that outputs 1 
only if Alex is happy.  

[Multiplexer] Design a circuit with three inputs: D0, D1, select; and one 
output. The output is D0 if select is 0, and D1 if select is 1.  

[Half Adder] Design a circuit that adds two binary variables: A and B.  
The circuit has two outputs:  sum and carry-out (Cout).  

Specification

[Full Adder] Design a circuit that adds three binary variables: A, B, and a 
carry-in (Cin). The circuit has two outputs:  sum and carry-out (Cout).  



Constructing Truth Tables
§ Identify inputs and outputs (interface)

§ The interface may be implicit or require some thought

§ Write all the possible combinations of input values
§ For each input combination, determine the output
§ All inputs to the left, outputs to the right



Truth Table: Happiness Detector

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Specification: Alex is not happy if there is a work-related deadline or the 
beach is closed due to bad weather.  Design a circuit that outputs 1 only 
if Alex is happy. 

Interface
§ Deadline? (D)  

§ 0:  there is not a deadline
§ 1:  there is a deadline

§ Beach is closed? (B)  
§ 0:  open
§ 1:  closed

§ Happy (H): 1 à J, 0 à L

Truth Table



Truth Table: Beach
Specification: IF it is warm and sunny, OR it is my birthday, THEN I am 
going to the beach. Write the truth table where the output is 1 when I 
am going to the beach



Deriving a Boolean Equation
§ The truth table is the unique signature of a 

Boolean function
§ But it is an expensive representation

§ Why is that?



Deriving a Boolean Equation
§ Boolean equation is an alternative way to represent the 

function of a combinational logic block

§ Enables the systematic transformation of the function into 
simpler functions (using Boolean algebra, we will see later)
§ Different hardware implementations
§ The simplification process can be automated via Computer-Aided 

Design (CAD) and Electronic Design Automation (EDA)

§ Different Boolean expressions of the same Boolean function 
lead to different logic gate-level implementations
§ Different hardware area, cost, latency, energy properties



Definitions

Section 2.2 of H&H

¢ Complement: variable with a bar or prime (’) over it
𝑨 , 𝑩 , 𝑪, A’, B’, C’

¢ Literal: variable or its complement
𝑨 ,  𝑨 , 𝑩 , 𝑩 , 𝑪 , 𝑪 

¢ Implicant: product (AND) of literals
(𝑨 % 𝑩 % 𝑪) , (𝑨 % 𝑪) , (𝑩 % 𝑪)

¢ Minterm: product (AND) that includes all input variables
(𝑨 % 𝑩 % 𝑪) , (𝑨 % 𝑩 % 𝑪) , (𝑨 % 𝑩 % 𝑪)

¢ Maxterm: sum (OR) that includes all input variables
(𝑨 + 𝑩+ 𝑪) , (𝑨 + 𝑩+ 𝑪) , (𝑨 + 𝑩+ 𝑪)



Minterms

§ Each minterm is obtained from an AND term of n variables
§ Use prime of the variable if the bit is 0 and unprimed if 1
§ The subscript j in the symbol for each minterm (mj) denotes the decimal 

equivalent of the binary number of the minterm designated



Maxterms

§ Each maxterm is obtained from an OR term of n variables



Operation Precedence
§ NOT has the highest precedence 

§ Next is  AND

§ Last is  OR

§ Example:  Y = A + BC’
§ First, we find C’
§ Then, we find BC’ (product/AND)
§ Finally, we perform A + (the result of BC’)



Standardized Representations
§ Enable a single, universally agreed on way of 

representing a Boolean function from its truth 
table
§ Also called canonical representations

§ Sum of Products (SOP) form

§ Product of Sums (POS) form 



Sum of Products (SOP)
§ Sum of Products Form (SOP)

§ Also known as disjunctive normal form or minterm expansion
§ SOP is canonical/standard form of a Boolean function

§ We have a truth table of a Boolean Function F and we need to 
express the function in terms of inputs in a standard manner
§ Give it a unique algebraic signature

§ Truth table is an expensive representation
§ More compact and unique signature of a Boolean function

§ All Boolean equations can be written in SOP form



Key Idea of SOP
§ Express the truth table as a two-level Boolean expression

§ contains all input variable combinations that result in a 1 
output

§ if ANY of the combinations of input variables that result in 
a 1 is TRUE, then the output is 1

§ F = OR of all input variable combinations that result in a 1

§ Why does it work?
§ Output is 1 whenever the corresponding minterm is 1
§ Minterm is 1 when the corresponding input combinations 

result in the minterm evaluating to 1

All Boolean equations can be written in SOP form



Sum of Products Form (SOP)
Also known as disjunctive normal form or minterm expansion

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

All Boolean equations can be written in SOP form

• Each row in a truth table has a minterm
• A minterm is a product (AND) of literals
• Each minterm is TRUE for that row (and only that row)

𝑭 = #𝑨𝐁𝐂	 + 	 𝐀#𝑩#𝑪	 + 	 𝐀#𝑩𝐂	 + 	 𝐀𝐁#𝑪	 + 	 𝐀𝐁𝐂
𝐀 𝐁 𝐂 𝐅

Find all the input combinations (minterms) for which the output of the function is TRUE.

Two-Level Canonical Forms: SOP



0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1
n Only the shaded product term — 𝐀#𝑩𝐂   = 𝟏 % )𝟎 % 𝟏	— will be 1  

n No other product terms will “turn on” — they will all be 0

n So if inputs A B C correspond to a product term in expression,
q We get  0 + 0 + … + 1 + … + 0 + 0 = 1 for output

n If inputs A B C do not correspond to any product term in expression
q We get 0 + 0 + … + 0 = 0 for output 

0 1 1 1 0 0 1 0 1 1 1 0 1 1 1
𝑭 = #𝑨𝐁𝐂	 + 	 𝐀#𝑩#𝑪	 + 	 𝐀#𝑩𝐂	 + 	 𝐀𝐁#𝑪	 + 	 𝐀𝐁𝐂

𝐀 𝐁 𝐂 𝐅
This input

Activates
this term

The function evaluates to TRUE (i.e., output is 1) 
if any of the Products (minterms) causes the output to be 1

SOP Form – Why Does it Work?



111 = decimal 7 so this is minterm #7, or  m7

100 = decimal 4 so this is minterm #4, or  m4

n Standard “shorthand” notation
q If we agree on the order of the variables in the rows of truth 

table…
n then we can enumerate each row with the decimal number that 

corresponds to the binary number created by the input pattern

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

f =

= ∑m(3,4,5,6,7)

m3 + m4 + m5 + m6 + m7 We can write this as a sum of products

Or, we can use a summation notation

𝐀 𝐁 𝐂 𝐅

Standard Notation for SOP Form



Shorthand Notation for
Minterms of  3 Variables

F in canonical form:
F(A,B,C) = ∑m(3,4,5,6,7)

= m3 + m4 + m5 + m6 + m7

canonical form ≠ minimal form

2-Level AND/OR
Realization

 minterms
0 0 0             = m0
0 0 1   = m1
0 1 0  = m2
0 1 1  = m3
1 0 0  = m4
1 0 1  = m5
1 1 0  = m6
1 1 1  = m7

𝑭 = #𝑨𝐁𝐂	 + 	 𝐀#𝑩#𝑪	
                +	 𝐀#𝑩𝐂	 + 	 𝐀𝐁#𝑪	 + 	 𝐀𝐁𝐂

𝑭 = 𝐀#𝑩 𝑪 + #𝑪 +	 #𝑨𝐁𝐂 + 	 𝐀𝐁(𝑪 + #𝑪)

= 𝐀#𝑩 +	 #𝑨𝐁𝐂 + 	 𝐀𝐁

= 𝐀(#𝑩 + 𝑩) +	 #𝑨𝐁𝐂

= 𝐀 +	 #𝑨𝐁𝐂

= 𝐀 + 	𝐁𝐂

%𝑨%𝑩%𝑪	
%𝑨%𝑩𝑪
%𝑨𝑩%𝑪	
%𝑨𝑩𝑪
𝑨%𝑩%𝑪	
𝑨%𝑩𝑪	
𝑨𝑩%𝑪	
𝑨𝑩𝑪

𝐀 𝐁 𝐂

Canonical SOP Form



More SOP Examples
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SOP: Simple Example (1 minterm)

A B Y1 minterm name
0 0 0 A’B’ m0

0 1 1 A’B m1

1 0 0 AB’ m2

1 1 0 AB m3

To write the Boolean equation for a truth table, sum each of 
the minterms for which the output is 1  

Y1 = A’B

Y1 is 1 only when A = 0 and B = 1

Conversely, when A’ = 1 and B = 1  

Boolean Eq



A B Y1 minterm name
0 0 0 A’B’ m0

0 1 1 A’B m1

1 0 0 AB’ m2

1 1 1 AB m3

To write the Boolean equation for a truth table, sum each of 
the minterms for which the output is 1  

Y1 = A’B + AB

Y1 is 1 either when A = 0 and B = 1

OR, when A = 1 and B = 1

Y1 = ∑ 1,3   

Boolean Eq

SOP: Example (2 minterms)



SOP Summary
§ A Boolean function can be expressed algebraically from a 

given truth table 

§ by forming a minterm for each combination of the variables 
that produces a 1 in the function 

§ and then taking the OR of all those terms

§ The minterms whose sum defines the Boolean function are 
those that give the 1’s of the function in a truth table

§ The sum of products canonical form can also be written in 
sigma notation using the summation symbol, ∑ 𝒎𝟏,𝒎𝟐,…  



Equation: Happiness Detector
Specification: Mr. X is not happy if there is an assignment deadline, or 
their favorite bar is closed.  Design a circuit that outputs 1 only if Mr. X 
is happy. 

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq

H = (D)’ AND (B)’



From Equation to Gates
Schematic:  A diagram of a digital circuits with elements (gates) and the 
wires that connect them together

Y = AB’ + B’C’
Example Boolean Eq

Schematic
1. Inputs are on the left (or top) side
2. Outputs are on the right
3. Gates flow from left to right
4. Use straight wires
5. Wires connect at a T junction
6. A dot where wires cross indicates a 

connection



From Equation to Gates
§ Another example

𝒀 = 𝑨 , 𝑩 , 𝑪 + 𝑨 , 𝑩 , 𝑪 + 𝑨 , 𝑩 , 𝑪
BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

Key to remember: SOP form does NOT directly lead to minimal logic (next lecture)



Schematic: Happiness Detector
Specification: Mr. X is not happy if there is an assignment deadline, or 
their favorite bar is closed.  Design a circuit that outputs 1 only if Mr. X 
is happy. 

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H



Specification: Mr. X is not happy if there is an assignment deadline, or 
their favorite bar is closed.  Design a circuit that outputs 1 only if Mr. X 
is happy. 

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

Which (monolithic) gate 
is this?  

Schematic: Happiness Detector



Specification: Mr. X is not happy if there is an assignment deadline, or 
their favorite bar is closed.  Design a circuit that outputs 1 only if Mr. X 
is happy. 

D B H
0 0 1
0 1 0
1 0 0
1 1 0

Truth Table
H = D’B’
Boolean Eq Logic Gate Implementation

H = (D)’ AND (B)’
D

B
H

D
B H

Which (monolithic) gate 
is this?  Answer:  NOR gate

Schematic: Happiness Detector



Why does the happiness detector lack an OR gate in the two-
level representation as a gate-level schematic?

Schematic: Happiness Detector



Combinational Building Blocks 
used in Modern Computers

36



Multiplexers
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Multiplexer: T. Table + Eq 
Specification:  Circuit with three inputs: D0, D1, 
select (S), and one output (Y). The output is D0 if 
select is 0, and D1 if select is 1. 

S D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Truth Table

Y = S’D1’D0  +  S’D1D0  +  SD1D0’  +  SD1D0
Y = S’D0 (D1’ + D1)  +  SD1 (D0’ + D0)

=1 =1
Y = S’D0 (1)  +  SD1 (1)
Y = S’D0  +  SD1

Section 2.8.1 of H&H

Boolean algebra: 
Distribution of 
product over sums



The minimum you can do is write the 
truth table systematically and express 
the Boolean function using the SOP 

canonical form

But, remember, ...
canonical form ≠ minimal form



Multiplexer: Gate-Level Schematic
S D1 D0 Y
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

Y = S’D0  +  SD1 Gate-Level Schematic

Specification:  Design a circuit with three inputs: 
D0, D1, select (S); and one output (Y). The output 
is D0 if select is 0, and D1 if select is 1. 



2:1 Multiplexer (Mux)
§ A 2:1 multiplexer (mux)

§ Two data inputs (D0 and D1)
§ Another input called the select signal 
§ Output is either D0 or D1 depending on the value of select

§ We will use the high-level schematic for 2:1 
mux and ignore the gate-level implementation 
details

High-level Schematic



Multiplexer Applications
§ Heavily used in control circuitry

§ Decision making
§ Which of the many competing outcomes to select?

§ Select one of the many signals and send it to 
another unit

§ Think of if/else blocks in high-level programs



Wider (4:1) Multiplexer
§ A 4:1 mux has two select signals S0 and S1

§ A / and 2 implies a bus width of 2 to contrast with 1-bit wire 
or input

§ One option is to construct the truth table and derive the 
Boolean equations
§ How many rows will there be in the table? (tedious!)

§ Let’s use intuition to build a 4:1 mux from two 2:1 
multiplexers



S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer



0 0

S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer



1 0

S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer



0 1

S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer



1 1

S0 S1 Y
0 0 D0

1 0 D1

0 1 D2

1 1 D3

Wider (4:1) Multiplexer



Logic using Multiplexers
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Logic Using Multiplexers
§ Any truth table can be seen as a lookup table (LUT)

§ Lookup 00, and we see either 0 or 1 
§ It is like looking up a dictionary 

§ Muxes are used as LUTs to perform logic functions
§ Connect the data inputs to 0 or 1 
§ Use inputs (A/B) as select lines



Logic Using Multiplexers



§ Multiplexers can implement logic gate
§ For example, we can build a 2-input AND gate from a 2:1 multiplexer

§ Can be (re)programmed to perform any N-input logic function 

§ Key idea: Connect multiplexer inputs to 0 (zero/ground) or 1 
(high) by inspecting the truth table

A 2N-input multiplexer can be programmed to perform any N-input 
logic function by applying 0’s and 1’s to the appropriate data inputs

Logic Using Multiplexers



Multiplexer Logic: 3-Input Example



3-Input Lookup Table (LUT)
§ LUTs are building blocks of Field Programmable Gate 

Array (FPGA)

§ Many LUTs in an FPGA chip to implement logic functions 
with many variables

§ The data inputs are stored as configuration memory



3-Input Lookup Table (LUT)

input (3 bits)

output (1 bit)

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Configuration Memory

3-bit input LUT (3-LUT)
Data Input

Multiplexer (Mux): 
Chooses one of the 8 
data inputs that 
corresponds to the 3-bit 
select input



3-Input Lookup Table (LUT)

0

1

1

1

0

0

1

1

input (3 bits)

output (1 bit)

3

0 0 0

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

Configuration Memory

3-bit input LUT (3-LUT)
Data Input

Multiplexer (Mux): 
Chooses one of the 8 
data inputs that 
corresponds to the 3-bit 
select input



Modern FPGA



Modern FPGA

Reconfigurable 
interconnect

§ Each 3-LUT performs the subset of the logic function (N is large)
§ Signals are routed b/w CLBs using reconfigurable connections 



Topics Covered So Far
§ Binary number system
§ Transistor (basic building block)
§ Logic gates
§ Combinational circuits

§ English specification
§ Transformation to truth 

tables
§ Sum of Products (SOP)
§ Two-level implementation

§ Multiplexers & lookup tables



Continuing ....
§ More combinational circuits

§ Adders 
§ ALU
§ Decoder
§ Comparator
§ PLA
§ Tri-state buffer

§ Timing issues in combinational 
circuits

§ Logic minimization with Boolean 
algebra 



Adders & Timing in 
Combinational Circuits
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Half Adder

A B Cout S
0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 0

Specification:  Design a circuit that adds two binary variables: A and B.  
The circuit has two outputs:  sum and carry-out (Cout).  

Truth Table Boolean Eq Schematic

S = A’B + AB’
S = A ⊕ B

Cout = AB

Section 5.2.1 of H&H



§ Limitation of half adder:  No carry input

§ Problem: Adding multiple bits requires the need to add 
carry out from the previous column to the next column

§ Full adder solves the problem

§ Accepts three inputs, including a carry input

§ Signals flow from right to left reflecting the carry 
propagation in arithmetic circuits

1001
0101+
1110

1

Full Adder 



Full Adder: T. Table + Eq 
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Sum of products form != minimal form

unused minterm



Full Adder: T. Table + Eq 
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = Cin’A’B + Cin’AB’ + CinA’B’ + CinAB
Cout = Cin’AB + CinA’B + CinAB’ + CinAB



Full Adder: T. Table + Eq 
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = Cin’A’B + Cin’AB’ + CinA’B’ + CinAB
Cout = Cin’AB + CinA’B + CinAB’ + CinAB

S = A ⊕	B ⊕	Cin

Cout = Cin(A ⊕	B) + AB

Simplification via Boolean algebra



Full Adder: T. Table + Eq 
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Insight about Cout

§ 1 when both A and B are 1
§ Carry Generation (G)

§ 1 when there is a Cin and one of A and B is 1
§ Carry Propagation (P)

Cout = Cin’AB + CinA’B + CinAB’ + CinAB



Full Adder: Schematic
Cin A B Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

S = A ⊕	B ⊕	Cin

Cout = Cin(A ⊕	B) + AB

Half Adder Half Adder



§ What if we want to add two N-bit numbers?

Ripple Carry Adder 

1001
0101+
1110

1



Ripple Carry Adder 
§ What if we want to add two N-bit numbers?

§ Connect a chain of full adders from right to left

§ Ripple carry adder has a critical drawback!



Timing in Combinational Circuits
§ Every combinational circuit has a delay (seconds)

§ The time it takes for the output to reach a final stable value when the 
input changes (typically nanoseconds or picoseconds)

propagation delay

Section 2.9 of H&H



Examples
§ Inputs of the AND gate change from (0,0) to (1,1) 

§ Output of AND gate change from 0 to 1
§ How long does it take to for the output to change?

§ When A, B, and Cin are inputs to a full adder 
§ How long does it take to observe the final (and stable) S 

and Cout?



Examples of Timing/Delay

tXOR tINV tpath1 = tpath2

Each gate has 
a delay

Chain of gates: 
Sum the delay of 
each gate in the 
chain  2 X tINV

Multiple paths from 
input to output
tpath1 = tINV1 + tAND
tpath2 = tINV2 + tAND



Critical and Shortest Path
§ Most useful combinational circuits have multiple paths 

from input to output
§ Critical path: The slowest path (with longest delay)
§ Critical path limits the speed at which the circuit 

operates
§ In contrast, the shortest path is the fastest

§ For simplification, we will ignore the delay of nodes (wires)
§ Although the delay is non-trivial, it is studied best at 

the analog level of abstraction 

Section 2.9 of H&H



Multiplexer and Adder Delay

tmux tadder

§ Assume component-level delay and don’t worry about delay 
of individual gates (unless necessary)



Example (1)

§ The propagation delay of a combinational circuit is the sum of 
the propagation delays through each element on the critical 
path



Example (2)
Example Circuit

Critical Path

Shortest Path



§ If we abstract the delay of full adder as tFA, then what is the 
delay of the ripple carry adder, tripple?

tFA

tripple = N X tFA

§ The critical path consists of N full adders (slow when N is large)
§ The critical path runs through the chain of full adders
§ Every full adder is on the critical path

Drawback: Ripple Carry Adder

Section 5.2.1 of H&H



§ Motivation: When the delay of a circuit grows with the number 
of input bits, the design is not scalable 
§ We try to find a way to optimize the circuit to reduce the 

delay

§ Ideally, we want circuits that take constant time regardless of 
the input size 

§ Optimization: We try to optimize the circuit using intuition and 
insight and keep the delay reasonable
§ There is aways a tradeoff (nothing is free ....

Carry-Lookahead Adder

Section 5.2.1 of H&H



§ Another one in the class of carry propagate adders that 
accelerates carry generation

§ Insight of CLA: As soon as Cin is known, Cout for an k-bit ripple 
carry adder can be calculated

§ When do we have a carry out from a column?
§ A = 1 AND B = 1, Cout is 1 à Carry Generation
§ Cin = 1, A = 1 OR B = 1, Cout is 1 à Carry Propagation
§ Recursively combine G and P signals to compute the carry out

Carry-Lookahead Adder (CLA)

Section 5.2.1 of H&H



CLA Equations

Section 5.2.1 of H&H

one column

4-bit block



CLA Design

Specialized logic for 
fast carry generation

Optional study:  Section 5.2.1 of H&H



Things to Consider

§ Each CLA block is busy generating a carry for the next block 
simultaneously (in parallel)

§ Is there still a bottleneck in the design?  
§ What is the propagation delay of an N-bit carry-lookahead 

adder?



Lessons from CLA
§ Speed-Area Tradeoff: In digital systems, there is a tradeoff 

b/w performance (speed) and hardware cost (area/power)
§ CLA speeds up addition but requires extra logic gates 

that take up additional area and dissipate more power

§ Logic Specialization: Logic specialization for frequently used 
but slow tasks is often necessary
§ CLA uses specialized logic for fast carry generation



Decoders
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Decoders
§ N inputs and 2N outputs
§ For each input combination, only one of the outputs is 1 (one-hot)

§ It detects an input pattern and outputs a 1 corresponding to it 

Section 2.8.2 of H&H



Decoders

A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

2:4 Decoder Truth Table

§ N inputs and 2N outputs
§ For each input combination, only one of the outputs is 1

§ The outputs are affectionately called one-hot

Outputs

Inputs



Decoders

A1 A0 Y3 Y2 Y1 Y0

0 0 0 0 0 1
0 1 0 0 1 0
1 0 0 1 0 0
1 1 1 0 0 0

2:4 Decoder Truth Table and Boolean Equations

Y0 = A1’A0’
Y1 = A1’A0

Y2 = A1A0’
Y3 = A1A0

§ N inputs and 2N outputs
§ For each input combination, only one of the outputs is 1

§ The outputs are affectionately called one-hot



Decoders

Y0 = A1’A0’
Y1 = A1’A0

Y2 = A1A0’
Y3 = A1A0

Y3

Y2

Y1

Y0

A0A1

§ N inputs and 2N outputs
§ For each input combination, only one of the outputs is 1



Uses of Decoders
§ For each input combination, only one of the outputs is 1

Red 
Device 

Violet 
Device

Orange 
Device

Blue 
Device

EN

0

1
1



Uses of Decoders
§ For each input combination, only one of the outputs is 1
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Uses of Decoders
§ For each input combination, only one of the outputs is 1

Red 
Device 

Violet 
Device

Orange 
Device

Blue 
Device

0
0

EN

1



Uses of Decoders
§ Think of 00, 01, 10, and 11 codes as instructions to four 

different devices
§ Each device reacts to a specific instruction in a 

specific way

§ We have created a new 2-bit language
§ With an interpreter or decoder 

§ We will need the decoder for building the control unit of 
our QuAC computer that decodes instructions



Logic Using Decoders
§ Decoders can be combined with OR gates to build logic 

functions



PLA
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Programmable Logic Array (PLA)
§ SOP (sum-of-products) leads to 

two-level logic

§ Example: Y = A’B’C’ + AB’C’ + AB’C

BA C

Y

minterm: ABC

minterm: ABC

minterm: ABC

A B C

§ We can use a PLA to implement any N-input P-output function
§ PLA is built once in the factory and programmed later in the 

house to implement any logic function
Section 5.6.1 of H&H 98



Programmable Logic Array (PLA)
§ Common building block for implementing any collection of logic 

functions

§ An array of AND gates followed by 
      an array of OR gates

§ How many AND gates?
§ Recall SOP: the number of possible minterms

§ How many OR gates?
§ The number of output columns in the truth table

A

B

C

X

Y

Z

Connections

Section 5.6.1 of H&H 99



Programmable Logic Array (PLA)
§ How do we implement a logic 

function?
§ Connect the output of an AND 

gate to the input of an OR gate if 
the corresponding minterm is 
included in the SOP

§ Programming a PLA: we program the 
connections from AND gate outputs 
to OR gate inputs to implement a 
desired logic function

A

B

C

X

Y

Z

Connections

Section 5.6.1 of H&H 100



Programmable Devices

101

§ Programmable devices we have talked about 

§ CPU/processor (programmed using instructions 
stored in memory, aka, executable file) 

§ FPGA (programmed by storing bits inside LUTS, 
aka, bit file)

§ PLA (programmed by burning fuses)



PLA Example (I)

§ M inputs, N implicants, and P outputs
§ Chips are manufactured in bulk with the same layout (low cost)
§ Programmed once to implement the required function by programming connections

102



PLA Example (II)

Section 5.6.1 of H&H

Dot Notation

103

Fuse to burn



PLA Example (III)

Implementation: Pick the literals & implicants by programming connections
104



Full Adder Implementation w/t PLA

ai

bi

ci
ci+1

si

X

A

B

C

X

Y

Z

Connections

ai bi Si
0 0 0
0 1 0

10 0
11 1

carryi carryi+1
0

0
0

0
1
1
1
1

0
1

1
1 1

0
0

0

0
1
1
1

0
1
1
0
1
0
0
1

Truth table of a full adder

This input should not be
connected to any outputs We do not need

this output

Implementation: Pick the implicants by programming connections 105



Lessons from PLA

§ Programmability: Programmable devices incur a cost 

§ Some logic in PLA is redundant if a subset of minterms 
are needed 

§ On the other hand, PLAs can be programmed after bulk 
manufacturing which is their key programmability 
advantage
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ALU
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Arithmetic and Logic Unit (ALU)
§ The circuits we have looked so far can do one useful thing

§ XNOR gate performs equality testing
§ Adder performs addition
§ Multiplexer performs selection

§ ALU is our first general purpose circuit 
§ Performs a variety of arithmetic/logical operations
§ ADD, SUB, AND, OR, XOR, ....

§ It has a 2-bit control input
§ The language ALU speaks or the instructions it understands

N-bit ALU

Section 5.2.4 of H&H



ALU Interface/Instructions
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

§ N-bit data inputs and outputs

§ 2-bit control input (ALUControl)
§ Specifies one of four functions
§ Setting ALUControl to 00, 01, 10, and 11 

is giving ALU instructions

§ The assignment of binary codes to 
ALU functions is not arbitrary
§ It is clever (01 for Subtract in particular) 

as we will reveal



ALU Implementation
ALUControl1:0 Function
00 Add
01 Subtract
10 AND
11 OR

N-bit Add-subtract 
circuitry

N-bit Logic circuitry
AND, OR

4:1 multiplexer

control signals

data inputs/signals



Add-Subtract Circuitry
§ A + B 

§ Normal addition

§ A – B 
§ A + (–B) 
§ In 2’s complement, –B = B’ + 1
§ An inverter performs B’
§ We send ALUControl0 as the carry input of the adder
§ ALUControl0 is 1 when the ALU function is Subtract



The Nature of Hardware
§ Parallelism: Hardware is inherently parallel

§ All logic gates in the ALU work in parallel when the circuit is presented 
with valid input 

§ Redundancy: Generality leads to redundancy
§ ALU is a general-purpose circuit that can perform a variety of operations. 

Some work/effort is wasted
§ The output of OR/AND is wasted when ALUControl is 01 

§ Control: Control circuitry comes with a cost
§ ALU consumes more area than the individual functional units it combines 

(4:1 multiplexer is for controlling output)



ALUFLAGS
§ We need meta-information about the ALU result

§ Is the result negative (N)?
§ Is the result zero (Z)?
§ Is there a carry out (C)?
§ Is there an overflow (V)?

§ Many scientific algorithms rely on flags for the next step
§ If overflow: discard result, and redo
§ Carry out is the carry in for another operation
§ If the result is negative: do {...}; else do {...} 

N Z C V

Flags are only relevant for arithmetic operations 
(ALUControl1 = 0)



ALUFLAGS
§ Negative

§ Check the MSB of result 

§ Zero
§ NOR all bits of the result (same as invert then AND)

§ Carry
§ AND ALUControl1 with Cout from the adder 

§ Overflow
§ Option # 1:  Use A and B to compute overflow
§ Option # 2:  Use A and the output of 2:1 multiplexer to compute 

overflow  

N Z C V



Option # 1 for Overflow

ALControl0 A31 B31 S31

Scenario # 1 0 (Add) 0 0 1

Scenario # 2 0 (Add) 1 1 0

Scenario # 3 1 (Subtract) 0 1 1

Scenario # 4 1 (Subtract) 1 0 0

Case # 1 in plain English: When doing A + B , if A and B are +ve, and the sum is –ve 

Case # 2: A + B, if A and B are –ve, and the sum is +ve 

Case # 3: A – B, if A is +ve and and B is –ve, and the sum is –ve 

§ The following scenarios generate overflow: overflow flag is 1

Case # 4: A – B, if A is –ve and and B is +ve, and the sum is +ve 



Option # 1 for Overflow

ALControl0 A31 B31 S31

Scenario # 1 0 (Add) 0 0 1

Scenario # 2 0 (Add) 1 1 0

Scenario # 3 1 (Subtract) 0 1 1

Scenario # 4 1 (Subtract) 1 0 0

§ Overflow is 1 whenever there is an even number of 1’s among ALUControl0, A31, and B31
§ XNOR ALUControl0, A31, and B31 

§ Overflow is 1 whenever A31 and S31 are different
§ XOR A31 and S31 

§ The following scenarios generate overflow: overflow flag is 1



Option # 1 for Overflow



Option # 2
§ Use A and the output of 2:1 mux

§ B if the instruction is an Add and –B if the instruction is a subtract 

§ Easy to reason conceptually
§ If A – B is the same as A + (–B) then everything is an add
§ There is no need to consider subtract separately when reasoning about 

overflow generation

§ The circuitry is also much simpler
§ Homework assignment:  Figure out the circuitry for overflow generation 

with option # 2



ALU Timing Analysis

Element Delay

Inverter tINV = 1 ps

2:1 Mux tmux2 = 5 ps

4:1 Mux tmux4 = 8 ps

Adder tadder = 14 ps

AND tAND = 2 ps

OR tOR = 2 ps

picoseconds (10–12 seconds) = ps

§ Find tResult in ps for the four ALU functions.  (Ignore overflow generation)
§ Which function takes the longest time (and is the critical path)? Ignore wire delay

§  Express tResult in the form of an equation for Add and Subtract.  What is the difference? 

Homework



Comparator
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Comparator (Equality Checker)
§ Checks if two N-input values are exactly the same

§ Example: 4-bit Comparator

§ What about magnitude comparison 
(relative values of A and B)?



Tri-State Buffer
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Tri-State Buffer
§ A tri-state buffer enables gating of different signals onto a 

wire

A tri-state buffer acts 
like a switch but can 
pass both 0’s and 1’s if 
E is asserted

Section 2.6.2 of H&H



Tri-State Buffer
§ A tri-state buffer enables gating of different signals onto a 

wire

§ When E is HIGH, the output Y is whatever A is
§ Same behavior as a regular buffer

A tri-state buffer
acts like a switch



Tri-State Buffer
§ A tri-state buffer enables gating of different signals onto a 

wire

§ When E is LOW, output is a floating signal (Z) 
§ Floating: Signal not driven by any circuit (open circuit, floating wire)

A tri-state buffer
acts like a switch



Use of Tri-State Buffers
§ Imagine a wire shared by the CPU and memory or two I/O 

peripherals

§ At any time, only one of them can place a value on the 
wire, but not both

§ Use two tri-state buffers 
§ One driven by CPU, and one driven by memory
§ Ensure at most one is enabled at any time



Example: Use of Tri-State Buffers

CPU

Memory

GateMem

GateCPU

Shared Bus



Another Example



Recall: A 4:1 Multiplexer



Multiplexer Using Tri-State Buffers



Combinational 
 Composition Rules
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Combinational Composition Rules
§ Every circuit element is itself combinational

§ Each node is either an input to the circuit or connects to 
exactly one output terminal of a circuit element

§ The circuit contains no cyclic paths. Every path through the 
circuit visits each circuit node at most once



Which circuits are combinational?

Assume n5 is 0 
and the other 
input of XOR is 1



We Study Boolean Algebra for
   Logic Minimization

Because we care about minimizing area, cost, logic complexity, energy, footprint, ...
134



Boolean Algebra (Logic Minimization)
§ The sum-of-products (SOP) canonical form does not lead 

to the simplest logic gate implementation 

§ We can eliminate some minterms à Less # logic gates

§ We can reduce the # literals in minterms à Smaller gates

§ We use Boolean algebra to simplify Boolean equations
§ Similar in spirit to simplification in ordinary algebra except we are 

dealing with 0 and 1 (much easier)

Section 2.2 of H&H
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Boolean Algebra
§ Boolean algebra consists of

§ Axioms (correct by definition)
§ Theorems of one variable
§ Theorems of several variables

§ Any theorem can be proved via the axioms
§ An axiom is the ground truth and cannot be proven wrong

§ The Principle of Duality
§ If the symbols 0 and 1 and the operators AND and OR are 

interchanged, the statement will still be correct

136



Boolean Axioms

Dual:  Replace: • with + 
       0 with 1

Number Axiom Dual Name
A1 B = 0 if B ≠ 1 B = 1 if B ≠ 0 Binary Field
A2 0 = 1 1 = 0 NOT
A3 0 • 0 = 0 1 + 1 = 1 AND/OR
A4 1 • 1 = 1 0 + 0 = 0 AND/OR
A5 0 • 1 = 1 • 0 = 0 1 + 0 = 0 + 1 = 1 AND/OR

137



Boolean Theorems of One Variable
Number Theorem Dual Name
T1 B • 1 = B B + 0 = B Identity
T2 B • 0 = 0 B + 1 = 1 Null Element
T3 B • B = B B + B = B Idempotency
T4 B = B Involution
T5 B • B = 0 B + B = 1 Complements

Dual:  Replace: • with + 
       0 with 1
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Theorems: Several Variable
# Theorem Dual Name
T6 B•C = C•B B+C = C+B Commutativity

T7 (B•C) • D = B • (C•D) (B + C) + D = B + (C + D) Associativity

T8 B • (C + D) = (B•C) + (B•D) B + (C•D) = (B+C) (B+D) Distributivity

T9 B • (B+C) = B B + (B•C) = B Covering

T10 (B•C) + (B•C) = B (B+C) • (B+C) = B Combining

T11 (B•C) + (B•D) + (C•D) =
(B•C) + (B•D)

(B+C) • (B+D) • (C+D) =
(B+C) • (B+D)

Consensus

Warning: T8’ (dual of T8) differs from traditional algebra: OR (+) 
distributes over AND (•)
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Proving Theorems
§ Method 1: Perfect induction

§ Proof by exhaustion: Check all possible input combinations 
§ Two expressions are equal if they produce the same value for every 

possible input combination

§ Method 2: Use other theorems/axioms to simplify 
equations
§ As in ordinary algebra, make one side of the equation look like the 

other side of the equation

140



Example: Perfect Induction

0         0
0         0
0         0
1         1

Number Theorem Name
T6 B•C = C•B Commutativity

0         0
0         1
1         0
1         1

B         C       BC      CB
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Example: Perfect Induction
Number Theorem Name
T9 B• (B+C) = B Covering

0           0
1         0
1         1
1         1

0         0
0         1
1         0
1         1

B         C      (B+C)      B(B+C)
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Method 2: T9 (Covering)
Number Theorem Name
T9 B• (B+C) = B Covering

Method 2: Prove true using other axioms and theorems.
B•(B+C) = B•B + B•C  T8: Distributivity
   = B + B•C   T3: Idempotency
   = B•(1 + C)   T8: Distributivity
   = B•(1)    T2: Null element
   = B     T1: Identity
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Method 2: T10 (Combining)

Number Theorem Name
T10 (B•C) + (B•C) = B Combining

Prove true using other axioms and theorems:
   B•C + B•C = B•(C+C)     T8: Distributivity
     = B•(1)     T5’: Complements

    = B      T1: Identity
144



Simplifying Boolean Equations
§ A basic principle for simplifying sum-of-product equations

§ PA + PA’ = P
§ P is any implicant
§ Y = A’B + AB = B(A’+A) = B(1) = B

§ An equation is minimized if
§ it uses the fewest number of implicants
§ if there are multiple equations with the same number of 

implicants, then the one with the fewest literals

Section 2.2 of H&H
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Simplification Example – 1 
Y = AB + AB’
 Y = A  T10: Combining

or
       = A(B + B’)  T8: Distributivity
       = A(1)    T5’: Complements
       = A     T1: Identity
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Simplification Example – 2 
Y = A(AB + ABC)
       = A(AB(1 + C))  T8: Distributivity
       = A(AB(1))   T2’: Null Element
       = A(AB)    T1: Identity
    = (AA)B    T7: Associativity
       = AB     T3: Idempotency
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Simplification Example – 3A 
Y = AB’C + ABC + A’BC 
      = AC(B + B’) + A’BC  T8: Distributivity
      = AC(1) + A’BC   T5: Complements
      = AC + A’BC         T1: Identity

§ The two implicants AC and BC share the minterm ABC

§ Are we stuck with simplifying only one of the minterm pairs?
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Simplification Example – 3B
Y = AB’C + ABC + A’BC 
      = AB’C + ABC + ABC + A’BC T3’: Idempotency
      = (AB’C+ABC) + (ABC+A’BC) T7’: Associativity
      = AC + BC      T10: Combining

§ The two implicants AC and BC are called prime implicants

§ They cannot be combined with any other implicants in the 
equation to get a new implicant with fewer literals
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Simplification Example – 4 
Y = A’B’C’ + AB’C’ + AB’C 
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De Morgan’s Theorem
# Theorem Dual Name
T12 B0•B1•B2… = 

B0+B1+B2…
B0+B1+B2… = 
B0•B1•B2…

DeMorgan’s 
Theorem

§ The complement of the product is the sum of the 
complements

§ Dual: The complement of the sum is the product of the 
complements

Section 2.2 of H&H
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De Morgan’s Theorem
A
B Y

A
B Y

A
B Y

A
B Y

§ Y = AB = A + B

§ Y = A + B = A   B
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Bubble Pushing Rules
§ Pushing bubbles backward/forward changes the body of 

the gate from AND/OR to OR/AND

§ Pushing a bubble from output back to inputs put bubbles 
on all gate inputs

§ Pushing bubbles on all gate inputs forward towards the 
output puts a bubble on the output

Section 2.5.1 and 2.5.2 of H&H
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Bubble Pushing Example
A
B

C Y
D

A
B

C

D
Y

bubble on
input and outputA

B

C

D
Y

A
B

C Y
D

Y = ABC + D

no output
bubble

no bubble on
input and output
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Priority Circuit
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Priority Circuit
§ Priority circuit

§ Inputs: “Requestors” with priority levels
§ Outputs: “Grant” signal for each requestor

§ Example: n-bit priority circuit
§ Room reservation system
§ Computer bus demanded by four CPUs

Example 2.7 of H&H

Requestors Grant Signals
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Priority Circuit

Y3 = A3

Y2 = A3’A2

Y1 = A3’A2’A1

Y0 = A3’A2’A1’A0

X (Don’t Care) means We don’t care what the 
value of this input is
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Logical Completeness
§ Any logic function can be implemented with a PLA

§ PLA needs only AND, OR, and NOT gates

§ The set of gates {AND, OR, NOT} is logically complete 
because we can build a circuit from a truth table without 
needing any other gate
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Logical Completeness of NAND
§ Can we implement a NOT gate using a NAND gate?
§ What about implementing AND gate using NAND gate ?
§ What about implementing OR gate using NAND gate?

§ If all of above is true, then we can build computers from 
one gate only, the NAND gate

§ Prove yourself that NAND is logically complete

§ Most computer today are built using billion of NAND gates
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Optional Self-Study
§ Product of Sums (POS)

§ Interesting but not entirely needed if you understand 
SOP well

§ Follows from Demorgan

Section 2.2.3 of H&H
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Alternative Canonical Form: POS
§ Product of Sums (POS)

§ DeMorgan of SOP of 2𝑭

§ Find all the input combinations (maxterms) for which the 
output of the function is FALSE

§ The function evaluates to FALSE (i.e., the output is 0) if any 
of the Sums (maxterms) causes the output to be 0
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Alternative Canonical Form: POS

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1

For the given input, only the shaded sum term 
will equal 0 

Anything ANDed with 0 is 0; Output F will be 0

Product of Sums (POS)

0  0    0 0  0   1
sums

product

𝑭 = (𝑨 +𝑩+ 𝑪)(𝑨 + 𝑩+ )𝑪)(𝑨 + )𝑩+ 𝑪)

𝑭 = 𝑨+𝑩+ 𝑪 	 𝑨 + 𝑩+ )𝑪 	 (𝑨 + )𝑩+ 𝑪)𝐀 𝐁 𝐂 𝐅

Each sum term represents one of the 
“zeros” of the function

This input

Activates this term

𝑨+ )𝑩+ 𝑪 = 𝟎+ )𝟏 + 𝟎

0  1 0
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Consider A=0, B=1, C=0
𝐀 𝐁 𝐂 𝐅
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 1
1 1 0 1
1 1 1 1 1 1 0

𝑭 = (𝑨 +𝑩+ 𝑪)(𝑨 + 𝑩+ )𝑪)(𝑨 + )𝑩+ 𝑪)

𝑭 = 𝟎

𝟎	 )𝟏	 𝟎𝟎	 𝟏	 )𝟎𝟎	 𝟏	 𝟎

0  1  0
Input

Only one of the products will be 0, anything ANDed with 0 is 0

Therefore, the output is F = 0
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Optional Self-Study
§ More combinational circuits

§ Shifters 
§ Rotators
§ Multiplication
§ Division
§ FPGAs

Section 5.2.5, 5.2.6, 5.2.7, 5.6.2 of H&H
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What We Have Done So Far
§ Building blocks of modern computers

§ Transistors
§ Logic gates

§ Combinational logic fundamentals

§ Boolean algebra

§ Using Boolean algebra to implement combinational circuits

§ Basic combinational logic blocks

§ Simplifying combinational logic circuits
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