COMP2300-COMP6300-ENGN2219
Computer Organization &
Program Execution

Convener: Shoaib Akram
shoaib.akram@anu.edu.au

“ Australian
‘ » National

Our Status

= We are done with digital logic fundamentals that we need
to understand and build a CPU

= We are now (+ next week) at
" Architecture layer

" Then
" Microarchitecture layer

Application [>"hello R
Software world!” 9
Operating Device
Systems Drivers
. NN nstructions
Architecture == — :
usmmmmmm | Registers
Micro- Datapaths
architecture Controllers
: - Adders
+
Logic 0 — 0 Memories
Digital AND Gates
Circuits Z.’O NOT Gates
Analog Amplifiers
Circuits Filters
Devices Transistors
Diodes
Physics % Electrons

ISA then microarchitecture

Admin

" Quiz #1 has been marked
= We will take the best two of four quizzes

= Marking of the checkpoint is underway
= Assignment 1 will be released this week

" Some % of assignment 1 grade comes from work you
are doing in Labs 4 — 6

Von Neumann Model

Recall: A Computer System

Key resources: CPU, memory, and Input/Output (1/0) devices

CPU (microprocessor) does the actual processing (computation)

Memory stores temporary data and forms a hierarchy (registers, SRAM, DRAM, ...)
Some fast (small capacity) memory called register file is close to the CPU and rest is far
Storage disk is an I/O device (much slower than memory, stores persistent data)
Memory is volatile, while disk is non-volatile (data is retained after a shutdown)

Other peripherals such as keyboard and network card are accessories to processing

l |/O Peripherals
X |

Storage

@

Another View: What is a Computer?

" Basic computer model proposed in the 1940s

Processing Main

Control Memory

(Sequencing) “ Input/Output (1/0)
1. Program

Datapath 2. Data

= We will cover all three components

Building up a Basic Computer Model

" |n past lectures, we learned how to design Problem
= Combinational logic structures
= Sequential logic structures

Algorithm

Program in C/Java

» With logic structures, we can build Runtime System
= Execution units (Operating system)
= Decision units _
= Memory/storage units Microarchitecture

= Communication units
= All are basic elements of a computer

Electrons

= We will raise our abstraction level today
= Use logic structures to construct a basic computer model

Building up a Basic Computer Model

ISA: Specification of the instructions computer

can perform

= An interface between the programs and hardware
= Programmer needs to know ISA to be able to convey his wishes

(instructions) to the hardware
= Hardware builder (computer architect) needs to know the ISA to be

able to build and organize circuits to carry out the instructions

Microarchitecture: Circuit implementation of
the specification

An important aspect to ponder: Not every implementation
detail is relevant to the programmer!
= Just enough to be able to program the computer (as we will see)

Problem

Algorithm

Program in C/Java

Runtime System
(Operating system)

Microarchitecture

Logic

Devices

Electrons

ISA vs. Microarchitecture

= What is part of ISA vs. Uarch?
= Gas pedal: interface for “acceleration”
= |nternals of the engine: implement “acceleration”

= Aspects of ISA
= The different instructions and their binary codes
= Semantics (meaning) of each instruction
= Word size, number of registers, memory addressability

= Aspects of implementation
= Ripple-carry vs. carry-lookahead adder
= Mux or tristate buffers
= Canonical SOP or minimal Boolean expression for implementation
= NAND gates only vs. AND/OR/NOT combination

ISA vs. Microarchitecture

" One ISA can have many microarchitectures
= One microarchitecture per student, but the QUAC ISA is the same on
the course webpage

= |SA is usually a one-time effort with incremental changes to

enable new applications
= Only afew ISAs in the world but many microarchitectures

= Microarchitecture changes faster than ISA

= Key insight: ISA can enable simple vs. complex logic gate circuitry at the
microarchitecture level (more in coming weeks

10

ISA: Another View

Most people don’t write programs in the computer’s own
machine language (lowest level)

They prefer high-level languages such as C++, Java, or Python

A compiler translates C++ or Java code into the computer’s
machine language

ISA specifies everything in the computer that a compiler writer
who wishes to translate programs from C++/Java to machine
language need to know

ISAs are a Good Bedtime Reading!*?

Combined Volume Set of Intel® 64 and IA-32 Architectures Software Developer’s

Manuals
Document Description RESOURCES TABLE OF
Assembler Guide CONTENTS
Intel® 64 and IA-32 Architectures This document contains the following: Q UA‘ I SA VO 2
Software Developer's Manual Software setup ° QUAC ISA V0.2
Combined Volumes: 1, 2A, 2B, Volume 1: Describes the architecture and programming environment of processors supporting IA-32 and Writing a design Memory
2C, 2D, 3A, 3B, 3C, 3D, and 4 Intel® 64 architectures. document This document is the definitive source of the QUAC! instruction Registers
I QUAC ISA set that we will be implementing in this course. If another source
Volume 2: Includes the full instruction set reference, A-Z. Describes the format of the instruction and contradicts this document, this takes precedance. Instruction Encoding
provides reference pages for instructions. QUAC Extensions Register Operands
QUAC Instruction Format (R-Mode)
Volume 3: Includes the full system programming guide, parts 1, 2, 3, and 4. Describes the operating-system Description Memory |mmediate Format
support environment of Intel® 64 and IA-32 architectures, including memory management, protection, task (-Mode)
management, interrupt and exception handling, multi-processor support, thermal and power management ini it i -bi
g p P g p pp p g RELATED SITES » Minimum addressable unit is 16-bit words Definitions
features, debugging, performance monitoring, system management mode, virtual machine extensions (VMX) « 16-bit addressed
instructions, Intel® Virtualization Technology (Intel® VT), and Intel® Software Guard Extensions (Intel® SGX). Piazza « Total addressable memory is 128 kb (64k words) All Modes
NOTE: Performance monitoring events can be found here: https://perfmon-events.intel.com/ Streams R-Mode only
Volume 4: Describes the model-specific registers of processors supporting IA-32 and Intel® 64 Wattle Reglsters I-Mode Only
architectures. SoCo Homepage Hardware
All registers start initalised to 0x00800, and are 16-bits wide. Instructions
Intel® 64 and 1A-32 Architectures Describes bug fixes made to the Intel® 64 and 1A-32 architectures software developer's manual between Code| M T P Pseudo-Instructions
Software Developer's Manual versions. = Flag Register
Documentation Changes 000 rz Zero Always read zero, writes have no Condition Cod
NOTE: This change document applies to all Intel® 64 and IA-32 architectures software developer's manual Register effect. ondition Lodes
sets (combined volume set, 4 volume set, and 10 volume set). 001 r1 Register 1 General purpose register
010 r2 Register 2 General purpose register.
011 r3 Register 3 General purpose register.
100 r4 Register 4 General purpose register.
101 f1 Flag Stores the flags from ALU
register whenever an ALU instruction is
executed. Any operation can
read this register. Write is
undefined.

12

ISAs You Will Encounter @ ANU

= QuAC

An ISA for educational purposes developed at ANU
= Mainly covered in tutorials and required for assignment 1

= MIPS
= Pioneering RISC ISA developed by John Hennessy at Ex-President of Stanford University
MIPS computer systems Chairman of Alphabet

= Microprocessors without Interlocked Pipelined Stages .
= Briefly covered in today’s lecture for breadth Fou_nder of MIPS_ Technologies
Turing Award Winner

= ARM
= A popular RISC ISA developed by Arm Ltd.
= Advanced RISC Machines
= De facto choice for portable hand-held devices
= Covered extensively in lectures and required for assignment 2
= LC3
= Little Computer 3 is an educational ISA developed by Yale N. Patt at UT-Austin

= Briefly covered in today’s lecture for breadth

= x86-64
= ACISCISA developed by Intel Corporation
= Most influential ISA in the world and de facto choice for high-performance computing

= Covered extensively in COMP2310 < intel)

13

What is a Computer?

" To get a task done by a (general-purpose) computer, we need
= A computer program
* That specifies what the computer must do
" The computer itself
" To carry out the specified task

" Program: A set of instructions

= Each instruction specifies a well-defined piece of work for the computer to
carry out
" |nstruction: the smallest piece of specified work in a program

" |nstruction set: All possible instructions that a computer is

designed to be able to carry out
14

The Von Neumann Model

" |n order to build a computer, we need an execution model for
processing computer programs

" John von Neumann proposed a fundamental model in 1946

" The von Neumann Model consists of 5 components
= Memory (stores the program and data)

] Processing unit Burks, Goldstein, von Neumann,

“Preliminary discussion of the logical design
[| |n pUt of an electronic computing instrument,” 1946.
= Qutput

= Control unit (controls the order in which instructions are carried out)

All general-purpose computers today use the von Neumann model {5

The Von Neumann Model

MEMORY
Mem Addr Reg
- Mem Data Reg
INPUT § PROCESSING UNIT OUTPUT
Keyboard, i Monitor,
Mouse, E TEMP Printer,
Disk... | Disk...

N

CONTROL UNIT

PC or IP Inst Register

The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

Mem Addr Reg

Mem Data Reg

PROCESSING UNIT

N

OUTPUT

Monitor,

Printer,
Disk...

CONTROL UNIT

PC or IP Inst Register

17

Recall: A Memory Array (4 locations X
3 bits)

Addr[1:0] D{2] D[1] D.[0]

()
]

WE Plam:

s

()
]

!
)
vl

!
)
]

| :

Address Decoder

Multiplexer D[2] D[1] D[O]

Recall: Memory Array Organization

= Decoder drives the wordline HIGH based on the address
= Data on the selected row appears on the bitlines

Address —2-|

2:4

Decoder

11

10

01

00

bitIine2 bitIine1 bitIine0
wordline,
[[[
stored stored stored
. bit=0 bit = 1 bit=0
wordline,
[[[
stored stored stored
wordline, bit = 1 bit=0 bit=0
[[[
stored stored stored
. bit = 1 bit = 1 bit=0
wordllneO
[[[
stored stored stored
bit=0 bit = 1 bit = 1
Data, Data, Data,

Recall: Memory Ports

Each memory port gives read or write access

to one memory address

Multiported memories can access multiple
addresses simultaneously

Example of three-ported memory

Port 1 reads the data from address A1 onto the
read data output RD1

Port 2 reads the data from address A2 onto the
read data output RD2

Port 3 writes the data from the write data input
WD3 into address A3 on the rising clock edge if
WE3 is TRUE

CILK

|

s M

Al
A2

A3
WD3

WE
. RDA1

RD2

Array

<fsf

21

Memory

= Memory stores

= Programs
= Data

= Memory contains bits
= Bits are logically grouped into bytes (8 bits) and words (e.g., 8, 16, 32 bits)

= Address space: Total number of uniquely identifiable locations
= |n MIPS, the address space is 232
= 32-bit addresses
" |n ARM, the address space is 232
= 32-bit addresses
" |n x86-64, the address space is (up to) 248
= A48-bit addresses

= Addressability: How many bits are stored in each location (address)
= E.g., 8-bit addressable (or byte-addressable)
= E.g., word-addressable
= A given instruction can operate on a byte or a word

22

A Simple Example

= A representation of memory with 8 locations
= Each location contains 8 bits (one byte)
= Byte addressable memory with an address space of 8
= Value 6 is stored in address 4 & value 4 is stored in address 6

Address Data Value

000
001 Question:

How can we make
010 same-size memory
011 bit addressable?
100 00000110 Answer:
101 64 locations

Each location stores 1 bit
110 00000100
111

23

Word-Addressable Memory

= Each data word has a unique address
= |n MIPS, a unique address for each 32-bit data word (not word-addressable)
= |n QUAC, a unique address for each 16-bit data word (word addressable)

Word Address

00000003
00000002
00000001

00000000

Data Word Number

D1617A1C

13C81755

F2F1FOF7

S89ABCDEF

Word 3
Word 2
Word 1
Word 0

Byte-Addressable Memory

= Each byte has a unique address
= MIPS is actually byte-addressable
= ARM is also byte-addressable

Byte Address
of the Word

Data

Word Number

0000000C

D 1

61

7 A

1C

00000008

13

C8

17

595

00000004
00000000

F 2

F 1

FO

F7

How are these four bytes
ordered?

Word 3
Word 2
Word 1
Word 0

Which of the four bytes is most vs. least significant?

25

Big Endian vs. Little Endian

= Jonathan Swift’s Gulliver’s Travels
= Big Endians broke their eggs on the big end of the egg
= Little Endians broke their eggs on the little end of the egg

TRAVELS

Remote NATIONS
° .

WORLD.

zzzzzz

BIG ENDIAN - The way
people always broke
their eggs in the
Lilliput land

LITTLE ENDIAN - The
way the king then
ordered the people to
break their eggs

26

Big Endian vs. Little Endian

@ Big Endian Little Endian @

Byte Word Byte
Address Address Address
C D E F C = E D C
8 19 | A|B 8 B|A| 9] 8
4|95 |6 |7 4 7 16| 5| 4
0 1 2 3 0 3 2 1 0

LSB in hlgher byte address LSB in lower byte address

Big Endian vs. Little Endian

= 0x01234567
» Memory addresses start at 0x100

O0x100 0Ox101 0Ox102 0x103

Big Endian

O0x100 Ox101 Ox102 0Ox103

Little Endian

28

Big Endian vs. Little Endian
Big Endian Little Endian

Does this really matter?
Answer: No, it is a convention

=

Qualified answer: No, except when one big-endian
system and one little-endian system have to share
or exchange data

MSB LSB MSB LSB

(Most Significant Byte) (Least Significant Byte)

LSB in higher byte address LSB in lower byte address

29

Accessing Memory: MAR and MDR

" There are two ways of accessing memory

= Reading or loading data from a memory location
= \Writing or storing data to a memory location

= Two registers are usually used to access memory
= Memory Address Register (MAR)

= Memory Data Register (MDR)
. To read

= Step 1: Load the MAR with the address we wish to read from
= Step 2: Data in the corresponding location gets placed in MDR

= To write
= Step 1: Load the MAR with the address and the MDR with the data
we wish to write

= Step 2: Activate Write Enable signal = value in MDR is written to
address specified by MAR

30

Learn to Distinguish Address from Data

AUSTRALIA

() POST

31

The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

MEMORY
Mem Addr Reg

Mem Data Reg

o] [

OUTPUT

Monitor,
Printer,
Disk...

CONTROL UNIT

PC or IP Inst Register

32

Processing Unit

= Performs the actual computation(s)

" The processing unit can consist of many functional units

= We start with a simple Arithmetic and Logic Unit (ALU), which
executes computation and logic operations
= ARM: ADD, AND, NOT, SUB
= MIPS: add, sub, mult, and, nor, sll, slr, slt...

= The ALU processes quantities that are referred to as words
= Word length in ARMv4 is 32 bits (v8 is 64 bits)
= Word length in MIPS is 32 bits
= Word length in QUAC is 16 bits

Recall: Arithmetic & Logic Unit (ALU)

= Combines a variety of arithmetic and logical operations into a single unit (that
performs only one function at a time)

= Usually denoted with this symbol:

Table 5.1 ALU operations

A B) P Function
IN N
! | 000 A AND B
alu /78 F 001 AORB
N 010 A+B
Y
011 not used
Figure 5.14 ALU symbol 100 A AND B
101 AORB
110 A-B
111 SLT

34

Recall: Arithmetic & Logic Unit (ALU)

A B
N N
Table 5.1 ALU operations
000 A AND B A &
F2
001 A OR B NJ
010 A+B =
011 not used @ @
_ \/ /
100 A AND B Cou L
101 AORB N1 |S
110 A-B
111 SLT AL (S -
\ /L? Fi.0
,|'N
Y

35

Processing Unit: Fast Temporary Storage

" |tis almost always the case that a computer provides a small

amount of storage very close to ALU
" Purpose: to store temporary values and quickly access them later

= E.g., to calculate ((A+B)*C)/D, the intermediate result of A+B

can be stored in temporary storage
= Why? It is too slow to store each ALU result in memory & then retrieve it
again for future use
= A memory access is much slower than an addition, multiplication or
division
= Ditto for the intermediate result of ((A+B)*C)

" This temporary storage is usually a set of registers
= Called Register File

Registers: Fast Temporary Storage

= Memory is large but slow

o | e

= Registers in the Processing Unit
= Ensure fast access to values to be processed in the ALU
= Typically one register contains one word (same as word length)

= Register Set or Register File

= Set of registers that can be manipulated by instructions

= ARM has 16 general purpose registers (GPRs)
= RO to R15: 4-bit register number
= Register size = Word length = 32 bits

= MIPS has 32 general purpose registers
= More elaborate naming scheme: 5-bit register number (or Register ID)
= Register size = Word length = 32 bits

= QuAC has 8 general purpose registers (one undefined)

37

Recall: Register

" How can we use flipflops to store more than one bit?
= Principle of modularity: Use more flipflops!
= Asingle CLK to simultaneously write to all flipflops

CLK
|
D3:0 ih j; Q3:0

" Register: A structure that stores more than one bit of
information and can be read from and written to
" This register holds 4 bits, and its data is referenced as Q[3:0]

38

Recall: 4-bit Register

Qs Q, Qi Qo
4-bit|Register
CLK CLK CLK CLK CLK
CLK CLK CLK CLK CLK CLK CLK CLK
pib M ale bp ™Mb alde bodp oM p ale bodp oMb ala
L1 Q- [L2 Q-Q L1 Q- [L2 Q-Q L1 Q- |L2 Q-Q L1 Q- [L2 Q-Q
D3 D, D, Do

To build an N-bit register, use a bank of N flipflops with a shared CLK

o Here we have a

Reca": 4'bit RegiSter register, or a

structure that
stores more than

CLK
one bit and can be
read from and
D,—{D | Q—Q, Coh d, wr.itten jco
el)s o This register holds 4
ed C LK bits, and its data is
| referenced as
D,—D | Q—Q, 4 4 Q[3:0]

-+ = Q

3:0 3:0
D,—D | Q—Q, \

This line represents 4 wires

This register stores 4 bits

More Realistic Register

= A single WE signal for all flip-flops for
simultaneous writes

D3:0

*4

WE —

Register x (Rx)

*4

Q3:0

Enabled Flip-Flop

EN

CLK

O
D—1

D

Q

o

Symbol

I

D

EN

Q

(

How Registers are Addressed?

= Each ISA gives a set of general-purpose registers with
special names

= So, an assembly programmer can use convenient names

" How they are translated into binary addresses is up to the
implementation

" |et’s see

MIPS Register File

Register Number

SO

Sat
Sv0-Svl
Sa0-$a3
$t0-$St7
$s0-$s7
$t8-St9
Sk0-Sk1
Sgp

$sp

sfp

Sra

0

1

2-3
4-7
8-15
16-23
24-25
26-27
28

29

30

31

the constant value 0
assembler temporary
function return value
function arguments
temporary variables
saved variables
temporary variables
OS temporaries
global pointer

stack pointer

frame pointer
function return address

43

ARM Register File

Table 6.1 ARM register set

Name Use

RO Argument/ return value / temporary variable
R1-R3 Argument/ temporary variables

R4-R11 Saved variables

R12 Temporary variable

R13 (SP) Stack Pointer

R14 (LR) Link Register

R15 (PC) Program Counter

44

LC-3 Register File (with Contents)

Reglster O
Reglster 1
Reglster 2
Register 3
Reglster 4
Reglster 5

Register 6

Reglster 7

(RO)
(RT)
(R2)
(R3)
(R4)
(RS)
(R6)

(R7)

0000000000000001

0000000000000011

0000000000000101

0000000000000111

TT1T1111111111110

TT11111111111100

T1T11111111111010

T111111111111000

45

QuAC Register File

Registers

All registers start initalised to 8x0000 , and are 16-bits wide.

Code Mnemonic Meaning Behaviour

000 rz Zero Register Always reads as zero, even after being written to.
001 ri Register 1 General purpose register.

010 r2 Register 2 General purpose register.

on r3 Register 3 General purpose register.

100 r4 Register 4 General purpose register.

101 fl Flag register See Flags.

110 - Undefined Any operation with this register is undefined.

111 pc Program Counter See Program Counter.

e rz, f1,and pc may also be describedas r@, r5,and r7 respectively.

e Aninstruction is allowed to write to rz, however the next time an instruction reads rz
it will stillreadas 0.

e r1, r2, r3,and r4 are the general purpose registers. You may write to them, and
they will store that value. Reading from a general purpose register returns the last
value written to them.

The Von Neumann Model

MEMORY
Mem Addr Reg
- Mem Data Reg
INPUT § PROCESSING UNIT OUTPUT
Keyboard, i Monitor,
Mouse, E TEMP Printer,
Disk... | Disk...

N

CONTROL UNIT

PC or IP Inst Register

Input and Output

= Enable information to get into and out of a computer
= Many devices can be used for input and output

" They are called peripherals

= |nput
= Keyboard
= Mouse
= Scanner
= Disks
= Etc.

= Qutput
= Monitor
= Printer
= Disks
= Etc.

Input and Output

i“?\lk o Q —> Sends — \ |

.* 0t O -\"O
che 1econds b, oV © \ —r:;‘:———f;l
\ato t00 'O (om?u\"(
(oded tnko ‘Z
)
WAL s e (D
o0 <« s processed

49

Keyboard and Monitor

" The simplest keyboard has two registers

= Keyboard data register (KBDR) for holding the ASCII code
of keys struck

» Keyboard status register (KBSR) for maintaining status
information about the keys struck

" The simplest monitor has two registers

* Display data register (DDR) for holding the ASCII code of
something to be displayed on the screen

* Display status register (DSR) for maintaining associated
status information

ASCIl Encoding

Dec Hex Name Char Ctrl-char |Dec Hex Char |Dec Hex Char|Dec Hex Char
0 0 Nul NUL CTRL-@ |32 20 GSpace |64 40 ® |9 60
= ASCI| stands for Bl Coconeino son cros Bl B & BN .
. 2 2 Startof text STX CTRL-B |34 22 66 42 B |98 62 b
American Standard 3 3 Endoftext ETX CTRL.C |38 23 # |67 43 ¢ |99 63 ¢
. 4 4 Endof xmit EOT CTRL-D (38 24 § 58 4 D |00 64 d
Code for Information 85 Enqury ENQ CTRLE |37 25 % 89 45 E |01 65 e
8 6 Acknowledge ACK CTRLF [38 26 & 70 4 F |02 66 f
|nterchange 7 7 el BEL CTRL-G [27 ' |72 47 6 |13 6 o
8 8 Backspace BS CTRL-H |40 28 (72 48 H 104 68 h
9 0 Horizortd tab HT CTRL-I |41 29) 73 ¥ 1 105 69 |
10 0A Linefeed LF CTRL-) |42 28 * 74 4A) 106 64
- 11 08 Vertical tab VI CTRL-K |48 28 + 76 4 K |107 6B K
It ranges from 0 to 255 12 0C Form feed FF CTRLL |44 2¢ , 76 4 L |108 6c |
. . 13 00 Carriage feed CR CTRL-M [48 20 - 727 40 M |100 60 m
in Decimal or 00 to FF 8 o shit o so con Bl . [Mle v Bflle -
. . 15 OF Shiftin SI CTRL-O |42 2F 4 79 & O |111 6 o
in Hexadecimal 16 10 Oatalineescape DOLE CTRLP |48 30 0 [0 so p |2 70 »p
17 11 Device control 1 DCYI CTRL-Q |49 31 1 Bl St Q 113 71 q
18 12 Devicecontrol2 DC2 CTRL-R (S0 32 2 82 s2 R |114 72 ¢
19 13 Devicecontrol2 DC3 CTRL-S [S1 33 3 B3 53 s |18 72 s
= All characters on an 20 14 Devicecontrol4 DC4 CTRL-T 52 34 4 [B& 54 T [116 74 ¢
E lish k 21 15 Negacknowledpr NAK CTRLU [§3 35 S 85 ss U |17 75 u
22 16 Synchronouside SYN CTRL-V |54 36 6 g6 S5 VvV 118 76 v
ng IS eyboard can 23 17 Endofxmitblock ETB CTRLW [88 37 7 87 s7 w |19 77 w
i 24 18 Carcel CAN CTRL-X [56 38 8 88 s3 x |120 72 x
be represented using 25 19 Endofmedun EM CTRLY |87 39 o |89 s v |21 79
: 26 14 Subsbtute S8 CTRL-Z [S8 3a : 90 sa z |122 74 2
8'b|t COdeS 27 18 Escape ESC CTRL-[|59 38 ; 91 s | 123 78 {
28 1C File separator FS CTRL\ [0 3¢ < 92 SC \ 124 7¢ |
29 1D Group separator GS CTRL-] 61 30 = 93 SD) 128 70 }
30 1E Recordseparator RS CTRL-~ |62 3 > 94 SE - 126 7E ~

31 IF Unit separator US CTRL- [63 '3F 2 95 < 197 F DEL

The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

MEMORY
Mem Addr Reg

Mem Data Reg

PROCESSING UNIT

PCorlIP Inst Register

OUTPUT

Monitor,

Printer,
Disk...

52

Control Unit

The control unit is like the conductor of an orchestra

It conducts the step-by-step process of executing (every instruction
in) a program

It keeps track of which instruction being

processed, via
= |nstruction Register (IR), which contains the instruction

It also keeps track of which instruction to process next, via
= Program Counter (PC) or Instruction Pointer (IP), another register that
contains the address of the (next) instruction to process

53

Programmer Visible (Architectural) State

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Memory [Program Counter |

array of storage locations memory address
indexed by an address of the current (or next) instruction

Instructions (and programs) specify how to transform
the values of programmer visible state

54

The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...

55

Von Neumann Model: TwWo Key Properties

" Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

= Stored program
= |nstructions stored in a linear memory array
= Memory is unified between instructions and data
" The interpretation of a stored value depends on the control signals

= Sequential instruction processing

= One instruction processed (fetched, executed, completed) at a time

= Program counter (instruction pointer) identifies the current instruction

= Program counter is advanced sequentially except for control transfer
instructions

56

The Von Neumann Model

INPUT

Keyboard,
Mouse,
Disk...

OUTPUT

Monitor,
Printer,
Disk...

57

Examples of
von Neumann Machines

58

LC-3: A von Neumann Machine

PROCESSOR BUS

Program

Counter\

GatePC

Control signals

\

Data _]

Finite State Machine Clock~—

(for Generating Control Signalsg

Instruction

Register

CLK

3 REG
R FILE
LD.REG
2 \/SR2 SR1
SR2 UT OUT

FINITE
STATE
MACHINE|

K]

N

a——

] 8 General Purpose

Registers (GPR)

ALU: 2 inputs, 1 output

ALU operation

GateMDR -$

CONTROL UNIT

Memory Data iy
Register omon A aen MEM,I;N, AW
-
Memory Address 16-bit
Register addressabl
MEMORY

Figure 4.3

PROCESSING
UNIT

INPUT

The LC-3 as an example of the von Neumann model

GateALU

Keyboard
KBDR (data), KBSR (status)

| Monitor (Display)
DDR (data), DSR (status)

59

LC-3: A von Neumann Machine

101001%000%10 001
third edition 010111%1010101001

int Add(int x,
{

return x + y

yale n. patt
sanjay j. patel

60

Another Von Neumann Mac ine

Vnzﬁxaaamﬂtﬂnnvv»v e

’r"' FEbEE

}fSX 116 b
CL'PDDR4AX
Ghannels

2021

as Icestonn .')
EfflClQn'Cy,

T

Source: https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Apple M1,

61

https://www.anandtech.com/show/16252/mac-mini-apple-m1-tested

Another Von Neumann Machine

3MiB
L3$7LLC-

Tk ok
Ring-‘Agent | Ring Agent ©

3MiB 7 - 3MiB | .| 3miB" | | === 3MiB’
L3$/LLC L3$/LLC | 7 L3$/LLC . L3$/LLC

16 EUs

(128 Cores)]

s -

PU Front:/"Brac'Iz nd;

GPRUL3$:
_/Other/Logic".

ttps://www ntel.com/content/www/us/en/newsrdom/news/ 12th-ge

Die shot interpretation by Locuza, October 2021

Source: https://twitter.com/Locuza /status/1454152714930331652

Intel Alder Lake,
2021

62

https://twitter.com/Locuza_/status/1454152714930331652

Another Von Neumann Machine

Fibg il §)}
Bebug, Wafertes

A 5 |

.
. 1MiBL3s Array,

.L3.Cache

1 MiB L33 Arra

1 MiB L3$ Array

L3 Cache

1 MiB L3$ Arra

. 1MiBL3s Arra

L3 Cache 13 Cache,

L35 Tags

1 MiB 138 Array 1 MiB L3$ Array

L3 Cache ' - L3 Cache

1 Mi8 L33 Array

BL3s Array © -1 256K

ache

1 MiB L33 Array

1 MiB L3$ Array

L3 Cache -

1 MiB L35 Array 1 MiB L3$ Array

13 Cache -- 'L3 Cache :

AMD Ryzen 5000, 2020

https://wccftech.com/amd-ryzen-5000-zen-3-vermeer-undressed-high-res-die-shots-close-ups-pictured-detailed/

Core Count:
8 cores/16 threads

L1 Caches:
32 KB per core

L2 Caches:
512 KB per core

I31 -0
Cache’., - -

“iZen3 Coré

L3 Cache;
32 MB shared

Zen3 gdré

H il L1 BCache *

32)kis L1 Data Cache |

|

63

Another Von Neumann Machine

PowerAXON L. E2 X 10 IR Ak A tA K s R 111 PowerAXON IBM POWER10,
2020
R s Cores:
. 64 MB L3 Hemisphere, =
ey tem ol 15-16 cores,

8 threads/core

L2 Caches:
2 MB per core

L3 Cache:
120 MB shared

(IWo 8xg) Bujjeubis Aiowawy

=
Q
E
.0
<2
@
«
2
s
=
o
B
x
@
]
£

}P0UUOIBU| [Dd ‘1818N|D) jed0y ‘Kiowal 'dNS

JPouuoBU] |Dd J8isn) 1920y ‘owel ‘dINS

X
3|
2
N +
$ PCle Gen 5 741 ‘ " PCle Gen 5 43
, e Lot PowerAXON
PO X O 8= Signaling (x16) ki A L& 4 i & Signaling (x16) oL

https://www.it-techblog.de/ibm-power10-prozessor-mehr-speicher-mehr-tempo-mehr-sicherheit/09/2020/ 64

ARMvV4 (Single-Cycle) 32-bit

—

PO

CLK

ns

A RD

31:28

&)
Control

Unit
Cond

27:26

25:20

Op

15:12

Funct
Rd

Instruction
Memory

lus4

PCSrc N
MemtoReg

MemWrite

ALUControl

ALUSrc

ImmSrc

RegWrite

ALUFlags

E3

N

A1

A2

A3 Register

wD3 File
R15

N

RD1

\ SrcA

)

\

RD2

/

Extend

/

0] srcB
1

Extlmm

N

=~ WE
>3 ALURegqult A RD ReddData
<
Data
= WritgDa MBIy
WD ‘
\ 1
_/
0
Result

65

ARMv4 (Multi-Cycle) 32-bit

CLK
PCWrite
AdrSrc |control
MemWrite| Unit
IRWrite ResultSrc
3128 Cond ALUControl
2726 Op ALUSrcB
2520 Funct ALUSrcA
15:42 Rd ImmSrc
RegWrite
Flags
F;_) ALUFlags
’-\ 2
@ CLK
CLK C%K CLK . l"] D CILK R
M e N WE - “rat| o7 WES 1 [M]A 0 1SrcA [~ CLK
E Ade R st 1od {1 17 —
A EN 2 Ln RA2 | >D UResult ALU i)
Instr / Dat ; A2 RO2 007] sicB 01
Memory ? 15:12 I—/ A3 § 01 / 10
) & Regstor gl 44— d
9 wD3 File 8
5, R15
m X:/
xt:
Data 1 : Extimm
Result

Figure 7.30 Complete multicycle processor

66

ARMv4 32-bit with Pipelining

BranchTakenE
— o : o
(O]
(e}
Control |22 TXiok = N PCSrcM PCSrcW
guly ol Sl 2 — RegWriteM RegWriteW
MemtoRegD s s —g MemtoRegM MemtoRegW
27:26 Op MemWriteD | MemWriteE r\ MemWriteM
2520 e ALUControlD ALUControlE o/
unct =1
15:12 Rd BranchD BranchE = N
ALUSrcD ALUSIcE mL_/
FlagWriteD FlagWriteE
ImmSrcD Cond
28 N’ ‘sir;dE Unit /
C€|_7K (?39 CLK FIdgsE 2
CLK SiAs ° o — =l | [
71 M 2] A W WE SrchE [, |ALUREES WE
olec!Vece o Ao I 12 s al S 0 ALURegUltE
m e
1 m o Tl 1 >3 L 1A IR ReadData
Instrucfion RA2D ud <
o 1] A2 RD2 Qe 0] srcBE Daja
N 1 _— . Me
A3 Register WriteDataE Nl s
wp3 Fi 0 _
pCPlusaF A R15 g ALUOUtM ALUOUtW
2 15:12 —— m WASE WA3 WA3W
;g 23/ I/Extﬁ_ E | ’ \
J-] I N ik, _ ‘ >
PCPIus8D|
ResultW
33 28 3
«Q
L ol |3 o B =z |22 |8
2 2 & 5 ks [53 |3
= SRR m | 5 1212 |9

Hazard Unit

67

MIPS (Single-Cycle) 32-bit

31:26

MemtoReg

[Control

Unit

MemWrite

Branch

ALUControl,,.,

5:0

Op

ALUSrc

Funct

25:21

RegDst

—

CLK
|

RegWrite

A1

Instr

CLK
|
PC' PC A RD
Instruction
Memory
~ + PCPlus4
4 =

20:16

A2

A3

20:16

WD3

WE3

Register

RD1

SrcA

Zero

RD2

File

SrcB

ALUResult

PCSrc

CLK

WE

éﬁ

\Lalu /

WriteData

Data
Memory

WD

15:11

WriteReg,

15:0

—

Sign

Signlmm

<<2

Extend

PCBranch
= |

0
ReadData 1

Result

MIPS 32-bit with Pipelining

CLK CLK CLK
—\ | RegWriteD % RegWriteE 67 RegWriteM % RegWriteW
C(J:‘ti';o' MemtoRegD MemtoRegE MemtoRegM MemtoRegW
MemWriteD MemWriteE MemWriteM
ALUControlD,., ALUControlE,,,
31:26
Op ALUSrcD ALUSrcE
20 Funct RegDstD RegDstE PCSTM
BranchD BranchE BranchM
—
CLK CLK] CLK
CLK @ | - |
) WE3 [~~~ WE
-F ol I </ I RD InstrD |22 A1 RD1 00 SreAl ZeroM
] . . _-L10 - ALUOUM A rp M ReadDataW
Instruction 2016] o RD2 <
Memory Data
s Regist WriteDataM Memory
ister WriteDataE riteData
WD3 ng"Se e riteData WD :
25:21 RsD RsE ALUOutW lﬂ-
. RtD RtE
20,16 \\l WriteRegE, o WriteRegM, ., WriteRegW,.,
15:14 RdD RdE y - - — :
o Sign SignimmD SignimmE
4 Extend
+
PCPlus4F o PCPlus4D o PCPlus4E
z 0
> PCBranchivl
ResultW
L
wfw [+ = =
. ek
| =
- 2 - |2 ; 3 3
n 7] i [rag i = 4 o
Hazard Unit

69

Key to Understanding Computers

" The key principles and fundamentals are the same
" Put your understanding of key principles to practice in labs

= The exam/quiz is not structured to test your skills in
memorizing slides!

The Concept of Sequential
Execution

/1

Stored Program and Sequential Execution

" |nstructions and data are stored in memory
= Typically the instruction length is the word length

= The processor fetches instructions from memory sequentially

= Fetches one instruction
= Decodes and executes the instruction
= Continues with the next instruction

= The address of the current instruction is stored in the program
counter (PC)

» |f word-addressable memory, the processor increments the PC by 1 (in
QuAC)

= |f byte-addressable memory, the processor increments the PC by the
instruction length in bytes (4 in MIPS and ARM)
= Assume the OS sets the PC to 0x00400000 (start of a program)

72

A sample ARM program stored in memory

= Asample ARM program

" /Jinstructions stored in consecutive words in memory
= No need to understand the program now. We will get back to it

ARM assembly code

MOV R1, #100

MOV R2, #69

CMP R1, R2

STRHS R3, [R1l, #0x24]

Machine code (encoded instructions)

0xE3A01064
0xE3A02045
0xE1510002
0x25813024

Word
Address

0040000C
00400008
00400004
00400000

Instructions

E3A01064

E3A02045

E1510002

25813024

— PC

A sample program: MIPS Example

= Asample MIPS program
" /Jinstructions stored in consecutive words in memory
= No need to understand the program now. We will get back to it

MIPS assembly
Word Instructions

1w St2, 32($0) Address
add $s0, $sl, $s2

addi $t0, $s3, -12
sub $t0, $t3, $t5 0040000C 016D4022

00400008 2268FFF4
00400004 02328020
00400000 8CO0A0020 — PC

Machine code (encoded instructions)

0x8C0A0020
0x02328020
0x2268FFF4
0x016D4022

The Instruction

" An instruction is the most basic unit of computer processing
= |nstructions are words in the language of a computer
* |nstruction Set Architecture (ISA) is the vocabulary

" The language of the computer can be written as

= Machine language: Computer-readable representation (that is, Os and 1s)

= Assembly language: Human-readable representation

= We will study ARM (in detail in lectures) and QUAC (in tutorials

and assignment 1) and other ISAs for broader understanding
= Principles are similar in all ISAs (x86, SPARC, RISC-V, ...)

75

The Instruction: Opcode & Operands

" An instruction is made up of two parts
" Opcode and Operands

" Opcode specifies what the instruction does
" Operands specify who the instruction is to do it to

* Both are specified in instruction format (or instruction
encoding)
= A MIPS and ARM instructions consists of 32 bits (bits [31:0])
= QuAC instructions consist of 16 bits (bits [15:0])

The Instruction: Examples

= MIPS example: Bits [31:26] specify the opcode = up to 64 distinct opcodes
= Bits [25:11] are used to figure out where the operands are

op

Ir's

rt

rd

shamt

funct

6 bits
= QuAC example: Bits [15:12] specify the opcode = up to 16 distinct opcodes

5 bits

5 bits

5 bits

5 bits

6 bits

= Bits [10:0] are used to figure out where the operands are

15 |

14 {13 |

12

11

10

98

7

654

3

210

op

cond

rd

0

ra

0

rb

= ARM example: Bits [27:26] specify the opcode = up to 4 distinct opcodes
= Bits [19:0] are used to figure out where the operands are

31:28

27:26

25

24:21

20

19:16

15:12

11:0

cond

op

cmd

S

Rn

Rd

Src2

Instruction Types

" There are three main types of instructions

= Operate (data processing) instructions
= Execute operations in the ALU

= Data movement (memory) instructions
= Read from or write to memory

= Control flow (branch/jump) instructions
= Change the sequence of execution (decision making)

= |et us start with some example instructions

/8

An Example Operate Instruction

= Addition
High-level code QUAC Assembly
a=>b + c; add a, b, c

= add: mnemonic to indicate the operation to perform

= b, c: source operands

= 3a: destination operand

a&b+c

Registers

= We map variables to registers

Assembly ARM registers

add a, b, c b R1
C R2
RO

Registers a

All registers start initalised to 8x0000 , and are 16-bits wide.

Code Mnemonic Meaning Behaviour QUAC registers

000 rz Zero Register Always reads as zero, even after being written to.

001 ri Register 1 General purpose register. b = T 1
010 r2 Register 2 General purpose register.

on r3 Register 3 General purpose register. C - r 2
100 r4 Register 4 General purpose register. ‘

101 fl Flag register See Flags. a' = r O
110 - Undefined Any operation with this register is undefined.

m pc Program Counter See Program Counter.

MIPS registers
e rz, f1,and pc may also be describedas r@, r5,and r7 respectively.

« Aninstruction is allowed to write to rz, however the next time an instruction reads rz b — $ S 1
it will still read as 0.

e r1, r2, r3,and r4 are the general purpose registers. You may write to them, and
they will store that value. Reading from a general purpose register returns the last C = $ S 2

value written to them.
a = S$s0

From Assembly to QUAC Machine Code

= Addition
QuAC assembly

add rO0, rl, r2

= |nstruction Fields

15 {14 | 13 | 12 1 0i9i8|7|6i5 43210

op 8 cond O rd O 0 ra 1 0 rb 2

= Machine code (Instruction Encoding)

w

15 {14 | 13 | 12 11 1098|765 4 2110

1000 0| O 0@ 00001 0 010

= Machine code in short (hexadecimal)
= 0x8012

81

QuAC Opcodes

B QuAC ISA v1.0 | Computer Or:

<«

c

X

&) common/ds.h - master - Shoa

On this page

Memory

Arithmetic
Registers
Instruction Encoding

Register Operands
Format (R-Format)

Immediate Format
(1-Format),

Definitions
All Formats
R-Format only
|-Format Only,

x| +

@& comp.anu.edu.au/courses/comp2300/resources/08-QUAC-ISA/

Hardware Instructions

The following table lists all instructions a hardware implementor of QUAC must handle. The
section Pseudo-Instructions lists several more instructions, but the machine code of each
additional instruction matches one of the (possibly more general) instructions here. By
implementing these, you gain the full pseudo-instruction support ‘for free'.

Every instruction in QUAC can have a condition suffix appended to it. See Conditions for
details. The suffix is used to determine the cond bit used in the machine code column.

Syntax Semantic Machine Code

|-Format Instructions

movl rd, imm8 rd = #imm8 0000 <cond> <rd> <imm8>

Hardware Instructions
Program counter
Flags

Conditions
Pseudo-Instructions

seth rd, imm8 See below 0001 <cond> <rd> <imm8>

R-Format Memory Instructions

str rd, [ra] [ra] = rd 0100 <cond> <rd> @ <ra> 0000

1dr rd, [ra] rd = [ra] 09101 <cond> <rd> 0 <ra> 0000

R-Format ALU Instructions

add rd, ra, rb rd =ra + rb 1000 <cond> <rd> @ <ra> @ <rb>
sub rd, ra, rb rd =ra - rb 1001 <cond> <rd> @ <ra> @ <rb>
and rd, ra, rb rd =ra & rb 1010 <cond> <rd> @ <ra> @ <rb>
orr rd, ra, rb rd=ra | rb 1811 <cond> <rd> @ <ra> @ <rb>

seth moves an 8-bit constant (imm8) into the high byte of the destination register rd,
leaving the low byte of rd unchanged. Formally,

(#imm8 << 8) | (rd & @xff)

16-bit values that do not correspond to a machine code pattern in this table are undefined
instructions. A correct QUAC program will never attempt to execute an undefined instruction.
Hardware may act in any way it chooses if a program does.

More details on what each instruction does, and how they affect the flags, can be found here.

h % O ¢ »0@ :

82

From Assembly to ARM Machine Code

= Addition
ARM assembly
ADD RO, R1, R2

= |nstruction Fields

31:28 27:26 25 2421 20 1916 15:12 11:0
cond op | | cmd S Rn Rd Src2
= Machine Code (Instruction Encoding)
31:28 27:26 25 2421 20 1916 15:12 11:0
1110 00 | O 0100 1 0001 0000 000000000010

= Machine Code in short (hexadecimal)
= 0xE0910001

Instruction Format

= A form of representation of an instruction composed of
fields of binary numbers (we have seen already)

" |tis the layout of the instruction

" The instruction is divided into segments, and each
segment is called a field

" An ISA defines a few classes or types of formats, and
each class or type has many different instructions for

that type

84

QuUAC Instruction Formats

Register Operands Format (R-Format)

There’s nothing enforcing future instructions fall into these two formats: R-Format
and |-Format only describe the general pattern existing instructions follow. New
instructions could follow an entirely different encoding format.

15 14 13 12 1n 10 9 8 5 4 3 1 Syntax Semantic Machine Code
op cond Ird ra 0 I rb. I-Format Instructions
movl rd, imm8 rd = #imm8 0000 <cond> <rd> <imm8>
Immediate Format (I-Format) seth rd, imm8 See below 0001 <cond> <rd> <imm8>
R-Format Memory Instructions
15 14 13 12 11 10 9 8 5 4 3 1 str rd, [ra] [ra] = rd 0100 <cond> <rd> O <ra> 0000
op cond :rd : : : imr:ns : : : 1dr rd, [ra] rd = [ra] 0101 <cond> <rd> 0 <ra> 0000
R-Format ALU Instructions
add rd, ra, rb rd = ra+ rb 1000 <cond> <rd> @ <ra> 0 <rb>
sub rd, ra, rb rd =ra-rb 1001 <cond> <rd> @ <ra> 0 <rb>
and rd, ra, rb rd =ra &rb 1010 <cond> <rd> 0 <ra> 0 <rb>
orr rd, ra, rb rd =ra | rb 1011 <cond> <rd> @ <ra> 0 <rb>

85

MIPS Instruction Formats

" Only three formats for simplicity of implementation
" One can see the consistency across formats

R (Register) Format:

Opcode Rs Rt Rd Shamt Funct
(6) (5) (5) (5) (5) (6)

Most arithmetic and logic instructions (except ‘immediate”)

I (Immediate) Format:

Opcode Rs Rt 16-bit Immediate value
(6) (5) (5) (16)
Data Transfer, Immediate, and Cond. Branch instructions

J (Jump) Format:

Opcode 26-bit word address
(6) (26)
Unconditional Jump instructions

= MIPS ISA is outside of scope and only shown for breadth

Instruction Format: R Type in MIPS

MIPS R-type Instruction Format (R = Register)

. . . Name Register Usage
o 3 register operands (register-based ALU operations) -_

$0 0 the constant value 0
0 rs rt rd shamt funct Sat 1 assembler temporary
6bits 5bits 5bits 5bits 5bits 6 bits »v0-3vl 23 function return value
Sa0-$a3 4-7 function arguments
a op = opcode =0 $t0-St7 8-15 temporary variables
$s0-$s7 16-23 saved variables
o s, rt = source registers $t8-$t9 24-25 temporary variables
$k0-Sk1 26-27 OS temporaries
o rd = destination register $gp 28 global pointer
$sp 29 stack pointer
o shamt = shift amount (only shift operations) - =5 frame pointer
$ra 31 function return address

o funct = operation in R-type instructions

87

Instruction Format: Data Processing (DP) in ARM
ADD Rd, Rn Rm

l

|

|

ADD RO, R1, R3

" Rnand Rm are source registers and Rd is the destination register
= Below is the instruction format (encoding)

= op =opcode (what does the instruction do?)

00 means operate instruction and cmd = 0100 means ADD
Some bits are pre-set (details later)

31:28

27:26 25

24:21

20

19:16

15:1

2 11:4 3:0

1110

op

0

cmd

S

Rn

Rd

88

Instructions are 16-bit
words

ADD*

ADD*

AND*

. ° AND*
opcode is in the same
BR n
1 1 1 1 1 1
place for each wo N oo B oo | amn || ooooon |
1 1 1 1 1 | I I (S N N —
[] [] T T T T T T T T T T T
instruction pootsetn |
T T T T T T
JSRR BaseR 000000 ‘
| IR (R A N SN N S—
T T T T T T T T
LD* PCoffset9 ‘
1 1 1 1 1 1 1
T T T T T T
LDI" | PCoffset9 ‘
1 1 1 1 1 1 1
T T T T
LDR" BaseR offseté ‘
| I I (N RN S A
LEA I PCIot‘fsletE)l ‘
1 1 1 1
NOTH ISR’I ’ I I11‘;11‘; I ‘
1 1 1 1 1 1 1
T T T T T T T
RET 11 ‘ 000000 ‘
. . —_———————
RTI 000000000000 ‘
S h l‘ [] d” [] t t. .II 1 1 1 1 1 1 : II : : : t :
uch “weird” instructions wi .
1 1 1 1 1 1 L

make more sense in COMP2310 =« | potsets
as they provide support for 1/0

and networking

T T T
offset6

el 0 J 0 | | Reserved for future use

Read Operands from Memory

= With operate instructions, such as addition, we tell the computer to
execute arithmetic (or logic) computations in the ALU

= We also need instructions to access the operands from memory
= Load them from memory to registers
= Store them from registers to memory

= Next, we see how to read (or load) from memory

= \Writing (or storing) is performed in a similar way, but we will talk
about that later

90

Reading Byte-Addressable Memory

= ARM assembly (Load Register or LDR)

High-level code ARM assembly
a = A[2]; LDR R3, [RO, #8]

R3 «— Memory[RO + 8]

= MIPS assembly (load word or Iw)
High-level code MIPS assembly

a = A[2]; 1w $s3, 8($s0)
$s3 «— Memory[$s0 + 8]

These instructions use a particular addressing mode
(i.e., the way the address is calculated), called base+offset

Load Word in MIPS and ARM

= ARM assembly

LDR R3, [RO, #8]
R3 «— Memory[RO + 8]

= MIPS assembly

1w $s3, 8($s0)
$s3 «— Memory[$s0 + 8]

= Byte address is calculated as: word_address * bytes/word
- 4 bytes/word in MIPS and ARM
If QUAC were byte-addressable (i.e., QUAC v3), 2 bytes/word

Load Word in Word-Addressable LC-3

LC-3 assembly (Load Register or LDR)
High-level code LC-3 assembly
a = A[2]; LDR R3, [RO, #2]

R3 «— Memory[RO + 2]

= Each word in LC-3 is 16 bits

= Therefore, We interrogate memory with word addresses
(not byte addresses)

= |f LC-3 were byte-addressable, the offset would be 4

Hypothetical 32-bit QUAC Memory

= If QUAC were 32-bit architecture, let’s look at its memory view

= Word-addressable QUAC

= We use word numbers to address memory

Word Address

00000003
00000002
00000001

00000000

Data Word Number

D1617A1C

13C81755

F2F1FOF7

S89ABCDEF

Word 3
Word 2
Word 1
Word 0

Hypothetical 32-bit QUAC Memory

= If QUAC were 32-bit architecture, let’s look at its memory view

= Byte-addressable QUAC

= We use word numbers translated to byte addresses to read memory

Word Address

0000000C
00000008
00000004

00000000

Data Word Number

D1617A1C

13C81755

F2F1FOF7

S89ABCDEF

Word 3
Word 2
Word 1
Word 0

Another Instruction Encoding

= ARM
ARM assemb
31:28 27:26 25:20 19:16 15:12 11:0
0 1 1l1]12]lo]lo]l2lRNnoO Rd 3 imm 8
= MIPS

MIPS assembly
lw $s3, 8($s0)

Field Values
op rs rt imm
35 16 19 8

This encoding has space for immediate values such as offsets.
96

The Instruction Set

" |t defines opcodes, operands, data types, and addressing modes

" Addressing mode = Formulas for figuring out operands
= Register, Immediate, Base + Offset

= The datatype is the representation of the operands in Os and
1s

= ADD and LDR in ARM assembly have been our first examples

97

ADD RO, R1, R2

= What is the instruction mnemonic and opcode?
* ADD (opcode = 0001 for LC-3)

= What is the addressing mode?
" register mode

= What is the data type?
= 2’s complement integer

= \What does the instruction do?

= The instruction directs the computer to perform a 2’s complement
integer addition and specifies the locations (GPRs) where the computer

can find source operands and the location of a GPR where the computer
is to write the result

98

LDR R3, [RO, #8]

= What is the opcode?
= L.DR (0110 for LC-3)
= What is the addressing mode?
" base + offset (we will study in detail later)
= What is the data type?
" bit vector
= What does the instruction do?

= The instruction directs the computer to load a destination register with
the contents of a memory location, where the location can be calculated
using a formula: add the contents of a GPR (R8) to a constant number (#8)

99

The Instruction Set Architecture

= The ISA is the interface between what the software commands and what
the hardware carries out

* The ISA specifies Problem
= The memory organization
= Address space (ARM: 232, MIPS: 232) Algorithm
* Addressability (ARM: 8 bits, MIPS: 8 bits, QUAC: 16 bits) Program
= Word- or Byte-addressable
ISA
= The register set Microarchitecture
= ROtoR15in ARM —
= 32 registers in MIPS Circuits
Electrons

= The instruction set
= Opcodes
= QOperands
= Addressing modes
= Length and format of instructions

Two Questions

= What state of the computer is visible (or exposed to) the programmer?
= What state can they manipulate by writing machine code?
= Answer: The Architectural State
= General-purpose registers, memory, program counter

= What does the ISA specify?
= The memory organization

= The register set

» The instruction set

» Meta-point: Architectural state is part of the ISA specification

101

Instruction (Processing) Cycle

102

How are these instructions executed?

" By using instructions, we can speak the language of the
computer

" Thus, we now know how to tell the computer to
= Execute computations in the ALU by using, for instance, an addition

= Access operands from memory by using the load word instruction

" But, how are these instructions executed on the computer?

= The process of executing an instruction is called is the instruction cycle

(or, instruction processing cycle)
103

The Instruction Cycle

= The instruction cycle is a sequence of steps or phases, that an instruction
goes through to be executed

= FETCH

= DECODE

= EVALUATE ADDRESS
= FETCH OPERANDS

= EXECUTE

= STORE RESULT

= Not all instructions require the six phases
= LDR does not require EXECUTE

= ADD does not require EVALUATE ADDRESS

= Intel x86 instruction ADD [eax], edx is an example of instruction with six
phases

104

LC-3 Assembly

= We will use LC-3 (Little Computer v.3) architecture as example

= ADD Operate instruction
ADD RO, R1l, R2

" |nstruction for accessing memory

High-level code LC-3 assembly
a = 2A[2]; LDR R3, RO, #4

R3 «— Memory[RO + 4]

After STORE RESULT, a NEW FETCH

- FETCH
- DECODE

- EVALUATE
ADDRESS

- FETCH OPERANDS
- EXECUTE
« /5TORE RESULT

106

Instruction (Processing) Cycle

107

FETCH

The FETCH phase obtains the instruction from memory and
loads it into the Instruction Register (IR)

This phase is common to every instruction type

Complete description

= Step 1: Load the MAR with the contents of the PC, and simultaneously
increment the PC

= Step 2: Interrogate memory. This results in the instruction being placed
in the MDR by memory

= Step 3: Load the IR with the contents of the MDR

108

Machine Cycle

" Each of these steps is under the direction of the control unit

" Each step takes one machine cycle
" Each machine cycle takes one clock cycle (the two are the same)

" Each instruction cycle consists of many machine cycles

" |f each instruction cycle takes one machine cycle, such a simple
machine is called a single-cycle computer or microarchitecture

= Single-cycle machines are much simpler to build that what we

are discussing here (e.g., the control unit is not an FSM)
109

Machine Cycle

= A clock cycle is a small fraction of a second

" 1 GHz Intel CPU completes 1 billion clock cycles in one
second

" One clock cycle takes one billionths of a second
= Or 1 nanoseconds (ns)

" |n one second, the computer can perform 1 billion
machine cycles where each machine cycle executes an

instruction (or part of an instruction)

110

FETCH in LC-3

PROCESSOR BUS GatePC 16

Step 1: Load
MAR and LD.PC PC
increment PC o= NS o2l I

LD.REG—>|

6 | 3, |SR2 SR1 3
SR2—4>ouUT OUT (<<-SR

Step 2: Access | Lo BT
memory .

FINITE
STATE
IR LD.IR |MACHINE 16

y
2 B A
6
. Aluk \ ALU

16

'K

KR

Step 3: Load IR
With the CONTROL UNIT PHOSESITSING
content of MDR

GateALU

MEMORY INPUT

OUTPUT
Figure 4.3 The LC-3 as an example of the von Neumann model 1 1 1

DECODE

= The DECODE phase identifies the instruction

= Also generates the set of control signals to process the identified
instruction in later phases of the instruction cycle

= Recall the decoder

= A4-to-16 decoder identifies which of the 16 opcodes is going to be
processed

= The input is the four bits IR[15:12]

= The remaining 12 bits identify what else is needed to process the
instruction

112

DECODE in LC-3

PROCESSOR BUS :C GatePC 16

DECODE
identifies the
instruction to

3
DR —4>|
LD.REG —>|

SR2 734>

REG
FILE

SR2 SR1| 4
OUT OUT [I7~SR1

be processed

iy :
Also generates é;,}*
the set of : .

control signals

to process the CONTROL UNIT
instruction

GateMDR —/\

MEMORY

PROCESSING

UNIT

GateALU

INPUT

Figure 4.3 The LC-3 as an example of the von Neumann model

113

EVALUATE ADDRESS

* The EVALUATE ADDRESS phase computes the address of the
memory location that is needed to process the instruction

" This phase is necessary in LDR

" |t computes the address of the data word that is to be read from
memory

= By adding an offset to the content of a register

= But not necessary in ADD

114

EVALUATE ADDRESS in LC-3

LDR calculates
the address by
adding a
register and an
immediate

GateMDR —/\

Figure 4.3

PROCESSOR BUS

GatePC

16

ADD

3 REG
DR—7“> FILE
LD.REG —>
SR2 SR1
3, 3,
SR2 —<1 OUT(ouT ’“74891
T —
18 16
R—> FINITE S
STATE
LD.IR [MACHINE[™ 16
L 1
2 B A
o Aluk __ ALY ;
L=

16

MEM.EN, R.W

CONTROL UNIT

MEMORY

<— LD.MAR

PROCESSING
UNIT

GateALU

1

INPUT

The LC-3 as an example of the von Neumann model

115

FETCH OPERANDS

= The FETCH OPERANDS phase obtains the source operands needed
to process the instruction

= |n LDR
= Step 1: Load MAR with the address calculated in EVALUATE ADDRESS

= Step 2: Read memory, placing source operand in MDR

= |n ADD
= QObtain the source operands from the register file

= |n some microprocessors, operand fetch from register file can be done
at the same time the instruction is being decoded

116

FETCH OPERANDS in LC-3

LDR loads MAR
(step 1), and

places the

results in MDR

(step 2)

#‘
PROCESSOR BUS GatePC 16

3
DR —4>|
LD.REG —>|

3, | SR2
SR2 —4>

REG
FILE

OuUT OouT

SR1

3,
(<%~ SR1

FINITE
STATE
MACHINE

'K

-

16

GateMDR —/\

CONTROL UNIT

PROCESSING
UNIT

GateALU

A

MEMORY

Figure 4.3

KBDR

INPUT

The LC-3 as an example of the von Neumann model

OUTPUT

EXECUTE

" The EXECUTE phase executes the instruction
= [n ADD, it performs addition in the ALU

" |[n XOR, it performs bitwise XOR in the ALU

118

EXECUTE in LC-3

REG
ADD adds SR1 nFel R
LD.REG—>]
and SR2 D €0 T
i
16 16
CLK — >
16 .
7 : :L
R—> FINITE S
IH_IQ— LD.IR Mi.{;?;I;EE = 16

)

'
2 B A/
6
! ALUK V\JL

CONTROL UNIT PROCESSING
UNIT

GateALU

GateMDR —/\

MEMORY INPUT OUTPUT

119

Figure 4.3 The LC-3 as an example of the von Neumann model

STORE RESULT

« The STORE RESULT phase writes the result to
the designated destination

« Once STORE RESULT is completed, a new
instruction cycle starts (with the FETCH phase)

120

STORE RESULTS in LC-3

PROCESSOR BUS

ADD loads ALU
Result into DR

EILE

LD.REG—>|
SR2

3
SR2 —4> ouT

SR1
ouT

R —>1 FINITE
STATE
16

'K

PROCESSING

GateMDR —/\

IH_|<- LD.IR [MACHINE !
2 B A
aluk \ AV

CONTROL UNIT
UNIT

Figure 4.3

INPUT

MEMORY
The LC-3 as an example of the von Neumann model

OUTPUT

121

STORE RESULTS in LC-3

LDR loads
MDR into DR

Figure 4.3

PROCESSOR BUS

LD.REG—>

3, | SR2 SR1 3
SR2 —4| OuUT OuUT l<—><-SR

REG
FILE

16 16
CLK — >
16, .
R—>| FINITE S
STATE
IR__J<—LDIR |MACHINE[™ 16
] A
2 B A
16
0 Aluk __ ALY
>
16
CONTROL UNIT PROCESSING
UNIT
GateALU
GateMDR
16 16 16
MEM.EN, R.W
LD.MOR —f MDR) MAR |<— LD.MAR
.
MEMORY INPUT OUTPUT

The LC-3 as an example of the von Neumann model

122

The Instruction Cycle

- FETCH
- DECODE

- EVALUATE
ADDRESS

- FETCH OPERANDS
- EXECUTE
TORE RESULT

123

Changing the Sequence of Execution

" A computer program executes in sequence (i.e., in program
order)

= Firstinstruction, second instruction, third instruction and so on

" Unless we change the sequence of execution

" Controlinstructions allow a program to execute out of
sequence
" They can change the PC by loading it during the EXECUTE phase
* That wipes out the incremented PC (loaded during the FETCH phase)

124

Jump (Branch)

* Unconditional branch or jump (ARM)
B TARGET
= Conditional branch or jump (ARM)

BEQ TARGET

BNE TARGET

= These instructions are encoded using a special branch
format in ARM ISA

= | C-3 has a jump instruction that can load a register into PC
" Let’s see

125

PC UPDATE in LC-3

JMP loads e
- LD.REG —>
SR1 into PC cra 2ol 572 (D o]
16 16
CLK —>] o>
16 .
R—>| FINITE : SIrpLi
[_ln_lo- LD.IR Mi.{:}l\-i.ll-EE = 16

>
LT

>
N
X

[+
>
-
=

> |

CONTROL UNIT PROCESSING
UNIT

GateALU

GateMDR —/\

MEMORY INPUT OUTPUT
126

Figure 4.3 The LC-3 as an example of the von Neumann model

Control (FSM) of the Instruction Cycle

State 1

MAR < PC
PC <~ PC + 1

%ﬁState 2

FETCH MDR <— M[MAR]

y State 3

y State 4

DECODE [apcode]

First state after First state after First state after
DECODE for DECODE for DECODE for
ADD instruction LDR instruction JMP instruction

State 63

Last state Last state
to carry out e oo to carry out o0 PC <— Register

ADD instruction LDR instruction

To state 1 To state 1 To state 1

Figure 4.4 An abbreviated state diagram of the LC-3

State 1
o The FSM asserts GatePC and LD.MAR

o It selects input (+1) in PCMUX and
asserts LD.PC

State 2
o MDR is loaded with the instruction

State 3
o The FSM asserts GateMDR and LD.IR

State 4

o The FSM goes to next state depending
on opcode

State 63
o JMP loads register into PC

Full state diagram in Patt&Pattel,
Appendix C

This is an FSM Controlling the LC-3 Processor

127

The Instruction Cycle

- FETCH
- DECODE

- EVALUATE
ADDRESS

- FETCH OPERANDS
- EXECUTE
TORE RESULT

128

The Instruction Cycle: Things to Note

= Not all instructions need all phases
" The ordering of phases in not set in stone
= Some phases can be grouped as one

= Some structures may not be needed in a different
microarchitecture

" Microarchitecture “style” dictates many details (week 6)

129

The Instruction Cycle: Things to Note

* What we have seen is a very general multi-cycle CPU
" Each instruction takes multiple “machine cycles” to
complete

" |nLlabs4 -6 +first assignment you build a single-cycle CPU
" The entire instruction (all phases) must finish in one cycle
" Contrast with multi-cycle CPU as you build

" Oneclock cycle = One machine cycle = One instruction cycle

= We Will cover both single-cycle and multi-cycle ARM CPUs

130

ARM and QuAC
Instruction Set Architectures
(ISAS)

ARM (Chapter 6 of H&H + Assignment 2) and QuAC (Assignment 1)

131

Von Neumann Model: TwWo Key Properties

" Von Neumann model is also called stored program computer
(instructions in memory). It has two key properties:

= Stored program
= |nstructions stored in a linear memory array
= Memory is unified between instructions and data
* The interpretation of a stored value depends on the control signals

= Sequential instruction processing

= One instruction processed (fetched, executed, completed) at a time

= Program counter (instruction pointer) identifies the current instruction

= Program counter is advanced sequentially except for control transfer
instructions

132

Recall: Instruction Types

" There are three main types of instructions

" Operate (data processing) instructions
" Execute operations in the ALU

" Data movement (memory) instructions
" Read from or write to memory

= Control flow (branch/jump) instructions
* Change the sequence of execution (decision making)

133

Data Processing Instructions

134

ARM Data Processing (DP) Instructions

" a=b+c—-d
= We can use two ARM instructions to do the computation

ADD t, b, c
SUB a, t, d

= ADD and SUB are instruction mnemonics

" |nstructions operate on operands (a, b, c)

= Computers operate on binary data not variable names

= We need to specify the physical location of operands

= We have registers, memory, constants in instructions
135

Registers as Operands

" |nstructions need fast access to operands, but memory is slow
= Keep a small set of registers close to the CPU in a register file

= ARM architecture uses 16 registers
Mapping is chosen by

= 32-bit architecture means 32-bit registers human, or a tool called

compiler that translates
high-level code to
= a=b+c-d assembly

-[R0=a,R1=b,R2=c,R3=d,R4=t]

ADD t, b, ¢ | ADD R4, R1, R2
SUB a, t, d SUB RO, R4, R3

136

Aside: Compiler vs. Assembler

= Compiler translates
= high-level language code into
= assembly code (human readable)

= Assembler translates
= assembly code into
* machine code (1s and 0s)

137

Source/Destination Operand

" |nstructions operate on one or more source operands and
store the result after execution in a destination operand

ADD R4, R1, R2
SUB RO, R4, R3

" R1and R2 are the source operands for the ADD instruction

" R4 is the destination operand for the ADD instruction

138

Another Example

" a=b-c
" f=(g+h)=(i+])

" Variables a —c are held in registers RO—R2 and f —j are held

in registers R3 — R7/

SUB
ADD
ADD
SUB

RO,
RS,
R9,
R3,

R1,
R4,
R6,
RS,

R2
R5
R7
R9

139

Design Principle # 1

= Regularity leads to simpler hardware

" |nstructions with a consistent number of operands (2
sources, 1 destination) are easier to encode and
handle in hardware

140

Design Principle # 1

= Regularity leads to simpler hardware

" |nstru

source
handli

= QuACa

Register Operands Format (R-Format)

There’s nothing enforcing future instructions fall into these two formats: R-Format
and |-Format only describe the general pattern existing instructions follow. New
instructions could follow an entirely different encoding format.

15

14

13

L 12

1

10 |

3

8

7

3

54

2i1{0

op

cond

rd

0

ra

rb

so tollows the same principle!

(2

141

The Register Set (File)

* ARM defines 16 architectural registers

" The register set is part of the ISA specification
" RO-R12 are used for storing variables

" R13 - R15 have special uses

Design Principle # 2

m Smaller is Faster

= Reading data from a small register file is faster
than reading from a large file

143

Constant & Immediate in Instruction

= ARM instructions can use constant or immediate operands
Fact: 98% of all the constants in a program would fit in 13 bits

" The value is available immediately from the instruction

= Advantage: No register or memory access
= Disadvantage: Immediate can be 8 — 12 bits because limited bits in the
encoding (instruction format)

" |n the following example, assume R7=a,R8 =b

High-Level code ARM Assembly Code
a =a+t 4 ADD R7, R7, #4
b=a-—12

SUB R8, R7, #0xC

144

Design Principle # 3

" Good desigh demands good
compromises

= To encode immediate instructions in QUAC, we need
a new format

= Same with ARM although encoding is more complex

145

Design Principle # 3
" Good desigh demands good

[| T There’s nothing enforcing future instructions fall into these two formats: R-Format h d t
O enc 8 g 2 Nhee @)

and |-Format only describe the general pattern existing instructions follow. New
instructions could follow an entirely different encoding format.

move w format.

Register Operands Format (R-Format)

15 : 14 : 13 | 12 1 10:9:8|7|6:5:4|3(2:1:0

op cond rd 0 ra 0 rb

= We follow the
same principle in

15 14 | 13 | 12 1 0 987 6i5/4/3[2i1/0 QuAC

op cond rd imm8

Immediate Format (I-Format)

146

MOV Instruction

" MOV is a useful instruction for initializing register values

" VIOV can also take a register source operand
= MOV R1, R7 copies the contents of register R7 into R1

" |n the following example, assume R4 =i, R5 = x

High-Level code ARM Assembly Code
1 =0 MOV R4, #0
X = 4080; '

MOV R5, #OxFFO

147

Instruction Format — 1: Data Processing

31:28

27:26 25:20 19:16

15:12

11:0

cond

op funct Rn

Rd

Src2

= Operands

Rn [19:16]: first source operand
register (0000, 0001, ..., 1111)

Src2 [11:0]: second source register
or unsigned immediate

Rd [15:12]: destination register

Control fields

cond [31:28]: specifies conditional
execution (1110 for unconditional)

op [27:26]: the operation code or
opcode (00 for data processing)

funct [25:20]: the specific
function/operation to perform

148

Breaking down funct Field

31:28 27:26 25:20 19:16 15:12 11:0
cond op funct Rn Rd Src2
\ l J
|
31:28 27:26 25 24:21 20 19:16 15:12 11:0
cond 00 | | cmd S Rn Rd Src2

cmd [24:21]: specifies the specific DP instruction (0100 for ADD; 0010 for SUB)

I-bit [25]: informs the control unit about Src2
= | =0:Src2is aregister
= | =1:Src2isan immediate

S-bit [20]: 1 if the instruction sets the condition flags

149

Two DP Formats (Src2 Variations)

Immediate (assume 11:8 are 0 for now)

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 | 1 cmd S Rn Rd 0|0]|0 imm8
Register (assume 11:4 are 0 for now)

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0

cond 00 | O cmd S Rn Rd 0/0|0]|0 0 Rm

DP with Src2 as Immediate

= Bit 25 (I) informs the CPU how to interpret Src2
" | =1, CPU interprets Src2[7:0] as an unsigned 8-bit constant

" Format (Src2 = immediate)

ADD RO, R1, #16

ADD Rd, Rn, #imm8
31:28 27:26 25 24:21 20 19:16 15:12 7:0
cond 00 (1 cmd S Rn Rd imm8

151

DP with Src2 as Register

= Bit 25 (I) informs the CPU how to interpret Src2
= | =0, CPU interprets Src2[3:0] as a register

" Format (Src2 = Register)
ADD RO, R1, R3

I

ADD Rd, Rn, Rm

31:28 27:26 25 24:21 20 19:16 15:12 11:4

3:0

cond 00 | O cmd S Rn Rd 0l0|0|0]|0

Rm

152

More Data Processing Insts.

AND

ORR

EOR

BIC

MVN

(OR)

(XOR)

(Bit Clear)

(MoVe and Not)

153

The Bit Clear Instruction

= Bit Clear (BIC)
= Used for bit masking bits and forcing unwanted bits to 0

= BIC R6, R1, R2

= R2isthe mask
= The bits we want to CLEAR or ZERO in R1 are set to TRUE in R2

» The instruction stores the result of R1 AND (NOT R2) inR6

154

Example of Data Processing

Source registers

Assembly code

AND
ORR
EOR
BIC
MVN

R3,
R4,
R5,
RO,

R7,

R1,
R1,
R1,
R1,

R2

R2
R2
R2
R2

R1
R2

R3
R4
RS
R6
R7

0100 0110

1010 0001

1111 0001

1011 0111

1111 1111

1111 1111

0000 0000

0000 0000

Result

0100 0110

1010 0001

0000 0000

0000 0000

1111 1111

1111 1111

1111 0001

1011 0111

1011 1001

0101 1110

1111 0001

1011 0111

0000 0000

0000 0000

1111 0001

1011 0111

0000 0000

0000 0000

1111 1111

1111 1111

155

Design Principle # 4

= ake the common case fast

" ARM architecture includes only simple, commonly
used instructions

" The number of instructions is kept small, so the
hardware required for decoding is simple, small,
and fast

" More elaborate operations are performed using
sequences of multiple simple instructions

156

RISC vs. CISC Architectures

" Reduced Instruction Set Computer (RISC)
"= Provide a small set of simple instructions
"= Minimizes hardware complexity (high clock rate, power-efficient)

= Requires many instructions to solve a complex problem
= Examples: ARM, MIPS, QUAC, RISC-V

" Complex Instruction Set Computer (CISC)

= Provides many complex instructions

= Complex hardware (longer critical paths, lower clock frequency)

= Each instruction is more complex so fewer instructions to solve a problem
= Example: Intel x86

157

Another RISC ISA: QuAC

" Fixed width instructions make decoding easy and simple
= A small number of crucial instructions (fewer opcodes save instruction real-estate)

Register Operands Format (R-Format)

15 14 13 12 1 10 98 7 6;5;4 3 210 u Two formats and regUIarityin the ISA

o o 4 o] e Jol (across formats)
Immediate Format (I-Format) [| rd in same place (InStrlO . 8)
% wiw] v Jwlse[rleselseilo = opcode in the same place

op cond rd imm8

= seth: somewhat complex

seth moves an 8-bit constant (imm8) into the high byte of the destination register rd,
leaving the low byte of rd unchanged. Formally,

= Few general-purpose registers rd = (#immg << 8) | (rd & OXFf)

= Space for constants in the ISA
= Easy to convert to hexadecimal
= The only way to access memory is via a dedicated set of instructions

= Conditional execution + general-purpose PC = Conditional branch instructions
158

Data Movement Instructions

159

Data Movement Instructions

"= Real programs need to operate on more data than can fit in the
register file

= Most data resides in (slow) memory
= Fetched from memory into the register file when needed

= Moved to memory from the register file to free up a register

160

Motivation

Large and Slow External Main
Memory is outside the CPU, and
physically separated from the CPU

Small and Fast Registers are
inside the CPU close to the ALU

UData Movement Instructions

move data to and from
registers and memory

161

Data Movement Instructions

= Two instructions to facilitate data movement

= The LDR instruction: Bring data word from memory into the register file
= LoaD Register

= The STR instruction: Store data word from the register file into memory
= STore Register

162

Memory View (32 bits = 4 bytes)

= Byte-addressable memory (each box is a byte & each row is a word)
= Byte addresses (left) and 8-bit byte data (right, 1 byte = 2 Hex digits)

Byte Address | Word Address | Data | Word Number
13 112 | 11| 10 00000010 CD|19|A6|5B |Word4
F E| D | C 0000000C 40| F3 107|188 |Word3
B | A| 9| 8 00000008 O1|EE|28]|42|Word?2
716 |54 00000004 F2|F1|AC|O07 |Wordl
312|110 00000000 AB|CD|EF|78]|WordO
MSB LSB < >

Little-Endian View 4 Bytes 163

Memory View (32 bits = 4 bytes)

= Byte-addressable memory (each box is a byte & each row is a word)
= Byte addresses (left) and 8-bit byte data (right, 1 byte = 2 Hex digits)

Byte Address | Word Address | Data | Word Number
10 | 11 | 12 | 13 00000010 CD|19|A6|5B |Word4
C | D|E F 0000000C 40| F3 107|188 |Word3
8 | 9| A| B 00000008 O1|EE|28]|42|Word?2
4 | 5 | 6| 7 00000004 F2|F1|AC|O07 |Wordl
O]l 1] 2] 3 00000000 AB|CD|EF|78]|WordO
MSB LSB < >

Big-Endian View 4 Bytes 164

Revision (Start of Week 6/1)

= Steps of Transformation
= From high-level language code to assembly code (compiler or human)
= From assembly code to machine code (assembler or human)

= Instruction set architecture

= |nstruction set
= Opcodes and operands
= Data types
= Addressing modes
= Instruction formats

= Architectural state

= Memory
= Register set
= Program counter

165

Reading from Memory

" Format of LoaD Register instruction
LDR RO, [R1l, #12]

* Address calculation (base + offset addressing)
= Add base address (contents of R1) to the offset (#12)
= Address=(R1 + 12)
= Use any register for base address
= R1isasource (register) operand

= Result
= RO holds the data at memory address [R1 + 12] after the
instruction is executed
= RO is adestination (register) operand

LDR Example

" Read a 32-bit word of data at memory (byte) address 8 into R3.
Use R2 as the base register. Show the contents of R3.

MOV R2, #0
LDR R3, [R2, #8]
R3 Ox 01 EE 28 42

Word Address

00000010
0000000C
00000008
00000004
00000000

Let’s initialize R2 to 0, and add 8 as the offset

Data

CD

19

A6

5B

40

F3

07

838

01

EE

238

42

F2

F1

AC

07

A B

CD

EF

78

Word 4

Word 3
Word 2
Word 1
Word 0

Word Number

167

Address vs. Value

= Square brackets signify address (also called pointer in C)
ILDR R3, [R2, #8]
= |f you [add the contents of register R2 to constant #8, you will get the
address with which to access memory]|
A Base + Offset Addressing Mode
* When presented with an address, memory obliges by returning
the value stored at address given (8 in this example)

" Ina 32-bit computer

= Width of address bus = 32 bits (address space = 232 locations)

= Although memory is byte-addressable, it returns a 32-bit word to fill the

entire register 168

Writing to Memory

" Format of STore Register instruction
STR RO, [R1, #12]

= Address calculation
= Add base address (R1) to the offset (12)
= Address=(R1 + 12)
= RO and R1 are both source (register) operands

" Result
= Memory address (R1 + 12) will now have the value in RO after the

instruction is executed
= Destination operand is memory address computed from source

operands

STR Example

= Store the value held in R7 into memory word 21
" Let’sinitialize R5to 0,and add 84 (21 X 4)asthe

offset
MOV R5, #0
STR R7, [R5, #0x54]

= The offset can be written in decimal or hexadecimal: 84
(decimal) 1is 0x54 (Hex)

170

Instruction Format — 2: Memory

31:28 27:26 25:20 19:16 15:12 11:0
cond op |I|P|UIB|W|L Rn Rd Src2
= op=01

= Rn = base register (base address)

= Rd = destination (load), source (store)

= Src2 = offset (register, shifted register, immediate)

= funct [25:20] = 6 control bits

| (Bit 25): Encoding of Src2
L (Bit 20): Load or Store

171

LDR with Src2 as Immediate

= | (Bit25)=1:Src2 =imm12 where imm?2 is a 12-bit unsigned
offset added to the value in the base register (Rn)

" Format of LoaD Register instruction
LDR RO, [R1, #12]

]

LDR Rd, [Rn, #imml2]
= L (Bit20)=1: CPU performs an LDR

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 |1]1111]0]0]1 Rn Rd imm12

172

LDR Datapath

31:28 27:26

25:20

19:16

15:12

11:0

cond 01

1

0

0

1

Rn

Rd

imml2 =16

RO
R1
R2
R3

R4
R5
R6
R7
R8
R9
R10
R11
R12
R13
R14
R15

Base R

LDR R11, [R5,

#16]

Zero
Extend

Data R

3. Data Reg is
loaded

A

\ALU/

l 1. Address
calculation

2. Memory
read

MEMORY

173

STR with Src2 as Immediate

= | (Bit25)=1:Src2 =imm12 where imm?2 is a 12-bit unsigned

offset added to the value in the base register (Rn)

" Format of STore Register instruction
[R1,

STR RO,

STR Rd,

= L (Bit 20) = 0: CPU performs an STR

31:28

|

27:26

l

[Rn,

25:20

#12]

l

#imml2]

19:16

15:12

11:0

cond

01

111

0

0 Rn

Rd

imm12

174

REGISTER can hold memory address
[R1] : R1 is a pointer (=) to Data
Memory Load returns Data or Value
Data is Stored in memory. Address is INPUT
Same Memory Stores Instructions and Data
[PC] = Instruction

175

Conditional Execution

176

Conditional Execution

" ALU operations set the condition (status) flags
" They are contained in a register called the Current Program
Status Register (CPSR)

= We can execute instructions conditionally based on a specific
condition flag being TRUE or FALSE

177

Conditional Execution

= ARM allows conditional execution in two steps

= Step 1: Instruction sets the condition flags (Negative, Zero,
Carry, Overflow)

" Step 2: Subsequent instructions execute based on the state
of the condition flags

Setting the Condition Flags

= Method 1: Use the COMPARE instruction

CMP R5, R6

= The instruction subtracts the second source operand from the first
operand (R5 — R6)

= The instruction does not save any result

" Flags are set as follows
= |sO,
= |s negative,
= (Causes a carry out,
= Causes a signed overflow,

< OZN
]
_ =l

Setting the Condition Flags

" Method 2: Append the instruction mnemonic with S

ADDS R1, R2, R3

" The instruction adds source operands R2 and R3

" |t sets the flags (S)

= |t saves the resultin R1

Condition Mnemonics

" We can execute instructions conditionally based on the
status of the flags register

= Condition for execution is encoded as a condition mnemonic
appended to the instruction mnemonic

CMP R1, R2
SUBNE R3, R5, RS
ADDEQ R1, R2, R3

= NE and EQ are condition mnemonics

= SUB executes only if R1 is not equal to R2 (meaning Z = 0)
181

Condition Mnemonics

cond Mnemonic Name CondEx
0000 | EQ Equal Z
0001 | NE Not equal Z
0010 CS/HS Carry set / Unsigned higher or same C
0011 CC/LO Carry clear / Unsigned lower C
0100 | MI Minus / Negative N
0101 |PL Plus / Positive of zero N
0110 | VS Overflow / Overflow set V
0111 VC No overflow / Overflow clear 1%
1000 | HI Unsigned higher ZC
1001 | LS Unsigned lower or same ZORC
1010 GE Signed greater than or equal NV
1011 LT Signed less than NV
1100 | GT Signed greater than ZIN®V)
1101 | LE Signed less than or equal ZORNDV)
1110 AL (or none) Always / unconditional ignored

182

Instructions that affect condition flags

Type Instructions Condition Flags
Add ADDS, ADCS N,Z C,V
Subtract SUBS, SBCS, RSBS, RSCS N,Z C,V
Compare CMP, CMN N, Z,C,V
Shifts ASRS, LSLS, LSRS, RORS, RRXS N, Z, C
Logical ANDS, ORRS, EORS, BICS N, Z, C
Test TEQ, TST N, Z,C
Move MOVS, MVNS N, Z, C
Multiply MULS, MLAS, SMLALS, SMULLS, UMLALS, N, Z

UMULLS

183

Example

= R5 =17 and R9 = 23

= Will the SUBEQ and ORRMI instructions execute?

" NZ C V="?

CMP R5,
SUBEQ RI1,
ORRMI R4,

R9
R2,
RO,

R3
R9

184

Another Example (page 307-308 of book)

= R2 = 0x80000000 and R3

= Which instructions will execute?

" NZCV =?

= 000000001
CMP R2, R3
ADDEQ R4, R5, #78
ANDHS R7, R8, R9
ORRMI R10, R11, R12
EORLT R12, R7, R10

185

Conditional Execution in QuAC

= Bit 11 is associated with a condition code

Register Operands Format (R-Format)

15 {14 : 13 : 12 1 10 :9:8|7(6:5:4|3[2:1:0

op cond rd 0 ra 0 rb

= ALU instructions set the flags (a.k.a. condition codes). See Flags in QUAC ISA

= The CPU uses that information to determine whether to execute the current
instruction or not (e.g., store result into register file or memory)

Name Suffix Encoding Condition Meaning

Always - 0 - Always executes

Equals eq 1 Z == 1 Execute if latest ALU result was zero

= |f cond field (Instr,,) is TRUE, then
= Execute the instruction only if he last ALU instruction set the Z flag to TRUE
= QOtherwise, do not execute the instruction (depart from the usual control flow)
= The default encoding of the cond field is 0 (execute the instruction)
= add rl, r2, r3 (cond=FALSE)
" addeq rl, r2, r3 (cond=TRUE) 186

Recall: Conditional Execution in QUAC

15 {14 {13 | 12

1 10{9i8|7|6i5/4|[3|2{1}0

op

cond 1 rd 0 ra 0 rb

3

addeq rl, r2, r3 (cond=TRUE)

What is the relationship between eq and Z flag?
A comparison of two registers shows they are equal (i.e., their difference is 0)

Name

Suffix Encoding Condition Meaning

Always

0

Always executes

Equals

€q

1

/=

1 Execute if latest ALU result was zero

Branch Instructions

188

Program Counter (PC) points to
(contains the address of) next

instruction to execute

Byte
Address

0040000C
00400008
00400004
00400000

Instructions

E3A01064

E3A02045

E1510002

25813024

— PC

189

Normal (Sequential) Execution

= 32-Bit ISA with Byte-Addressable Memory
= PC = PC + 4

= 64-Bit ISA with Byte-Addressable Memory
= PC = PC + 8

= 32-Bit ISA with Word-Addressable Memory
= PC = PC + 1

190

Normal (Sequential) Execution

Increment PC during instruction
FETCH to prepare to execute the
NEXT Instruction

However: It is often useful to break
this sequence

191

(1) Altering the PC differently can

break the sequential flow of
program execution

(2) Branch instructions alter the
program counter to break the
sequential flow of exeuction

192

Program Counter (PC)

Program Counter (PC): Contains the address of (or points to) the next

instruction to be executed

Incremented by 4 (= 4 bytes or 32 bits) in the FETCH phase

PC = PC + 4 to execute the next
sequential instruction in memory

Byte
Address

0040000C
00400008
00400004
00400000

Instructions

E3A01064

E3A02045

E1510002

25813024

— PC

193

Program Counter (PC)

" PC=PC+ 4 to execute the next
sequential instruction in memory

Byte
Address

0040000C
00400008
00400004
00400000

Instructions

E3A01064

E3A02045

E1510002

25813024

— PC

Program Counter (PC)

" PC=PC+ 4 to execute the next
sequential instruction in memory

Byte
Address

0040000C
00400008
00400004
00400000

Instructions

E3A01064

E3A02045

E1510002

25813024

— PC

Program Counter (PC)

" PC=PC+ 4 to execute the next
sequential instruction in memory

Byte
Address

0040000C
00400008
00400004
00400000

Instructions

E3A01064

E3A02045

E1510002

25813024

— PC

Program Counter (PC)

" PC=PC+ 4 to execute the next
sequential instruction in memory

Byte
Address

0040000C
00400008
00400004
00400000

Instructions

E3A01064

E3A02045

E1510002

25813024

— PC

Program Counter (PC)

" PC=PC+ 4 to execute the next
sequential instruction in memory

Byte
Address

0040000C
00400008
00400004
00400000

Instructions

E3A01064

E3A02045

E1510002

25813024

— PC

Branch Instructions and PC

Branch instructions change the PC to point to a different instruction than

the next sequential instruction in memory
Updated by a different address in the EXECUTE phase

New address PC points to is determined by formula (addressing mode)

Byte
Address

0040000C
00400008
00400004
00400000

Instructions

E3A01064

E3A02045

E1510002

25813024

— PC

199

Branch Instructions and PC

" Update PC to re-execute the four instruction sequence
again (for loop)

Byte Instructions
Address

— PC

0040000C| E3A01064
00400008 E3A02045
00400004 E1510002
00400000 25813024

Branch Instructions and PC

" Update PC to re-execute the four instruction sequence
again (for loop)

Byte Instructions
Address

0040000C| E3A01064
00400008 E3A02045
00400004 E1510002
00400000 25813024 — PC

Branch Instructions

» Typically, a computer program is executed in sequence
= First instruction is executed, then the second, then the third, and so on

" Decision making is an important advantage of computers

= jf and 1f-else statements

= for andwhile loops

» gswitch-case statements

= ARM provides branch instructions to skip and repeat code

202

Type of Branches

" Branch (B)
= Branches to another TARGET instruction

= Unconditional branch: always executes the target instruction

= Conditional branch: either executes the TARGET instruction or the next

sequential instruction in memory based on a condition
= BEQ (Branch if the Zero flag is set)
= BNE (Branch if the Zero flag is not set)

" Branch and Link (BL)

= A special branch to provide support for functions in C++ or Java

= Architectural support for high-level language needs
203

Unconditional Branch

The Branch in this example is unconditional and always TAKEN (T)

After encountering B, the CPU executes SUB instead of ORR

The label TARGET is a memory address in human readable form
TARGET is transformed into a memory address by a tool called

assembler

Assemblers transform assembly code into machine code (0s and 1s)

Assembly code:

ADD
B
ORR
AND
TARGET
SUB

R1, R2,
TARGET

R1, RI,
R3, RI,
R1, RI,

#17

R3
#0XFF

#78

204

Assembly language let us give meaningful
(human-readable and easy to differentiate)
symbolic names (labels) to memory locations,
such as TARGET, rather than use binary addresses

We call these names Symbolic Addresses

205

Conditional Branch

= Conditional branch uses condition mnemonics

= Recall conditional execution and condition
mnemonics

206

Recall: ARM Condition Mnemonics

cond Mnemonic Name CondEx
0000 | EQ Equal Z
0001 | NE Not equal Z
0010 CS/HS Carry set / Unsigned higher or same C
0011 CC/LO Carry clear / Unsigned lower C
0100 | MI Minus / Negative N
0101 |PL Plus / Positive of zero N
0110 | VS Overflow / Overflow set V
0111 VC No overflow / Overflow clear 14
1000 | HI Unsigned higher ZC
1001 | LS Unsigned lower or same ZORC
1010 GE Signed greater than or equal NV
1011 | LT Signed less than NV
1100 | GT Signed greater than ZIN®V)
1101 | LE Signed less than or equal ZORNDV)
1110 AL (or none) Always / unconditional ignored

207

Conditional Branch

Conditional branch uses condition mnemonics
Assembly code:

CMP subtracts R1 from RO and sets all f
Z flag is FALSE because RO —R1 is not O

MOV
ADD
CMP
BEQ
ORR
THERE
ADD

RO, #4
R1, RO,
RO, RI1
THERE

R1, RI,
R1, RI,

RO

R1

#78

= The branch BEQ evaluates to FALSE

Branch is NOT TAKEN (NT)
The next instruction executed is the ORR instruction

ags

208

Instruction Format — 3: Branch

31:28 27:26 25:24 23:0
cond op 1L imm24
= op=10

imm24 = 24-bit signed immediate

The two bits [25:24] form the funct field

Bit 25 is always 1
L bit: L = 0 for B (Branch)

L bit: L = 1 for BL (Branch and Link)

Format
B TARfET
B 1mm24

209

Branch withL=0

= Branch with L bit (Bit 24) as O is a regular branch

31:28 27:26 25:24 23:0

cond 10 10 imm24

= Branch Target Address (BTA): The address of the next instruction to execute if the
branch is taken

= How is BTA calculated?

1. Shift left imm24 by 2 (to convert words to bytes)
2. Sign-extend (copy Instruction[23]into Instruction[24:311])

3. AddPC + 8

210

BTA Calculation Example

= |nstruction encodes the distance from PC + 8 as 3 32-bit words

31:28 27:26 25:24

23:0

cond 10 10

imm24 =3 (000000000000000000000011)

address
suppose PC points here > PC ————| 0x3020 BLT THERE
PC + 4 — 0x80n4 ADD RO, R1, R2
PC + 8 ——| 0x80AS SUB RO, RO, RO
. : 0x80AC ADD R3, RO, RI
3 Instructions 0x80B0 ORR R3, R2, RI1
=12 Bytes THERE
4 .| 0x80B4 ADD R1, RI1, #78
0x80BS8 ADD R3, R3, #0x5

211

BTA Calculation DataPath

31:28 27:26 25:24 23:0
cond 10 10 imm24 = 3 (000000000000000000000011)
8 Shifter
PF \ ALU / SEXT

S\ ALU /

BTA Calculation Summary

The processor calculates the BTA in three steps
1. Shift leftimm24 by 2 (to convert words to bytes)
2. Sign-extend (copy Instr,;into Instrs;.,4)

3. AddPC+ 8

000000000000000OO0O0O0OO0O0O0OOO0OO11 =3

0000000000000000OD0D0O00O0OD0OO0OOOO0OOO1I100 =12

213

Branch-Related Terminology

= Two main types of branches
= Conditional branch: Executes the next sequential instruction or TARGET instruction based on a condition
= Unconditional branch: Always (unconditionally) executes the TARGET instruction
= Branch Target
= Memory address of the TARGET instruction
= Branch Condition
= Condition which if TRUE branch jumps to the TARGET instruction

= Branch Resolution/Evaluation
= The act of evaluating the branch condition
= Two outcomes of branch resolution are:
= Taken Branch (T): branch condition evaluates to TRUE
= Untaken (Not Taken or NT) Branch: branch evaluates to FALSE

= Branch behavior
= Strongly (most of times) Taken/Untaken OR Weakly (some of the times) Taken/Untaken
= Always Taken OR Always Untaken

= Branch Prediction
= |n high-performance CPUs, branches prevent the CPU from doing useful work

= Modern CPUs use a branch predictor to predict the branch direction (T/NT) and branch TARGET 214

if and if-else

= We will study high-level language (C) to assembly
transformation in this course

215

The Three Program Constructs

= We will see three basic constructs used in structured programs
(construct comes from constructing a program)

= Sequential v
" One subtask, followed by other, never going back to first

= Conditional

" One of the two subtasks but not both, depending on some
condition

= |terative
" Doing a subtask a number of times

216

Conditional Statements

= |f the condition is TRUE, do one subtask. Otherwise, do a
different subtask

" A subtask or block of code may do nothing

= We call it a conditional construct

= All languages provide conditional constructs

217

1 f Statement

C code: Assembly code:

if (apples == oranges) RO = apples
f =1+ 1; R1 = oranges
f=f - 1i; R2 = £

«e «e «e «e

R3 =1
CMP RO, RI = apples == oranges?
BNE L1 = if yes, branch to L1
ADD R2, R3, #1 = jif no, add 1 to i

L1l

SUB R2, R2, R3 = Subtract i from £

= The assembly code checks for the opposite condition in C code
= Skips the if block when the condition is not satisfied

= |f the branch is NOT TAKEN, the if block is executed 518

1 f Statement

= |t is very rarely the case that computer
programs can be written only one way

= Use the BEQ instruction instead of BNE

" Using conditional execution (next)

219

1 f Statement

C code: Assembly code:

if (apples == oranges) RO = apples
f =1+ 1; R1 = oranges
f=f - 1i; R2 = £

«e «e «e «e

R3 = i
CMP RO, RI = apples == oranges?
BEQ L1 = if yes, branch to L1
B L2 = if no, add 1 to i

L1

ADD R2, R3, #1 = Subtract i from £

L2

SUB R2, R2, R3

= More faithfully translates the high-level code
= |f the branch is TAKEN, the if block is executed
= There is an extra branch instruction hence worst performance

220

1 f with Conditional Execution

C code:
if (apples == oranges)
f =1+ 1;
f=f — 1i;

Assembly code:

; RO = apples
; Rl = oranges
s R2 = £
;s R3 =1
CMP RO, RI1

ADDEQ R2, R3,
SUB R2, R2,

R3

#1

* This solution is shorter and faster (one fewer instruction)

= apples == oranges?
= if yes, add 1 to i
= Subtract i from f

= |fthe if blockislong, it is tedious to write conditional mnemonics

= Conditional execution requires NEEDLESS fetching of instructions from memory

= In high-performance CPUs, branch instructions introduce extra delay if the branch
predictor makes a mistake (branch misprediction)

221

if-else

222

1f-else Statement

C code:
if (apples ==
f =1+ 1;

else
f=f— 1i;

oranges)

Assembly code:
; RO = apples
; Rl = oranges

s R2 = £

+ R3 = 1
CMP RO, RI1
BNE L1
ADD R2, R3,
B L2

L1l

SUB R2Z2, R2,
L2

#1

R3

apples == oranges?
if yes, branch to L1
if no, add 1 to 1i
Branch to L2
Subtract i from £

223

1f-else Statement

C code:
if (apples == oranges)
f = i + 1;]
else
f=f— 1i;

Assembly code:
; RO = apples
; Rl = oranges

s R2 = £
: R3 = i
CMP RO, R1
BNE L1
ADD R2, R3, #1
B L2
L1l
SUB R2, R2, R3

L2

apples == oranges?
if yes, branch to Ll
if no, add 1 to 1i
Branch to L2
Subtract i from £

224

1f-else Statement

C code:
if (apples == oranges)
f =1+ 1;
else
f=f— 1i;

Assembly code:
; RO = apples
; Rl = oranges

s R2 = £
+ R3 = 1
CMP RO, R1
BNE L1
ADD R2, R3, 71
B L2
L1l
SUB R2, R2, R3

L2

apples == oranges?
if yes, branch to L1
if no, add 1 to 1i
Branch to L2
Subtract i from £

225

1f-else Statement

C code:
if (apples == oranges)
f =1+ 1;
else
f=f— 1i;

Assembly code:
; RO = apples
; Rl = oranges

s R2 = £
+ R3 = 1
CMP RO, RI1
BNE L1
ADD R2, R3, #1
B L2
L1
SUB R2, R2, R3

L2

apples == oranges?
if yes, branch to L1
if no, add 1 to 1i
Branch to L2
Subtract i from £

226

1f-else Statement

C code:
if (apples ==
f =1+ 1;

else
f=f— 1i;

oranges)

Assembly code:

; RO =
; R1 =
; R2
; R3 =
CMP
BNE
ADD
B
L1
SUB

apples
oranges

= f

i

RO, RI1

Ll

R2, R3, #1
L2

R2, R2, R3

e 0000

apples == oranges?
if yes, branch to L1
if no, add 1 to 1i
Branch to L2
Subtract i from £

227

1f-else Statement

C code:
if (apples == oranges)
f =1+ 1;
else
f=f— 1i;

Assembly code:
; RO = apples
; Rl = oranges

s R2 = £
+ R3 = 1
CMP RO, RI1
BNE Ll
ADD R2, R3, #1
B L2
L1l
SUB R2, R2, R3

L2

apples == oranges?
if yes, branch to L1
if no, add 1 to 1i
Branch to L2
Subtract i from £

228

1f-else Statement

C code:
if (apples ==
f =1+ 1;

else
f=f— 1i;

oranges)

Assembly code:
; RO = apples
; Rl = oranges

s R2 = £
+ R3 = 1
CMP RO, RI1
BNE L1
ADD R2, R3, #1
B L2
L1
SUB R2, R2, R3

L2

apples == oranges?
if yes, branch to L1
if no, add 1 to 1i
Branch to L2
Subtract i from £

229

1f-else Statement

" |tisvery rarely the case that computer
programs can be written only one way

* Do ityourself: Find an alternative way to write the if-else
statement

230

1 f-else with Conditional Execution

C code: Assembly code:
if (apples == oranges) ; RO = apples
f =1+ 1; ; R1 = oranges
else ; R2 = £
f=f— 1i; ;s R3 =1
CMP RO, R1
ADDEQ R2, R3, #1
SUBNE R2, R2, R3

* This solution is shorter and faster (one fewer instruction)
= Suppose the if block is long, it is then tedious to write conditional mnemonics
= Conditional execution requires NEEDLESS fetching of instructions from memory

= On the other hand, in high-performance CPUs, branch instructions introduce extra delay

if the branch predictor makes a mistake (branch misprediction) .

Switch Statement

232

switch-case Statement

C code:
switch (button)

{
case 1: atm = 20; Dbreak;
case 2: atm = 50; Dbreak;
case 3: atm = 100; break;
default: atm = 0; break;

}

= Execute one of several blocks of code (cases) depending on the condition
= Break out of the entire switch block {...} after executing a specific block
= |nthe above example condition is the state of variable button

= |f no conditions are met, the default block is executed

switch-case Statement

C code: Assembly code:
switch (button) { ; RO = button " Comment begins with ;
case 1: atm = 20; break; ; R1 = atm = Another comment
case 2: atm = 50; break; CMP RO, #1 = is button == 17?
case 3: atm = 100; break; MOVEQ R1, #20 = atm = 20
default: atm = 0; break; BEQ DONE = break out
} CMP RO, #2 = is button == 27?
MOVEQ R1, #50 = atm = 50
BEQ DONE = break out
CMP RO, #3 "= is button == 3?
MOVEQ R1, #100 = atm = 100
BEQ DONE = break out
MOV R1, #0 = Execute default case
DONE

234

switch-case Statement

C code: Assembly code:
switch (button) { ; RO = button " Comment begins with ;
case 1: atm = 20; Dbreak; ; R1 = atm = Another comment
case 2: atm = 50; break; [CMP RO, #1 Y= is button == 1?
case 3: atm = 100; break; MOVEQ R1l, #20 = atm = 20
default: atm = 0; break; |\ BEQ DONE) * break out
} CMP RO, #2 = is button == 27?
MOVEQ R1, #50 = atm = 50
BEQ DONE "= Dbreak out
CMP RO, #3 "= is button == 3?
MOVEQ R1, #100 = atm = 100
BEQ DONE "= Dbreak out
MOV R1, #0 = Execute default case
DONE

235

switch-case Statement

C code: Assembly code:
switch (button) { ; RO = button " Comment begins with ;
case 1l: atm = 20; break; ; R1 = atm = Another comment
case 2: atm = 50; break; CMP RO, #1 "= is button == 17?
case 3: atm = 100; break; MOVEQ R1, #20 = atm = 20
default: atm = 0; break; BEQ DONE = break out
} CMP RO, #2 Y = is button == 2?
MOVEQ R1l, #50 = atm = 50
L BEQ DONE)" break out
CMP RO, #3 "= is button == 3?
MOVEQ R1, #100 = atm = 100
BEQ DONE "= Dbreak out
MOV R1, #0 = Execute default case
DONE

236

switch-case Statement

C code: Assembly code:
switch (button) { ; RO = button " Comment begins with ;
case 1: atm = 20; Dbreak; ; R1 = atm = Another comment
case 2: atm = 50; break; CMP RO, #1 = is button == 17?
case 3: atm = 100; break; MOVEQ R1, #20 = atm = 20
default: atm = 0; break; BEQ DONE = break out
} CMP RO, #2 = is button == 27?
MOVEQ R1, #50 = atm = 50
BEQ DONE "= Dbreak out
(CMP RO, #3 Y * is button == 3?
MOVEQ R1, #100 = atm = 100
L BEQ DONE))" break out
MOV R1, #0 = Execute default case
DONE

237

switch-case Statement

C code: Assembly code:
switch (button) { ; RO = button " Comment begins with ;
case 1: atm = 20; Dbreak; ; R1 = atm = Another comment
case 2: atm = 50; break; CMP RO, #1 = is button == 17?
case 3: atm = 100; break; MOVEQ R1, #20 = atm = 20
default: atm = 0; break; BEQ DONE = break out
} CMP RO, #2 = is button == 27?
MOVEQ R1, #50 " atm = 50
BEQ DONE "= Dbreak out
CMP RO, #3 "= is button == 3?
MOVEQ R1, #100 = atm = 100
BEQ DONE "= Dbreak out
MOV R1, #0 = Execute default case
W

238

We will cover loops and arrays
after the teaching break

Next: Microarchitecture

239

For Loop

240

Loops

= Life is full of repetition!
= Standard routines repeat each day, week, month, ...
= Terminating at some point

" Repetition (iteration) is also the essence of computing!
= Compute the sum of first one billion numbers
= Go over each student record and change numerical grade to letter
= Terminate if no more records are found

" CPUs are very good at looping sometimes but not always
depending on a condition!

241

Loops

Loops are iterative constructs that repeat a subtask several times, but only
as long as some condition is TRUE (subtask = sequence of instructions)

If the condition is TRUE, do the subtask (also called loop body)
After the subtask is finished, go back and check the condition again

As long as the result of the condition is TRUE, the program continues to
carry out the same subtask again and again

The first time the test is NOT TRUE, the program proceeds onward

242

Loops

for(initialization; condition; incrementation)

= Loops are iterati body: -al times, but
only as long as sc J
initialization
= |f the condition i ody)
o
= After the subtask ‘ion again
True
= Aslong as the re: peny 1 continues to
carry out the san l
incrementation
= The first time the onward

243

Loops

= We will look at

" For Loop
= While Loop

= Qur focus

" How are loops in high-level languages transformed
(translated) into assembly by human or compiler?

244

For LoopinC

C code:
int 1i;
int sum = 0;

for (i

n
o
=
n
n
o
=
+
-

" The variable “1” is called the loop index or counter
" The For statement has three components

" |=0:index initialization
= <10 :loop termination condition
" =i+ 1:loopadvancement

* The body of the loop can have one or more statements

245

For Loop in ARM Assembly

C code: Assembly code:

int i; ; RO = i = Comment begins with ;

int sum = 0; ; R1 = sum = Another comment
MOV RO, #0 = TInitialize i

for (1 = 0; 1 < 10; 1i =1 + 1) MOV R1, #0 "= Tnitialize sum

sum = sum + 1i; FOR = TLabel/Address of CMP
CMP RO, #10 *= check condition:i<10 ?
BGE DONE = if (i>=10) exit loop
ADD R1, RI1, RO "= sum = sum + i
ADD RO, RO, #1 = TIncrement i
B FOR = repeat loop
DONE

= High-level code: Few lines (statements); Assembly code: Many lines (instructions)

= High-level code: Variable names; Assembly code: Registers & memory addresses

= High-level code: Hides machine details (e.g., MOVement); ASM: Expose details

= |n both C and assembly, the control flow (sequential and iterative constructs) are visible
= Easier to identify in C, more difficult in assembly

" Let’s do a line-by-line comparison of the above code ... 246

For Loop in ARM Assembly

C code: Assembly code:
[int i;] ; RO = i = Comment begins with ;
int sum = 0; ; Rl = sum = Another comment
[MOV RO, #0 1= 1Initialize i
for (1 = 0; 1 < 10; 1i =1 + 1) MOV R1l, #0 "= Tnitialize sum
sum = sum + 1i; FOR = TLabel/Address of CMP
CMP RO, #10 *= check condition:i<10 ?
BGE DONE = if (i>=10) exit loop
ADD R1, RI1, RO "= sum = sum + i
ADD RO, RO, #1 = TIncrement i
B FOR = repeat loop
DONE

" |n high-level language programs, we initialize variables
* |nassembly initializing variables translates to initializing registers

247

For Loop in ARM Assembly

C code:
int 1i;
int sum

for (i =
sum =

i

i+ 1)

Assembly code:

; RO = 1
; R1 = sum
MOV RO, #0
MOV R1, #0
FOR
CMP RO, #10
BGE DONE
ADD R1, RI1, RO
ADD RO, RO, #1
B FOR
DONE

Comment begins with

Another comment
Initialize i
Initialize sum

Label/Address of CMP

4

check condition:i<10 ?

if (i>=10) exit loop

sum = sum + i
Increment i
repeat loop

248

For Loop in ARM Assembly

C code: Assembly code:

int i; ; RO = i = Comment begins with ;

int sum = 0; ; R1 = sum = Another comment
MOV RO, #0 = TInitialize i

for (1 = 0;]1i < 10;|1i =1 + 1) MOV R1, #0 "= Tnitialize sum

sum = sum + 1i; FOR = TLabel/Address of CMP
CMP RO, #10 *= check condition:i<10 ?
BGE DONE = if (i>=10) exit loop
ADD RI, RI, RO " sum = sum + 1
ADD RO, RO, #1 = TIncrement i
B FOR = repeat loop
DONE

" Check termination condition to break out of the loop if condition

iIs met
249

For Loop in ARM Assembly

C code:
int 1i;
int sum 0;
for (i = 0; i < 10;
sum = sum + 1i;

i=1+1)

Assembly code:

; RO = 1
; R1 = sum
MOV RO, #0
MOV R1, #0
FOR
CMP RO, #10
BGE DONE
ADD R1, R1l, RO
ADD RO, RO, #1
B FOR
DONE

= Add the loop counter i to the variable sum

Comment begins with ;

Another comment
Initialize i
Initialize sum

Label/Address of CMP

check condition:i<10 ?

if (i>=10) exit loop

sum = sum + i
Increment i
repeat loop

250

For Loop in ARM Assembly

C code:
int 1i;
int sum

for (i =

0; i < 10;
sum + 1i;

Assembly code:

; RO = 1
; R1 = sum
MOV RO, #0
MOV R1, #0
FOR
CMP RO, #10
BGE DONE
ADD R1, RI1, RO
ADD RO, RO, #1
B FOR
DONE

" Increment the loop counter

Comment begins with ;

Another comment
Initialize i
Initialize sum

Label/Address of CMP

check condition:i<10 ?

if (i>=10) exit loop

sum = sum + i
Increment i
repeat loop

251

For Loop in ARM Assembly

C code:
int 1i;
int sum

for (k

= 0; 1< 10;

sum + 1i;

i=1+1)

Assembly code:

; RO = 1
; R1 = sum
MOV RO, #0
MOV R1, #0
FOR
CMP RO, #10
BGE DONE
ADD R1, RI1, RO
ADD RO, RO, #1
B FOR
DONE

Comment begins with ;

Another comment
Initialize i
Initialize sum

Label/Address of CMP

check condition:i<10 ?

if (i>=10) exit loop

sum = sum + i
Increment i
repeat loop

= Keep iterating by branching back to the CMP instruction

252

For Loop in ARM Assembly

C code: Assembly code:

int i; ; RO = i = Comment begins with ;

int sum = 0; ; R1 = sum = Another comment
MOV RO, #0 = TInitialize i

for (i = 0;{i < 10; f = i + 1) MOV R1, #0 " Tnitialize sum

sum = sum + i; _FOR * Label/Address of CMP
CMP RO, #10 *= check condition:i<10 ?
BGE DONE = if (i>=10) exit loop
ADD R1, RI1, RO "= sum = sum + i
ADD RO, RO, #1 = TIncrement i
B FOR = repeat loop
DONE

= Keep iterating by branching back to the CMP instruction

253

Same For Loop in a Different Style

" Let’s see the same for loop translated using a different
style

254

Same For Loop in a Different Style

C code:

int 1i;
int sum = 0;

for (1

Assembly code:

; RO =
; R1 =
MOV
MOV
COND
CMP
BLT
B
FOR
ADD
ADD
B
DONE

i
sum

RO, #0

R1, #0

RO, #10

FOR

DONE

R1, R1l, RO
RO, RO, #1
COND

check condition
if i<10 repeat
if i>=10, leave for

add sum to i
Increment i
Iterate again

= More faithfully follows the for loop semantics in C

» Different ways to translate a high-level statement into ASM

Use BLT instead of BGE

255

Aside: Syntax versus Semantics

= Syntax: Arrangement of keywords in a statement| ¢ code:
= Thereis a; after a statement int i;
= The loop statement uses parentheses int sum = 0;
for (1 = 0; i < 10; i = i + 1)
sum = sum + 1i;

= Semantics: Meaning of keywords and their arrangement
" Repeat the instructions in the loop body until condition is not met
" Addsumtoi

= What the CPU does depends on statement and instruction semantics

= Without rules of syntax, it would be tedious to understand programmer’s intention
= Without clearly defined instruction semantics: difficult to write programs to solve
specific problems & to build CPUs that do “right” thing

256

Different way to solve the same
problem, more efficient translation

" Let’s sum numbers from 0 -9 in a different way

" And see if it helps reducing the number of instructions
required for translation

Decremented Loop

C code: Assembly code:
int i; ; RO = i
int sum = 0; ; R1 = sum
MOV RO, #9
for (i = 9; i >>=0; 1 =1 - 1) MOV R1, #0
sum = sum + 1i; FOR

ADD R1, RI1, RO " add sum to i

SUBS RO, RO, #1 = i-- and set flags

BNE FOR = if i!=0 keep looping
DONE

= Saves 2 instructions per iteration compared to optimized (increment) version
= Decrement loop variable & compare: SUBS RO, RO, #1
= Only 1 branch instead of 2
= MANY ways to solve (transform) a high-level problem into assembly
= Code Optimization: A sub-field of Compilers
= Aims to minimize total instruction count, branch instruction count, and
maximize register utilization (to avoid frequent trips to memory) 758

For Loop

" Repeat TEN times: add 10toR1
" Whatis wrong with the code below (one way to think of a

FOR |00p)? ADD R1, RI1, #10
ADD R1, RI1, #10

ADD R1, R1, #10
ADD R1, R1, #10
ADD R1, R1, #10

= Poor practice ADD RI1, RI1, #10
= Codeis not reusable igg ii’ ii’ 28
= Next time it may be 20 not 10| app R1, R1, #10
= |nstructions cost Memory!! ADD R1l, RI, #10
= Each instruction is stored in memory and has an address
= Memory is expensive!
= Fast Instruction Cache built out of SRAM inside CPU is very premium

= How many instructions for above with a For loop using branch instruction?

259

While Loop

260

While Loop in C

* While loops iterate a number of times until the “controlling
condition” or sentinel is NOT met (FALSE)

C code:
while (CONDITION) {

}

= Special cases of while loops: execute forever (left) and never
(right)

C code: C code:
while (TRUE) { while (FALSE) {

Example While Loop

= Determine X such that 2= 128

C code:
int POW = 1;
int X = 0;
while (POW != 128) {
POW = POW * 2;
X=X+ 1;
}

Assembly code:
; RO = POW
; R1 = X
MOV RO, #1
MOV R1, #0

WHILE
CMP RO, #128
BEQ DONE

LSL RO, RO, #1
ADD R1, R1, #1
B WHILE

DONE

loop initialization
POW 1
X

Il
o |l

POW != 1287?

if POW == 128, exit loop
POW = POW * 2

X =X+ 1

repeat loop

262

Sometimes a QUEUE makes sense...

...somet mes Eventually a3 MAP s
just a SET necessary...

s enough. o &
) % < ol
0! 2 A 2 "\"_a
c'\“' oV € rice 0 K

...byt sooner
or later we al|
need to deal with

3 STACK,

Data Structure: Collection of data values organized in a particular
way in memory for ease of storage and access. Two aspects:
organization and functions to read and update values

Examples: Array, Linked List, Stack, Queue
263

What is an Array?

= Array: A list of data objects of the same type arranged sequentially in memory
Array of 1-Byte Objects

Array of 4-Byte Objects

= A data object is a memory location whose content represent “some” value
= | = Post office box can store letters, Amazon gifts, pamphlets (all these are pkgs. types)
= How do we know *interpret* the type of what is stored in the box?

= Either we know what we placed there, or we know how to look up the type

= The interpretation of the value in memory depends on its type
= 8-Byte Unsigned Integers (unsigned int)
= 4-Byte 2’s Complement Integers (int)
= A 12-Byte student record with {uint student Id, int grade}

264

Array in Memory

= The array below has six elements and each element in a single byte
* Theindex of the first element (byte) is 0, then 1, then 2,

= |t’s base (starting) address in memory is O
= The address of the first element is O, second element is 1, last element is 5

[of1]2]3]4]5]

T Base Address = Address of the first element

= Another array with six elements

| o | 1 | 2 | 3 | 4 | 5 |

T Base Address = Address of the first element

= Same starting address as the first array and same indexing scheme (0, 1, 2, ...)
= Addresses of array elements in memory are different

= Second element is at an offset 4, last one at 20. Offsets are in bytes
265

Array Syntax in C

" Arrays contain a collection of similarly typed elements
" Elements are stored contiguously in memory

int is 4 bytes on most architectures

C code:
int marks[5] = {0, 2, 3, 1, 5};
int a = marks[0];
marks[3] = 10;

Address

00000010
0000000C
00000008
00000004
00000000

Data

OIN| WKL |WU

a

4 Bytes

Index

o P N W b

Element

marks[4]
marks|[3]
marks[2]
marks[1]

marks|[O]

266

Array of Characters

* Array of characters (char is a data type in C)
" charis used for representing characters

char is always 1 byte

C code:
char alphas[5] ={@’, ‘b, ¢, ‘d’, ‘€’};

Address

0000004
00000003
00000002
00000001
00000000

Data

1 Byte

Index

o P N W b

Element

alphas[4]
alphas[3]
alphas[2]
alphas[1]
alphas[0]

267

Example Array in C

Add 10 to each element of the 200-element scores array

C code:
int 1i;
int scores[200];
// initialization code not
//shown

for (i = 0; 1i<200; i++)
scores[i] = scores[i] + 10;

268

Array Sum

Add 10 to each element of the 200-element scores array

C code:
int 1i;
int scores[200];
// initialization code not
//shown

for (i = 0; 1i<200; i++)
scores[i] = scores[i] + 10;

address data

0x14000010 [90] scores[4]
ox1400000Cc | 76 ...
0x14000008 [80 | scores[2]
0x14000004 [40 | scores[1]
base = 0x14000000 | 100 | scores[O]

C—
4 bytes
Showing the scores array in memory

269

Array Sum

Add 10 to each element of the 200-element scores array

C code:
int 1i;
int scores[200];
// initialization code not

//shown

for (i = 0; 1i<200; i++)
scores[i] = scores[i] + 10;
address data

0x14000010 90 scores[4]
0x1400000C 76
0x14000008 [80 | scores|[2]
0x14000004 40 scores[1]
base = 0x14000000 | 100 | scores|[O]

C—
4 bytes
Showing the scores array in memory

Assembly code:
; RO = array base address
+: R1 = 1
MOV RO, #0x14000000
MOV RI1, 0
LOOP
CMP R1, #200
BGE L3
LSL R2, R1, #2
LDR R3, [RO, R2]
ADD R3, R3, #10
STR R3, [RO, R2]
ADD R1, RI1, #1
B LOOP
L3

RO = base addr
i=20

i< 200?

no? exit loop
word to byte

R3 = scores[i]
R3 = R3 + 10
scores[i] += 10
i=1+1
repeat

270

LDR with Offset in Register

= New LDR variant

LDR R3, [RO, R2]
ldest lbase loffset

LDR Rd, [Rn, Rm]

= |tis common to load from memory with [base + offset] addressing mode,
where offset increments by “some” value during each loop iteration

= |SA provides support for such scenarios to bridge the semantic gap b/w high-

level code and assembly code
= |SA evolution eases the software “burden”
= On the other hand, ISA implementation (i.e., microarchitecture) becomes more

involved (recall the RISC vs. CISC debate)
271

Array Sum

Add 10 to each element of the 200-element scores array

C code:
int 1i;
int scores[200];
// initialization code not

//shown

for (i = 0; 1i<200; i++)
scores[i] = scores[i] + 10;
address data

0x14000010 [90] scores[4]
ox1400000Cc | 76 ...
0x14000008 [80 | scores[2]
0x14000004 [40 | scores[1]
base = 0x14000000 | 100 | scores|[O]

C—
4 bytes
Showing the scores array in memory

Assembly code:
; RO = array base address
+: R1 = 1
MOV RO, #0x14000000
MOV R1, #0
LOOP
CMP R1, #200
BGE L3

RO = base addr
i=20

i < 2007
no? exit loop

LSL R2, RL, #2
LDR R3, [RO, R2]

word to byte
R3 = scores[i]

ADD =3, &3, 710
STR R3, [RO, R2]
ADD R1, R1, #1
B LOOP

L3

R5 = Ro + 10
scores[i] += 10
i=1+1
repeat

272

Another LDR Variant

= \We have seen two LDR variants
* IDR Rd, [Rn, #imm]
= ILDR Rd, [Rn, Rm]

" LSL and LDR are often used together in array-related code
(array traversals)

" |SA provides support for eliminating the extra LSL instruction

= Memory address
LDR R3, [RO, RI, |LSL #2'] = Left shift R1 by 2 (scaling R1)

| = AddR1 to RO

Left shlft |s.the same = Address=R0 + (R1 * 4)
as multiplying by 2 573

Condensing Array Sum -1

Add 10 to each element of the 200-element scores array

C code:

Assembly code:

int 1i;
int scores[200];
// initialization code not

; RO =

[
14

R1 =

array base address
i

//shown

scores[1i]

for (i = 0; 1i<200; i++)
= scores[i] + 10;

address

0x14000010
0x1400000C
0x14000008
0x14000004
base = 0x14000000

data

90

/6

30

40

100

C—
4 bytes

scores[4]

géores[Z]
scores([1]
scores([0]

Showing the scores array in memory

MOV
MOV
LOOP
CMP
BGE
LDR
ADD
STR
ADD
B
L3

RO, #0x14000000

R1, #0

R1, #200

L3

R3, [RO, R1, LSL, #2]
R3, R3, #10

R3, [RO, R2]

R1, R1, #1

LOOP

274

ARM Indexing Modes

= Offset Addressing

Address is the sum of base register and offset (#20, #—20, —R2)
Base register is unchanged

= IDR RO, [Rl, R2]

Pre-indexed Addressing

Address is the sum of base register and offset

Base register is updated with the new address before the memory access
= IDR RO, [R1, R2]!

Post-index Addressing
= Address is the base register

Base register is updated with the new address after the memory access
= IDR RO, [R1], R2

Examples: ARM Indexing Modes

= Offset Addressing
= IDR RO, [R1l, R2]
= Address: R1 + R2 and R1 does not change

= Pre-indexed Addressing
= LDR RO, [R1, R2]!
= Address:R1 + R2andR1 = R1 + R2

= Post-index Addressing
= LDR RO, [R1], R2
= Address:R1andR1 = R1 + R2

= Note: In all cases, offset can be an immediate

276

Condensing Array Sum — 2

Add 10 to each element of the 200-element scores array

C code:
int 1i;

//shown

scores[1i]

int scores[200];
// initialization code not

for (i = 0; 1i<200; i++)
= scores[i] + 10;

address

0x14000010
0x1400000C
0x14000008
0x14000004
base = 0x14000000

data

90

/6

30

40

100

C—
4 bytes

scores[4]

géores[Z]
scores([1]
scores([0]

Showing the scores array in memory

Assembly code:

; RO =

; R1 =
MOV
ADD

LOOP
CMP
BGE
LDR
ADD
STR

B
L3

array base address

i
RO,
R1,

RO,
L3

R2,
R2,
R2,

LOOP

#0x14000000
RO, #800

R1
[RO]

R2, #10
[RO], #4

RO
R1

base addr
base + 800

end of array?
yes? exit loop
R2 = scores[i]
scores[i] + 10
store scores[i]
and RO = RO + 4
repeat loop

277

Condensing Array Sum — 2

Add 10 to each element of the 200-element scores array

Assembly code:

; RO = array base address
+ R1 = 1

MOV RO, #0x14000000

MOV R1, RO, #800
LOOP

CMP RO, RI1

BGE L3

LDR R2, [RO]

ADD R2, R2, #10

STR R2, [RO], #4

B LOOP

L3

This version of Array Sum first computes the

address of the last byte of the array
(#0x14000800)

Each iteration of LOOP checks if RO is greater
than or equal to #0x14000800

If so, we are done, so step out of LOOP
STR R2, [R0], #4

= StoresR2 at [RO], and after that, adds 4
to RO

278

Microarchitecture

Requirements, Bottlenecks, and Good Fortune:
Agents for Microprocessor Evolution

YALE PATT, FELLOW, IEEE

Invited Paper

Thefrs microprocesor, e Il 404, showed p i 1971. 1 probiem
contaiied 2300 mansstorsand peraieda clock e of 108 _—
Kz, Today. 30 years later, the microprocessor confains aliost 200 Algorithm

millon ransistors, operating a frequency of more than 1 GHz.

In five years, those mumbers are expected 1o grow to more than a Program
billion transistors on a single clip, operating at a clock frequency 1sa
offrom' 10 10 Gt Le oL L
heevotion ofthe microprocessor,frow where i sared n 1971 Microarchitecture
1o wher it i today and where i 3 kel 10 be i fve vears, las Riipaiiasiatic
come aboutbecause of seveal cotiniingforces. Ot positon s Cireuits
cach Electrons

asa resl of one of e things, and always witin the contest
of a compur arcitect making Iradeofs. Te thre fings are: 1)
e reqiemenss: 2)borlenecks: and 3) good forune. callthemn
collctvely agens or evohion.

s aricle attempis to do hree things: describe a basic frae
work o e A of opocesors s s of e o 0EOTs. This has b espeially e throughout he evo-
devciopments h e come along in the 30 years since e ar- Wtion of the microprocessor.
ival of e irst microprocessor, and fnaly sugsest some of he
tiew lings vou can expect 10 see i a high performance micropro.
cessor n e st five ears.

Fig. 1. The microprocessor todsy

B. Levels of Transformation

Kepwords—Conpuer arciccure, microrchicnre, micro- Nombers of transistors and thei switching times are e-

;i S o ded by processfechnology. What we use those

resources for depends on the demands of the marketplace

50tk rsonroes s what he microprocesi &5

al sbout. Fig. 1 shows the levels of transformation that &

4. Computer Architecte: A Science of Tradeafls problem,staied i some naoural anguage lie English, must
Inareal

evolurion.

L. BASIC FRAMEWORK

Computer architecture is far more “art” than “science.
Our capabilities and insights improve as we experience more
cases. Computer architects draw on their experience with
previous designs in making decisions on current projects. If
computer ure s a science at all it is a science of
tradeofs. Computer architects over the past half century have

actually do the work and solve the problem. Howexer, since

- Along the way, the problem solution s isst formulated as

practice their

hitest requiresusing that Tttt &y ol @ 0 € ke |RCRBR 1 g 2
mech

acteristics of

Suggested Reading: Requirements, Bottlenecks, and Good Fortune:

Agents for Microprocessor Evolution

Link: https://course.ece.cmu.edu/~ece740/£13/1ib/exe/fetch.php?media=r0 patt.pdf

279

Recall: Instruction Types

" There are three main types of instructions

" Operate (data processing) instructions
" Execute operations in the ALU

" Data movement (memory) instructions
" Read from or write to memory

= Control flow (branch/jump) instructions
* Change the sequence of execution (decision making)

280

ARM Instruction Formats

DP-I

DP-R

Mem

BR

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0
cond 00 | 1 cmd S Rn Rd 0l0|0]|0 immS8
31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0
cond 00 | O cmd S Rn Rd 0|l0|0|0O|0O|0O|0O]|0O Rm
31:28 27:26 25:20 19:16 15:12 11:0

cond 01 |111(110 L Rn Rd imm12

31:28 27:26 25:24 23:0

cond 10 10 imm24

281

Today’s Lecture
Algorithm
Last few lectures Program
» [nstruction Set Architectures (ISAs): ARM and QUAC | |sA
= Assembly programming: ARM Microarchitecture
Circuits
Today: Microarchitecture Electrons

= |mplementation of the ISA (arrangement of registers, memories, ALU, other blocks)
= Many different microarchitectures for one ISA are possible

= Design Point: Set of considerations for a given problem space (ML, automotive)
= Requires making tradeoffs: Performance, power, reliability, cost, complexity

Today: Design process and principles, single-cycle microarchitecture, and
performance analysis
Other microarchitectures we will cover

= Multi-cycle, pipelined, and out-of-order
282

Many ISAs, Many Microarchitectures

" There can be many implementations of the same ISA

= MIPS R2000, R3000, R4000, R6000, R8000, R10000, ...

= x86: Intel 80486, Pentium, Pentium Pro, Pentium 4, Kaby Lake,
Coffee Lake, Comet Lake, Ice Lake, Golden Cove, Sapphire
Rapids, ..., AMD K5, K7, K9, Bulldozer, BobCat, Ryzen X, ...

= POWERA4,5,6,7,8,9,10 (IBM), ..., PowerPC 604, 605, 620, ...

* ARM Cortex-M*, ARM Cortex-A*, NVIDIA Denver, Apple A*,
M1, ...

= Alpha 21064, 21164, 21264, 21364, ...

= RISC-V ...

How do we implement an ISA?

In other words, how do we design a system that obeys the
hardware/software interface?

“Form follows function.”
Louis Sullivan

Before we begin construction, let’s pause and ask: what is the
purpose of this computer?

284

Purpose: To Process Instructions

One way to process an instruction

FETCH
DECODE

EVALUATE
ADDRESS

FETCH OPERANDS
EXECUTE
STORE RESULT

Six phases

285

Purpose: To Process Instructions

Another way to process an instructions

FETCH
DECODE/RF READ
EXECUTE

MEMORY ACCESS
WRITEBACK

Five phases

286

How does a machine process insts?

= What does processing an instruction mean in von Neumann model?

AS = Architectural (programmer visible) state before an instruction is processed

<

Process Instruction

<

AS’ = Architectural (programmer visible) state after an instruction is processed

= Processing an instruction: Transforming AS to AS’ according to the ISA
specification of the instruction

287

The Von Neumann Model/Architecture

Stored program

Sequential instruction processing

288

The Von Neumann Model/Architecture

289

Recall: Programmer Visible (Architectural) State

Memory
array of storage locations
indexed by an address

B |

Registers

- given special names in the ISA
(as opposed to addresses)

- general vs. special purpose

Program Counter

memory address
of the current (or next) instruction

Instructions (and programs) specify how to transform
the values of programmer visible state

290

ISA = Instruction Set Architecture

= |nstruction Set Architecture = Instruction Set + Architectural State

= [nstruction Set
= (Opcodes
Operands
Data types (e.g., 2’s complement)
Addressing modes (e.g., base + offset)
Instruction formats (Data processing, Immediate, Memory)

= Architectural state
= Memory
= Register set
" Program counter

291

The “Process Instruction” Step

= |SA specifies abstractly what AS’ should be, given an
instruction and AS

= |t defines an abstract finite state machine where
= State = programmer-visible state
= Next-state logic = instruction execution specification
= From ISA point of view, there are no “intermediate states” between AS and AS’ during
instruction execution
= One state transition per instruction

" Microarchitecture implements how AS is transformed
to AS’

= There are many choices in implementation
= We can have programmer-invisible state to optimize the speed of instruction execution:
multiple state transitions per instruction
" Choice 1: AS - AS’ (transform AS to AS’ in a single clock cycle)
= Choice 2: AS 2 AS+MS1 - AS+MS2 - AS+MS3 - AS’ (take multiple clock cycles to
transform AS to AS’)

292

Very Basic Instruction Processing Engine

= Each instruction takes a single clock cycle to
execute

"= Only combinational logic is used to implement
Instruction execution

" No intermediate, programmer-invisible
state updates

" Fasy to explain and a simple control unit!

293

Basic Instruction Processing Engine

= Single-cycle machine

AS’ AS

Sequential |
Logic
(State)

Combinational
Logic

= Whatis the clock cycle time determined by?

= Whatis the critical path (i.e., longest delay path) of the
combinational logic determined by?

AS: Architectural State 294

Single-Cycle vs. Multi-Cycle Machines

= Single-cycle machines
= Each instruction takes a single clock cycle
= All state updates made at the end of an instruction’s execution
= Big disadvantage: The slowest instruction determines cycle time = long clock cycle

time

= Multi-cycle machines
* |nstruction processing broken into multiple cycles/stages

= State updates can be made during an instruction’s execution
= Architectural state updates made at the end of an instruction’s execution

= Advantage over single-cycle: The slowest “stage” determines cycle time

= Both single-cycle and multi-cycle machines literally follow the von Neumann
model at the microarchitecture level

Basic Instruction Processing Engine

" Single-cycle machine

Sequential AS

Combinational
Logic

AS: Architectural State 296

ARM State (AS) Elements

—+— A1 WE3 RD1 p=r= WE o
+ A RD =~ 4 32
Instruction * -1 RPI% 4 4
A2 RD2 32 32
Memory T B MData Status
emo
T A3 Register - wp i
-+ WD3 File 32
< R15
32

= PC: Logically part of the register file
= Read and written every cycle, independently of the normal register file
operation. Should it be “physically” part of the register file?
= Instruction memory has a single read port. One 32-bit address input. One 32-bit
instruction (RD) output.
= Register file: 15 registers (RO to R14) + additional input to receive R15 from PC
= Two read ports 4-bit A1 and A2 and 32-bit RD1 and RD2
= One write port A3 (and WD3) and a write enable input
= Read of R15 returns PC + 8
= Write of R15 must be handled properly if PC is outside the register file
= Reads are combinational and writes happen on the rising edge of the clock

ARM State (AS) Elements

CLK
CLK | |

CLK
PC' PC WES WE
A1 RD1
- A RD =~ 74_ 7;
32 32 32 . 32 - A RD == Y Z
Instruction Wl RD2 |- | pata |*
Memory 7 " " Status
emo
7 A3 Register - WD Y
-+ wWD3 File 32
Z]lRr15
32

= Data Memory: Single read/write port
= |f write enable (WE) is TRUE then it writes data WD into address A on the rising
edge of the clock

= |f the write enable is FALSE, then it reads value at address A onto RD
= All reads are combinational and constant time (not realistic but Ok for now)

= All writes and state updates happen on the rising edge of the clock
= Synchronous sequential circuit

298

Microarchitecture Division

= Two interacting parts
= Datapath (32-bit in our case)
= Control unit

" Datapath operates on words of data
= Memories, registers, ALUs, and multiplexers

" Control unit informs the datapath how to execute an instruction
= Receives the current instruction from the datapath
= Produces multiplexer selects, ALU control, register enable, and memory
write signals to control the operation of the datapath

299

Role of Control Unit

Codes stored in memory control the hardware of the computer ... As a puppeteer
controlling a troupe of marionettes in an exquisitively choreographed dance of arithmetic

and logic. The CPU control signals are the strings.
CODE, Charles Petzold

SIECIOIN D ED FT HON

CHARLES PETZOLD

Design Process/1

= We will add the logic for one instruction at a time

= |DR (LoaD Register)

STR (STore Register)
= Data Processing (DP) instructions with 2" source operand as an immediate
= DP with 2" source operand as a register

= Branch instruction

= Then build the “Control Unit”
301

Design Process/2

= We limit ourselves to a subset of instructions

= Data-processing instructions: ADD, SUB, AND, ORR (with register and
immediate offsets)

= Memory instructions: LDR, STR (with positive immediate offset)

= Branches: B

®" Once you understand these you can expand the
hardware to handle others

302

Design Process/3

= New connections are emphasized in black
= Hardware already studied in gray

"= Control signals in blue

303

LDR with Src2 as Immediate

= | (Bit25)=1:Src2 =imm12 whereimm12 is a 12-bit unsigned
offset added to the value in the base register (Rn)

" Format of LoaD Register instruction
LDR RO, [R1, #12]

]

LDR Rd, [Rn, #imml2]
= L (Bit20) =1: CPU performs an LDR

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 |1]1111]0]0]1 Rn Rd imm12

304

The LDR Datapath

Step 1: Read (Fetch) instruction from memory

CLK
|

PC' PC

A RD

Instruction
Memory

| nsu|

CLK
|

H

A1

A2

A3
WD3
R15

WE3
RD1

RD2

Register
File

CLK

WE

Data
Memory

= Remember the distinction between PC (current state) and PC’ (next state)
= From this point on, CPU actions depend on the instruction fetched

31:28

27:26

25:20

19:16

15:12

11:0

cond

01

1

0

Rn

Rd

imm1l2

The LDR Datapath

Step 2: Read source operand (base register, Rn) from register file

CLK CLK
C||_K B \ \ { \
2 .6 WE WE
PC PC A . g 19:16 RA1 A1 3 RD1
Instruction —1 b
uctu — A2 RD2 }—
Memory Data
Memory
— A3 Register —1 wp
— WD3 File
—4 R15
= Datais read onto RD1
31:28 27:26 19:16 15:12 11:0
cond 01 (1]1 O|L Rn Rd imm12

The LDR Datapath

Step 3: Zero-extend the immediate field stored in Instry;,,

1120 Extend Extimm
31:28 27:26 25:20 19:16 15:12 11:0
cond 01 11110 L Rn Rd imm12

Zero Extension

" Appending leading zeros to make a smaller quantity equal to a
bigger quantity

" ImmExt;;.., = 0and ImmExt;;.o = Instry,.4

308

The LDR Datapath

Step 4: Compute memory address (ALUControl = 00)

ALU can perform many operations (which one do we want: ADD)

ALUControl
CLK % CLK
CLK
| 2o ~ WE3 7 WE
A RD S| ALUResult
Instruct >3:' A RD
nstruction —1 A2 RD2 b— SrcB Data
Memory
Memory
— A3 Register
. - WD
— WD3 File
- R15
I Extend Extlmm
31:28 27:26 25:20 19:16 15:12 11:0

cond O1 (1|111]0]0]L Rn Rd imm12

The LDR Datapath

Step 5: Write back data from read by data memory to Rd in Reg File

When is the ReadData written to the F{egvistter file?
egWrite

|

ReadData

15:12

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 111|100 |L Rn Rd imm12

The LDR Datapath

Step 6: Compute address of next instruction (PC’ = PC + 4)

Recall: Hardware in inherently parallel

RegWrite ALUControl
CLK [. CLK
CLK B | L
PC l PC §19:16 RA1 A1 WE3 RD1 SrcA WE
A RD S| ALUResult ReadData
Instruction —1 A2 RD2 EEI i i
Memory _ SliE MeDr?It(?ry
e A3 Register —1wp
wD3 File
| PCPlus4 —LR1S
4 /
10 Extend Extlmm
PC will become PC’ the following cycle (recall photography example)
31:28 27:26 25:20 19:16 15:12 11:0

cond O1 (1|111]0]0]L Rn Rd imm12

The LDR Datapath

Step 7/a: Reading register R15 returns PC + 8

PCSrc
1

.

4 -DPCPIUSS

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 111|100 |L Rn Rd imm12

The LDR Datapath

Step 7/b: Writing register R15 (PC may be an instruction’s result)

PCSrc
1

g

4 -DPCPIUSS

31:28 27:26 25:20 19:16 15:12 11:0

cond 01 111|100 |L Rn Rd imm12

STR Instruction

= STR instruction uses the same instruction format

" LDR and STR behave differently at the machine level
" Rdis asource operand (specifies the register to store to mem)

" Format of STore Register instruction

STR RO, [R1, #12]

STR Rd, [Rn, #imml2]
31:28 27:26 25:20 19:16 15:12 11:0
cond 01 11110 L Rn Rd imm12

314

The STR Datapath

Step 8: Read a second register (Rd) and write its value to memory

PCSrC RegWrite ALUControl MemWrite
0 CLK 0 00 CLK 1
CLK B , :
N pel ec 3 [1016 RA1[7 WE3 SrcA we | ignored
0 A RD 3 ALUResult ReadData
Instruction RA2 AD —_— s >< A RD
Memory = MData
B2 A3 Register WriteData | oY
4 wD3 File WD
‘DPCPIU% R15
1 pcPius
4 E I [i
- Extend Extlmm
= ReadData is ignored because RegWrite is FALSE
31:28 27:26 25:20 19:16 15:12 11:0
cond 01 |1({1|1]0]|O|L Rn Rd imm12

DP Instructions: Immediate

" Like the LDR instruction, but two important differences
" imm8 instead of imm12
" The destination register stores the result of the ALU
operation instead of memory access

" Format
ADD RO, R1, #16

b

ADD Rd, Rn, #imm8

31:28 27:26 25 24:21 20 19:16 15:12 11:8 7:0

cond 00 | 1 cmd S Rn Rd 0l0|0]|0 imm$8

Adding Support for DP Instructions

= The ALU functions and encoding

ALUControl m
00 ADD

01 SUB
10 AND
11 ORR

= The ALU also produces four flags that are sent to the control unit

= Register file either receives data from the data memory or the ALU
= Add a multiplexer to choose between ReadData and ALUResult
= This multiplexer is controlled by MemtoReg

= MemtoReg = 1 for LDR and O for data processing instructions 317

DP-Immediate Datapath

Step 9: Change extend block, and add signal to write ALU result to RF

ImmSrc MemtoReg
0 0

L
sbe|4Nv

RF_| D

20 19:16 15:12 11:8 7:0

31:28 27:26 25 24:21
Rn Rd 0l0|0]|0 imm$8

cond 00 | 1 cmd

DP Instructions: Register

The second source operand is Rm instead of an immediate
Place Rm on the A2 port of the register file for DP instructions

with register as the second operand

" Format
ADD RO, R1, R3
ADD Rd, Rn, Rm
31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0
cond 00 | O cmd S Rn Rd 0|0 Rm

DP-Register Datapath

Step 10: Read 2" register (Rm) from Reg File and send RD2 to ALU

We need multiplexers on the inputs of register file and ALU to select the second source register
MemWrite MemtpReg

PCSrc RegSrc RegWrite ImmSrc ALUSrc ALUControl 2
0 0 CLK 1 X 0 varies % CLK
CLK B &
2|1 WE3 » WE
™ per PC % RA1 A1 RD1 SrcA
0 H R S| ALUResult ReadData
Instruction PO >ZEJ 4 e
A2 RD2 .
Memory SrcB Data
1 . Memory
A3 Register WriteData
: WD
4 wpD3 File
|PCPIlus8 R15 1
| PCPlus4 I/I 0
4 /
_— Extend Extlmm
Result
31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0
cond 00 [O cmd S Rn Rd 0({0(0(0|0|0|0]|0 Rm
320

Branch Instruction: Unconditional

" The second source operand is Rm instead of an immediate
" Place Rm on the A2 port of the register file for DP instructions
with register as the second operand

= Format
B TARGET
B 1mm24
31:28 27:26 25:24 23:0

1110 10 10 imm24

Branch Datapath

Step 11: Change extend block, and add a bit to RegSrc for branch

PCSrc RegSrc RegWrite ImmSrc ALUSrc ALUControl ?Z MemWrite MemtoReg
1 1 X CLK 0 10 1 00 _1C_] CLK 0
CLK B &
7 WE3 n WE
N peMpe 2 RA1 fiel RD1 SrcA
0 A RD | ALUResult ReadData
. = —I A RD
Instruction RA2 AD RD2 0 SreB <
Memory Data
1 . Memory
A3 Register WriteData
i WD
4 WD 3 File :
PCPlus8
] PCPIus4 B AL 0
4 /
= Extend Extlmm
Result
31:28 27:26 25:24 23:0
1110 10 10 iImm24
322

Operation of the Extend Block

= Each of the three instruction formats interpret the
immediate field differently
" ImmSrc,.qis the 2-bit control signal input to the
extend block

ImmSrc,., Extimm Description

00 {24’b0, Instr-.} Zero-extended imm8
01 {20’b0, Instr,,.o} Zero-extended imm12
10 {6{Instr,5}, Instr,3.,}00 | Sign-extended imm24

323

Datapath with Control

.\ PESKC
Control MemtoR
Unit [MemtoReg
31:28 Cond MemWrite
27:26 Op ALUControl
25:20 Funct ALUSrc
15:12 Rd ImmSrc
RegWrite
Flags
|_L ALUFlags
‘H & CLK CLK
CLK Q | |
=|19:16 2
2 0] |3 RA1 WE3 SrcA [~ WE
1] pc PC = A1 RD1
0 & RD = sl S| ALUResult ReadData
. 3:0 0 H >_I A RD
Instruction RA2 <
A2 RD2 O Sch Data
Memory 1
15:12 |_ 1) Memory
A3 Register WriteData W
wD3 File
4'DPCP|uss RIS 1
.| PCPlus4 D 0
4
it II Extend Extlmm
Result

324

Control Unit

= Generate control signals based on instruction fields

" |nstry;50 (cond)

" Instr,7., (Opcode)

" |Instryg.,o (funct)

= Flags (needed for conditional execution)

= Destination register (to update PC properly)

= Controller for single-cycle microarchitecture is purely combinational

= Conditional logic must enable updates to the architectural state when the
instruction should be conditionally executed
= Write enables must be TRUE only if conditional instruction is in fact
executed

325

One way to build the control unit

[j% RegWrite
=

)}

Vi i i Yl

CLK
)
Cond,,
ALUFlags,,, o
FlagW,., g ?.__.
PCS & g —— PCSrc
Op RegW = |—— RegWrite
o MemW MemWrite
Funct, Decod ~—
uncts,, ecoder MG
Rd,, ALUSrc
ImmSrc,,
RegSrc,.,

(a) Control Unit \) ALUControl,,
{______________-l (= ch————————-lﬁ—\,—————
: Rds, PC Logic |- PCS : : ReaW

A
| Branch | i MemW 1)
[— LA Flag o
’ o
| RegW | A 2
| —— MemW I [4
FlagWrite PR L.
| Main [—— MemtoReg I l Cond g ki
| Op,, —— Decoder ALUSrc AL N
| B0 —— ImmSrc,, I [
| —— RegSrc, ., l I o g’
| l | Za
o =
| Functs,, ALUGp] | ALUFlags ., 3
A
Lo e
| 0 DeActger —— ALUControl,,, I |
| —— FlagW,, I i ~—
-——————————————} — e e e — —— — — — — — — — — — — —
(b) Decoder (c) Conditional Logic

326

One way to build the control unit

The write enable lines that update the architectural state could be “killed”

[] L] L]
by the conditional logic o
Cond,,
ALUFlags,,, =
o
=}
'§ —— PCSrc
o 21— RegWrite
P Memy MemWrite
Funct,,
ahs ViemtoReg
Rd, ALUSrc
ImmSrc,,
RegSrc,.,
(a) Control Unit \) ALUControl,,
f L e 1) PCSrc \|
| Rd,, PC Logic |- PCS L
| , || RegW |)—— Regwrite |
| Branch I i MemW _j } MemWrite:
| — LA Flagw o
| RegW I } g :
| — MemW I [4
FlagWrite Sl e Y
| Main [—— MemtoReg | l Cord g w [
| Op,, —]Decoder ALUSrc L oK :
— ImmS| -
| 50 mmsre,, | |1 Flags, ., o |
| —— RegSrc,, l l 09
| | I I) 2 g- I
| Funct, ALUGp] [* § I
Fl
: _ :‘ctger L ALUContral,, | : i [
| \ —— FlagW, | \ o| —— |
— e e e e — - — — — — — — — e e — —— e — — — —— —— — — -
(b) Decoder (c) Conditional Logic

327

Decoder Truth Table

" Only selected signals are shown in the truth table

Example: Generating PCSrc Signal

= PCSrcis 1when
= Destination register (Rd) is R15
= RegWis 1 (ADD/SUB or LDR)
" |nstruction is a branch

= PCSrc = ((Rd == 15) & RegW) | Branch
" Assuming the control unit generates a signal called Branch
when opcode is 10 (B or BL)

" Important: Be careful to take conditional execution into
account for the assignment!

Processor Operation: ORR

CLK

31:28

e
Control

27:26

25:20

15:12

el i I2e
0

| asul

A RD

19:16

Unit
Cond

PCSrc

MemtoReg
MemWrite

ALUControl

Op

ALUSrc

Funct
Rd

ImmSrc

RegWrite

ALUFlags

A1 RD1

Instruction
Memory

O.]_RA2L \o RD2

PCPlus4

A3 Register

—1 WD3 File

23:0

R15

XX

SrcA

ALUResult

CII_K

\ e [/ —

0] srcB
1

WriteData

[Extend Extlmm

WE

Data
Memory

WD

ReadData

Result

330

Processor Operation: ORR

PCSrc 0

MemtoReg | O m
MemWrite | O 00 ADD
ALUControl | 11 01 SUB
ALUSrc 0 10 AND
ImmSrc,., XX 11 ORR
RegWrite 1

RegSrcy., 00

331

Processor Operation: LDR

] pc

CLK

PC

31:28

27:26

25:20

156:12

| asu

A RD

Instruction
Memory

PCPlus4

T
Control

Unit
Cond

PCSrc

MemtoReg
MemWrite
ALUControl

Qp

ALUSrc

Funct

ImmSrc

Rd

RegWrite

ALUFlags

19:16

15 41

3.0

C[LK

RA1 WES3

A1 RD1

15:12 |_ !

A2 RD2

PCPlus8

A3 Register

—1 WD3 File

T
r+

L

23:0

R15

01

SrcA

/

=

P|0 ISch ‘
1

00

2| ALUResult
-

CII_K

A

WriteData

[Extend

Extimm

WE

Data
Memory

WD

ReadData

Result

332

Processor Operation: LDR

PCSrc
MemtoReg
MemWrite
ALUControl
ALUSrc
ImmSrcy.,
RegWrite
RegSrcy.q

00

01

00

ImmSrc, .,

Extlmm

ALUControl m
00 ADD

01 SUB
10 AND
11 ORR

Description

00 {24°b0, Instr-.,} Zero-extended imm8
01 {20’bO0, Instry;.} Zero-extended imm12
10 {6{Instr,5}, Instr,5.,}00 | Sign-extended imm24

333

Drawback of Single-Cycle CPU

" |s this the best way to build a CPU?

= \What are the critical issues?

= Next: performance analysis basics

334

Performance Analysis

335

Processor Performance

" Performance is quantified by the execution time
" The time it takes for a program to execute from start to finish

" For example, for a given ISA and technology, how long does it
take to run a program on the single-cycle CPU?

Processor Performance

= How fast is my program?
= Every program consists of a series of instructions
= Each instruction needs to be executed

= So how fast are my instructions?
" |nstructions are realized on the hardware
"= They can take one or more clock cycles to complete
= Cycles per Instruction = CPI

= How much time is one clock cycle?
" The critical path determines how much time one cycle requires = clock period
= 1/clock period = clock frequency = how many cycles can be done each second

Execution Time

cycles seconds

) (

)

Execution time = (#instructions)(-

Iinstruction cycle

= #instructions (N)
" Depends on the ISA, skill of programmer, compiler, algorithm

= cycles per instruction (CPI)
* Depends on the microarchitecture

= seconds per cycle (clock period, inverse is clock frequency, f)
" critical path, circuit technology, type of adders, gate-level

details
338

How Can | Make the Program Run
Faster?

= NxCPIx(1/f)

= Reduce the number of instructions (N)
= Make instructions that ‘do’ more (CISC)
= Use better compilers

= Use fewer cycles to perform the instruction (CPI)
= Simpler instructions (RISC)
= Use multiple units/ALUs/cores in parallel

" Increase the clock frequency (f)
" Find a ‘newer’ technology to manufacture
= Redesign time-critical components
= Adopt pipelining

Execution Time (Single-Cycle CPU)

cycles seconds

) (

)

Execution time = (#instructions)(-

Iinstruction cycle

= #instructions (ARM is a RISC ISA)

= cycles perinstruction (= One, fixed, bad idea!)

= seconds per cycle (critical path of the CPU circuit)

340

Critical Path Analysis

Each instruction in single-cycle CPU takes one clock cycle
Determining the cycle time requires finding the critical path

Different instructions use different resources
" LDR uses instruction and data memory
= ADD does not use data memory
" STR does not write anything back to the register file

Which instruction is the slowest?
= |et us revisit the schematics and find out

341

Elements of Critical Path

Parameter Description

(ESRE PC clock-to-Q delay

tmem Memory read

tdec Decoder propagation delay
tux Multiplexer delay

tREread Register file read

- Extension block delay

taLu ALU delay

e Set up RF for write (next cycle)

Critical Path: LDR

Tc — tpcq_PC + tmem + tdec + max [tmux + tRFread' text + trnux] + tALU
+ tmem + tmux + tRFsetup

" Memories & register files slower than combinational logic
" Therefore, t. ,« + trrread == toxr T Lrux

Final Equation

Tc — tpcq_PC + 2trrlem + tdec + tRFread + tALU + 2trnux + tRFsetup

343

Critical Path: DP-R

Tc — tpcq_PC + tmem + tdec + tmux + tRFread + tALU + tmux

+ tRFsetup

Final Equation

Tc — tpcq_PC + tmem + tdec + tRFread + tALU + 2trnuX + tRFsetup

344

Critical Path Analysis

= Different instructions have different critical paths
" LDRis the slowest instruction
= DP-R and B have shorter critical paths because they do
not need to access data memory (Memory is slow!)

= Single-cycle processor is a synchronous sequential circuit
" Clock period must be constant and long enough to
accommodate the slowest instruction

" The numerical values of different variables in the critical path

equation depend on the specific manufacturing technology
345

Exercise 1: Performance Analysis

" Find the time it takes to execute a program with 100 billion
instructions on a single-cycle CPU in 16 nm CMOS manufacturing
process. See the table for delays of logic elements.

Parameter

tpcq_PC
tmem
tdec
tmux
tRFread
tALU

tRFsetup

Delay (ps)
40

200

70

25

100

120

60

Tc — tpcq_PC + 2>I<tmem + tdec + tRFread + tALU +
2>l<trnux + tRFsetup

Exercise 2: Performance Analysis

C code:

int
int

for

Assembly code:

+ RO = i

; R1 =
MOV
MOV

COND
CMP
BLT
B

FOR
ADD
ADD
B

DONE

sum
RO, #0
R1, #0
RO, #10
FOR
DONE

R1, R1l, RO
RO, RO, #1
COND

Assembly code:

+ RO = 1

; R1 =
MOV
MOV

FOR
CMP
BGE
ADD
ADD
B

DONE

sum

RO, #0
R1, #0
RO, #10
DONE

R1, R1l, RO
RO, RO, #1
FOR

" Find the execution time for each of the two implementations of
the for loop. Use CPU parameters from next slide.

347

Drawbacks of Single-Cycle CPU

" Requires two memories (no reuse)
= Requires three adders (no reuse)

" Clock period is dictated by the slowest instruction

= No way to make the common case fast (e.g., DP instructions)

348

Coming Attractions

349

Multl Cycle CPU

Divide each instruction into a number of steps

" Perform one step in one clock cycle (instead of an entire
instruction)

* Need non-architectural (microarchitectural) registers to store
intermediate state

" Need an FSM-based controller to transition between steps
= Different control signals on different steps

Section 7.4 of H&H
= After the teaching break: Possible ext. for assignment 1

350

Multi-Cycle CPU Sneak Peek (Week 7)

= Can you spot the non-architectural state (registers)?

PCWrite
AdrSrc

CLK

Control

MemWrite
IRWrite

31:28

Unit

ResultSrc

Cond

ALUControl

27:26

Op

ALUSrcB

25:20

Funct

15:12

ALUSrcA
Rd ImmSrc

Flags
f;_,

RegWrite

ALUFlags

CLK

—1SreA|

28l \ZI:/
% gl J

CLK

ALUResult M ALUOut

Py
CLK LK 5 n(-‘; CLK CLK
‘ J WE 121615 | PR : WE3 A
pC' PC Instr Al RD1
Adr RD 151
A — — 0] RA2
Instr / Data : A2 RD2 =
Memory Py =
- 2 Lac A3 Register =
I wD3 File g
cl R15 ¥
CLK /
Extend Extimm

SrcB
10

23:0
_rj Data

Result

Section 7.4 of H&H

351

Multi-Cycle CPU Cycle by Cycle (Week 7)

CLK:

ADD LDR B NOP

= Hypothetical multi-cycle CPU
= ADD and SUB takes 3 cycles
= |LDR and STR take 4 cycles

= Unconditional branch takes 1 cycle
352

Multi-Cycle Control Unit FSM (Week 7)

AdrSrc =0
AluSrcA = 1
ALUSIcB = 10
ALUOp =0
ResultSrc = 10
IRWrite

S$1: Decode
ALUSIcA =1

ALUSrcB =10

Reset

NextPC Data Imm Branch
State Datapath nOp Memory op=00 X7
p -

Fetch Instr «—Mem[PC]; PC «— PC+4 2T
Decode ALUQut— PG+ R e A A
MemAdr ALUOuUt — Rn + Imm ALUSTGB = 01 ALUSrcB = 00 ALUSrcB = 01 ALUOp = 0

ALUOp =0 ALUOp =1 ALUOp =1 ResultSrc = 10
MemRead Data «— Mem[ALUOut] Branch

MemWB Rd <« Data . tOL-D$ o
MemWrite Mem[ALUOut] — Rd .
ExecuteR ALUOut < Rn op Rm $3: MemRead A $8: ALUWB
Executel ~ ALUOut« Rnop Imm et Adsrc = " Regw
ALUWB Rd — ALUOut
Branch PC «— R15 + offset

$4: MemWB

ResultSrc = 01

RegW

353

ISA Tradeoffs 5(&

ISA Impacts Software and Hardware

= Complex instructions
= (Upside) Dense and efficient code

= (Downside) Complex circuits with longer critical paths
= Example: x86 operate instructions can have both register and memory operands

= Register-Memory architecture

= Simple instructions
= (Upside) Simple circuits (microarchitecture)
= (Downside) Large instruction footprint (many instruction to solve the same problem)
= (Downside) Big semantic gap between high-level code and assembly code
= Example: ARM allows accessing memory only via LDR/STR
= Load-Store architecture

= Number of Registers (tradeoff)
= Large register file demands more space in the ISA for encoding

= But, more registers reduce trips to memory (memory references)
355

ISA Impacts Software and Hardware

= [SA impacts
" Performance
= Power and energy
" Code size and instruction footprint
= Circuit cost and complexity (chip area)

" Future growth (ISA evolution)
356

Semantic Gap

" How close instructions & data types &
addressing modes are to high-level language
(HLL)

357

Semantic Gap

HLL
| Small Semantic Gap
ISA with

Complex Inst
& Data Types
& Addressing Modes

HVV m—————
Control
Signals

Easier mapping of HLL to ISA

Less work for software designer
More work for hardware designer
Optimization burden on HW

HLL

Large Semantic Gap

ISA with
Simple Inst
& Data Types
& Addressing Modes

HV

Control

Signals

Harder mapping of HLL to ISA
More work for software designer
Less work for hardware designer
Optimization burden on SW

358

Addressing Mode Tradeoffs

Addressing Modes

= Addressing mode specifies how instruction operands are addressed
= Source and destination registers
= Target address of a memory reference
= Target address that a branch will jump to

= ARM uses four main modes

= Register
= |mmediate
= Base

= PC-relative

» First three modes for reading/writing operands
= Last mode is for writing the program counter

360

ARM Addressing Modes

= Some of the addressing modes allow the second source operand

to be shifted

" Check your references for details

Table 6.12 ARM operand addressing modes

Operand Addressing Mode Example Description
Register
Register-only ADD R3, R2, R1 R3 « R2 + R1
Immediate-shifted register SUB R4, R5, R9, LSR#2 R4 « R5 — (R9 >> 2)

Register-shifted register

ORR RO, R10, R2, ROR R7

RO « R10 | (R2 ROR R7)

Immediate

SUB R3, R2, #25

R3 « R2 — 25

Base

Immediate offset

STRR6, [R11, #77]

mem[R11+77] « R6

Register offset

LDR R12, [R1, —R5]

R12 <« mem[R1 — R5]

Immediate-shifted register offset LDR R8, [R9, R2, LSL #2]

R8 « mem[R9 + (R2<< 2)]

PC-Relative

B LABEL1

Branch to LABEL1

Section 6.4.4 of H&H

361

Addressing Mode Tradeoffs c_/f&

" Complex addressing modes simplify high-level code to assembly
translation

= But they result in more complex circuits (microarchitecture)
= ALU to add base and offset

= Shifter in front of ALU

" Where to place the burden of optimization? Software or Hardware
" Many simple instructions + Simple microarchitecture
= Few complex instructions + Complex microarchitecture

362

Aside: Data Dependences

" |In Von Neumann model, instructions depend on each other for
data

= Data (True) Dependence: One instruction produces a result that
the subsequent instruction consumes

Aside: Data Dependences

" One can visualize a sequential program as an instruction
flow or data flow

364

Aside: Data Dependences

= Data dependence implies the two instructions must execute in
program order

= They cannot be executed simultaneously (in parallel at the
same time)

" There are also control dependences due to branches as
instruction can only execute if a branch evaluates to TRUE

= And false dependences (we will see the details later)

Implication for microarchitecture

" |nthe end we care about the correctness of the program
= From the initial architectural state to the final architectural state

= Preserving data flow (not instruction flow) is critical for program correctness

= Single-cycle CPU is one way to satisfy the program correctness criteria
= Very strict and highly constrained. And hence, poor performance

= High performance requires out of the box thinking
= Key technique is parallelism: we must execute several (independent)

instructions at the same time

= Understanding dependences is the key to unlocking parallelism
366

Aside: What if a machine processes

instructions out of program order?

= What does the programmer care about?

il:
= Does the programmer care if 13 executed before 147? {3,
i4d:

CMP

i2: BGE

ADD
ADD

RO, #10
DONE

R1, R1, RO
RO, RO, #1

= No: Programmer only cares R1 was updated before RO

= Can update AS in program order and process instructions out of order (O0O)

= Why would a machine ever do that?

= Fact: Almost EVERY high-performance computer does that!
" |n-program-order instruction processing (execution) is an illusion in high-

end computers

367

We will meet after two weeks

Revise the lecture content and do the quiz

Finish assighment 1

368

Shift Instructions

Category: Data Processing

369

Shift Instructions

= Shift the value in a register left or right, drop bits off the end
= Logical Shift Left (LSL)
= Logical Shift Right (LSR)
= Arithmetic Shift Right (ASR)
= Rotate Right (ROR)

= Logical Shift: shifts the number to the left/right and fills empty slots with zero
= Arithmetic Shift: On right shifts fill the most significant bits with the sign bit

= Rotate: rotates number in a circle such that empty spots are filled with bits

shifted off the other end
370

Logical Shift Left (LSL)

0

0

0

0

0

0

" Binary Number in Decimal =3

371

Logical Shift Left (LSL)

0

0

0

0

0

B

0

0

0

0

0

= Shift the number LEFT by ONE BIT

= 3

¢ m

" INSERT 0 in Least Significant Position
" Get RID of the Most Significant BIT

372

Logical Shift Left (LSL)

" Binary Number after shift in Decimal =6
= SHIFT LEFT = MULTIPLY BY 2

373

Logical Shift Right (LSR)

" Binary Number after right shift in Decimal =1
= SHIFT RIGHT = DIVIDE BY 2

374

Logical Shift Left (LSL)

1,1/1/1/0/,0/0/1(2|2(/0|O|O|O|O|2/0/0|O(O|1(1|2(O|0Of1|21|1|0|0O|O0

= Shift all bits left 3 positions, fill 3 least significant bits with 0’s
" Drop the 3 bits off the end

375

Logical Shift Right (LSR)

00011111111000111000001000011100RO

= Shift all bits right 3 positions, insert three 0’s from the right
" Drop the 3 bits from the left

376

Arithmetic Shift Right (ASR)

11111111111000111000001000011100RO

= Shift all bits right 3 positions, insert three 1’s from the right
" Drop the 3 bits from the left

377

Rotate Right (ROR)

ARM Instruction | ROR RO, R5, #21

31 20 0
1/1/1/1/1)1|1|1/0/0|0|1f1({1|0|0|O(O{O0|1|0(O0(0|0|1|1(1|0|0|1(1|1| RS

" Do a circular shift

= Right shift by 21 and put back bits that fall off at left end
31 20 0
<1111111000111000001000011100111 R5

Result
1/1(1|0|0|0|o|0|1|0|0|0O|O|21|1|1|0|O|2|21|1|21|2|2|2|2|2|1|2]|0|0O|0O|RD

378

Binary Encoding of Shift Instructions
= Self Study

= Section 6.4 of H&H

Shifts: Machine Representation

DP-R

31:28 27:26 25 24:21 20 19:16 15:12 11:4 3:0
cond 00 | O cmd S Rn Rd 0l0|0|0]|0 0 Rm
| |
| |
Shift Instructions i i
31:28 27:26 25 24:21 20 19:16 15:12 E 11:7 6:5 4E 3:0
cond 00 | O 1101 S 0000 Rd shamt5 sh |0 Rm
cmd =1101

sh = 00 (LSL), 01 (LSR), 10 (ASR), 11 (ROR)

Rn=0

shamt5 = 5-bit shift amount

380

Shifts: Machine Representation

" Format (Src2 Register)
LSL RO, R5, #3
LSL Rd, Rm, shamth
31:28 27:26 25 24:21 20 19:16 15:12 11:7 6:5 3:0
cond 00 [O cmd S Rn Rd shamt5 sh Rm

381

Shifts: Machine Representation

" ARM also has instructions with shift amount held in a register

LSLL R4, R8, R6

ROR R5, R8, R6
31:28 27:26 25 24:21 20 19:16 15:12 11:8 6:5 3:0
cond 00 | O cmd S Rn Rd Rs sh Rm

Use of Shift Instructions
= Left shift by N = Multiplication by 2N

= Arithmetic right shift by N = Division by 2N

= Extract bits or assemble new bit patterns

= Network programming
= Cryptography

= Compression of data
383

Source register

R5| 1111 1111

Assembly Code

LSL RO,
LSR R1,
ASR R2,
ROR R3,

R5,
R5,
RS,
RS,

#7 RO
#17 R1
#3 R2
#21R3

R8
R6

Assembly code

LSL R4,
ROR RS,

RS,
RS,

R6 R4
R6 RS

0001 1100

0001 0000

11100111

Result

1000 1110

0000 1000

0111 0011

1000 0000

0000 0000

0000 0000

0111 1111

1000 1110

11111111

1110 0011

1000 0010

0001 1100

1110 0000

1000 0111

0011 1111

1111 1000

Source registers

0000 1000

0001 1100

0001 0110

11100111

0000 0000

0000 0000

0000 0000

0001 0100

Result

0110 1110

0111 0000

0000 0000

0000 0000

1100 0001

0110 1110

0111 0000

1000 0001

Page 305 of H&H

Examples of Shift Instructions

Figure 6.4 Shift instructions with
immediate shift amounts

Figure 6.5 Shift instructions with
register shift amounts

Shift amount can be

In a register

384

Manipulating Characters & Bytes

385

Characters & Encoding

= Reading and writing text is ubiquitous
= Different devices (tablet, laptop, desktop, mobile)
= Different applications (word, whatsapp, email)
= Different manufactures (Apple, Intel, Samsung)

= Need a standardized way to represent characters that make up text
" From bits and bytes to character representations

H H Af%Af13£31°5, 30 @R(ETAO330 «6—¢30 ™3 Af AfO3f-3f«
= Things still go wrong! s e

113,.£31°3,°30 0%zl 30 «é-¢30 ™3, Af 3fO3f-3f«

386

Thinking about Character Input/Output

= Keyboard data is captured in a register

7
Y
("JGQ& |
K
i IIIIII LN) g

= Some binary data is sent to a special memory associated with
graphics chip to display the character

387

Manipulating Characters

= Manipulating characters is common

= \We need architectural support for manipulating characters

= Character is the same as a byte
= So, architectural support for manipulating bytes

= Regular LDR/STR deal with words (not bytes) -

ASCII Encoding

English characters can be encoded in a single byte (< 256)

1963: ASCIT was developed

= American Standard Code for Information & Interchange

= Assigns each text character a unique byte

= |nformation exchange became feasible across manufactures and
geographical boundaries

The C language uses the type char to represent byte or character

Optimize the common case: Need architectural support for

manipulatin
anipulating bytes .

Other Encodings

" QOther programming languages such as Java, use different
character encodings

= Unicode is the most well-known

= 16 bits to represent accents, Asian languages, and more

" www.unicode.org

Decimal Binary
0 00000000
1 00000001
2 00000010
3 00000011
4 00000100
5 00000101
6 00000110
7 00000111
8 00001000
9 00001001

10 00001010
11 00001011
12 00001100
13 00001101
14 00001110
15 00001111
16 00010000
17 00010001
18 00010010
19 00010011
20 00010100
21 00010101
22 00010110
23 00010111
24 00011000
25 00011001
26 00011010
27 00011011
28 00011100
29 00011101
30 00011110
31 00011111

Lower case and upper case differ by 0x20 (32)

Octal

000
001
002
003
004
005
006
007
010
011
012
013
014
015
016
017
020
021
022
023
024
025
026
027
030
031
032
033
034
035
036
037

Hex

00
01

02
03
04
05
06
07
08
09
0A
0B
oc
oD
OE
OF
10
11

12
13
14
15
16
17
18
19
1A
1B
1c
1D
1E
1F

ASCII

NUL
SOH
STX
ETX
EOT
ENQ
ACK
BEL
BS
HT
LF
vT
FF
CR
SO
sl
DLE
DC1
DC2
DC3
DC4
NAK
SYN
ETB
CAN
EM
SuB
ESC
Fs
GS
RS
us

Decimal

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

Decimal - Binary - Octal - Hex — ASCII

Binary

00100000
00100001
00100010
00100011
00100100
00100101
00100110
00100111
00101000
00101001
00101010
00101011
00101100
00101101
00101110
00101111
00110000
00110001
00110010
00110011
00110100
00110101
00110110
00110111
00111000
00111001
00111010
00111011
00111100
00111101
00111110
00111111

Octal

040
041
042
043
044
045
046
047
050
051
052
053
054
055
056
057
060
061
062
063
064
065
066
067
070
071
072
073
074
075
076
077

Hex

20
21

22
23
24
25
26
27
28
29
2A
2B
2C
2D
2E
2F
30
31

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

ASCII

© O N0~ WN = O >~

Decimal

64
65
66
67
68
69
70
7
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Conversion Chart

Binary

01000000
01000001
01000010
01000011
01000100
01000101
01000110
01000111
01001000
01001001
01001010
01001011
01001100
01001101
01001110
01001111
01010000
01010001
01010010
01010011
01010100
01010101
01010110
01010111
01011000
01011001
01011010
01011011
01011100
01011101
01011110
01011111

Octal

100
101
102
103
104
105
106
107
110
11
112
113
114
115
116
17
120
121
122
123
124
125
126
127
130
131
132
133
134
135
136
137

Hex

40
4
42
43

45
46
47
48
49
4A
4B
4c
4D
4E
4F
50
51

52
53
54
55
56
57
58
59
5A
5B
5C
5D
5E
5F

ASCII

>= T T N<L<Xs<CcH®WO®POUVOZZINXE"TIOTMOO®WD>»@

Decimal

96
97
98
99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

17

118

119

120

121

122

123

124

125

126

127

Binary

01100000
01100001
01100010
01100011
01100100
01100101
01100110
01100111
01101000
01101001
01101010
01101011
01101100
01101101
01101110
01101111
01110000
01110001
01110010
01110011
01110100
01110101
01110110
01110111
01111000
01111001
01111010
01111011
01111100
01111101
01111110
01111111

Octal

140
141
142
143
144
145
146
147
150
151
152
153
154
155
156
157
160
161
162
163
164
165
166
167
170
171
172
173
174
175
176
177

Hex

60
61

62
63
64
65
66
67
68
69
6A
6B
6C
6D
6E
6F
70
71

72
73
74
75
76
7
78
79
7A
7B
7C
7D
7E
7F

ASCII

- T a "o a o T o

- x

- o v o 35 3

- »

~~ T &S N K X 5 < ¢©

DEL

391

Instructions for Loading/Storing Bytes

" LDRB
" Load byte in register, and zero-extend to fill the 32 bits

= TL.DRSB
" Load byte in register, and sign-extend to fill the 32 bits

= STRB
= Store the LSB of the 32-bit integer into the specified byte in
memory
" More significant bits of the register are ignored

Loading/Storing Bytes

» WhatisinR1, R2, and memory after each of the instruction
has executed? Assume R4 =0

Byte Addressé Data

E/

8C

42

O = N W H

03

Registers

le LDRB R1, [R4, #2]
R2 P ARd LDRSB R2, [R4, #2]

5111 | 10 | A1| 98 BQEEIGERNGURE)

Loading/Storing Bytes

» WhatisinR1, R2, and memory after each of the instruction
has executed? Assume R4 =0

Byte Addressé Data

Registers

=¥ 00 | 00 | 00 | sC [EILEIEN{YEEY)

9B

8C

2 [GAGAGAEE Lorss R2, [R4, #2]

42

O = N W H

03

R A L] STRE R3, [R4, #3]

Strings in C

" A series of characters is a string

= Two ways to create strings in C

* char welcome[6] = {'H’, ‘E', ‘L', 'L’', ‘0", ‘\0'};

= char welcome[] = "“HELLO";

= Different strings have different number of characters
" We need to know the end of the string to write correct
programs that manipulate strings

* The null terminator * \ 0’ marks the end of the string
395

Strings in C

* char welcome[6] {'w’, '‘E’', ‘L', 'L, ‘0", ‘\0'};

" char welcomel] “HELLO" ;

= Compiler figures = Need a way to
out the length ' know the end of

» 5+1for\O' ™ Compilerinserts the string

= Manually track a null terminator = (Cstrings are
length (unlike \O" automatically null-terminated

Python)

396

Exercise: Manipulating Char Array

C code:

char array[ll] = “anthonymay”;
int 1i;

for (1 = 0; 1 < 10; 1 =1 + 1)
array[li] = array[i] — 32;

Exercise: Manipulating Char Array

" Transform the 10-character ASCII string, namely
array, from lower case to upper case

C code: Assembly code:
; RO = base addr, Rl = i
char array[ll] = “anthonymay”; MOV R1, #0 = 1 =0
int i; LOOP
CMP R1, #10 = 1 < 107
for (i = 0; 1 < 10; i =1i + 1) BGE DONE = if i >= 10, exit
array[li] = array[i] — 32; LDRB R2, [RO, R1] "= R2 = array[i]
SUB R2, R2, #32 = gsubtract 32
STRB R2, [RO, RI1] " store array[i]
ADD R1, R1, #1 = 1 =1+ 1
B LOOP = repeat loop
DONE

398

Exercise: Strings in Memory

= Show how “HELLO!” is stored in memory below
at address 0x1522FFFO.

ASCIl Encoding Address : Data :
H 0x48 ; ;
E Ox65 Ox1522FFF4
L 0x6C

Ox1522FFFO
0 Ox6F : Byte 3 Byte O :
I 0Ox21 : :
Null 0x00 . .

Exercise: Strings in Memory

= Show how “HELLO!” is stored in memory below
at address 0x1522FFFO.

ASCIl Encoding Address Data
H 0x48 :

R Ox1522FFF4 "
cL) o 0x1522FFFO
I

Ox6F : Byte 3 Byte O :
Ox21 - -

Null 0x00

Some Assembly Practice

401

More Assembly Practice

C Code
int array[5];

array[0] = array[0]

array([l] = array[1l]

ARM Assembly Code

; RO = array base address
MOV RO, #0x60000000

LDR R1, [RO]
LSL R1, R1, #3
STR R1, [RO]

LDR R1, [RO, #4]
LSL R1, R1, #3
STR R1, [RO, #4]

RO = 0x60000000

R1 = array[0]
Rl = Rl << 3 = R1*8
array[0] = R1

R1 = array[1]
Rl = Rl << 3 = R1*8
array|[l] = R1

402

More Assembly Practice

C Code
int array[200]
int 1;
(1=199; 1

arrayl[i] =

for

.
4

>= 1 =

0;

array[i]

*

i - 1)
87

ARM Assembly Code

; RO = array base address,
MOV RO, 0x60000000
MOV R1, #199

FOR
LDR R2, [RO, R1, LSL #2]
LSL R2, R2, #3
STR R2, [RO, R1l, LSL #2]
SUBS R1, RI1, #1
BPL. FOR

loop

R1

R2 = array (1)
R2 = R2<<3 =
array (i) =
i -1

and set flags
if (1i>=0)

R3*8

1 =

repeat

403

